_____ ПЫЛЕВАЯ ПЛАЗМА

УДК 523.36;533.951

О ВОЗМОЖНОСТИ СУЩЕСТВОВАНИЯ ПЫЛЕВЫХ ЗВУКОВЫХ ВОЗМУЩЕНИЙ В ИОНОСФЕРЕ МАРСА

© 2020 г. Ю. Н. Извекова^{*a*}, Ю. С. Резниченко^{*a*, *b*}, С. И. Попель^{*a*, *}

^а Институт космических исследований РАН, Москва, Россия ^b Московский физико-технический институт (национальный исследовательский университет), Долгопрудный, Россия *e-mail: popel@iki.rssi.ru Поступила в редакцию 10.05.2020 г. После доработки 12.06.2020 г.

Принята к публикации 22.06.2020 г.

Показано, что горизонтальные ветры в ионосфере Марса на начальном этапе их взаимодействия с плазменно-пылевыми облаками на высотах около 100 км могут приводить к появлению условий для возбуждения пылевых звуковых волн за счет развития кинетической неустойчивости. Найдены закон дисперсии пылевых звуковых волн и инкремент их раскачки в рассматриваемых условиях. Отмечается, что время генерации пылевых звуковых волн оказывается достаточно большим так, что возможным оказывается формирование нелинейных плазменных волновых структур, например, солитонов. Исследованы пылевые звуковые солитоны, распространяющиеся в ионосфере Марса в плазменно-пылевых облаках на высотах около 100 км. Показано, что рост концентрации пылевых частиц или же уменьшение концентрации электронов на порядок величины приводят к увеличению амплитуды пылевого звукового солитона примерно на порядок величины. Возможность возникновения пылевых звуковых возмущений в ионосфере Марса следует учитывать при обработке и интерпретации данных наблюдений.

Ключевые слова: пылевая плазма, ионосфера Марса, пылевые звуковые волны, кинетическая неустойчивость, солитоны, космические миссии

DOI: 10.31857/S0367292120120045

1. Интерес к описанию пылевой плазмы в ионосферах планет резко возрос в 2000-е годы, что было связано, в частности, с разработкой к этому времени методов исследования пылевой плазмы, в том числе, и в природных системах [1–4]. В последнее время имеется существенный интерес к исследованиям Mapca. Успешно работают такие миссии, как MarsExpress, ExoMars Trace Gas Orbiter, Mars Exploration Rover Opportunity, Mars Science Laboratory Curiosity и др.

Ионосфера Марса условно занимает высоты 80–400 км [5]. Параметры ионосферы Марса сильно изменяются во времени, поскольку на них определяющим образом воздействуют солнечное излучение и солнечный ветер. Солнечное излучение в мягком рентгеновском (длины волн от 0.1 до 5 нм) и ультрафиолетовом (5–110 нм) диапазонах играет существенную роль в формировании дневной ионосферы Марса. Основными физическими механизмами, приводящими к образованию ночной ионосферы Марса [6], являются осаждение электронов, перенос плазмы с дневной стороны, а также потоки высокоэнергетических частиц от Солнца. Пиковые электронные концентрации коррелируют с переносом плазмы с дневной стороны для широт ниже 115° . Концентрация электронов в ночной ионосфере Марса варьируется в диапазоне от 2×10^3 до 1.8×10^5 см⁻³. Слои, обусловленные абляцией вещества метеороидов, наблюдаются на высотах около 80 км [7]. Они географически локализованы и спорадичны.

На высотах ионосферы Марса около 100 км, где температуры достаточно низки для замерзания углекислого газа, присутствуют облака частиц льда CO_2 с размерами 80–130 нм и концентрацией порядка 1 см⁻³ [8], что позволяет рассматривать эти облака как области пылевой плазмы. Также имеются наблюдения облаков микрометровых частиц на высотах около 80 км [9]. По своему происхождению облака субмикронных частиц на высотах около 100 км напоминают серебристые облака в мезосфере Земли [10, 11].

Таким образом, область высот около 100 км в атмосфере Марса представляет существенный интерес с точки зрения исследования плазменнопылевых процессов. В этой области для ночных условий определены основные параметры запыленной ионосферы. Цель настоящей работы проведение оценки возможностей возбуждения волн в плазме ночной ионосферы на высотах ~100 км.

2. Согласно имеющимся представлениям [12] в результате нагрева солнечным излучением и вращения Марса возникает картина асимметричной циркуляции, приводящая к появлению горизонтальных ветров, распространяющихся со скоростями и порядка 100 м/с, над протяженными участками поверхности. Из-за контраста температур день-ночь возможно движение горизонтальных ветров через терминатор вблизи полюсов на высотах порядка 100 км. Таким образом, возможна ситуация, когда плазменно-пылевые облака попадают в области горизонтальных однородных ветров. Пылевые частицы, обладающие массами, существенно превышающими массы иона и электрона, медленнее вовлекаются в движение ветра. Следовательно, до тех пор пока не установилось стационарное движение, существует относительная скорость между ионами и пылевыми частицами, величина которой имеет порядок скорости нейтрального ветра. Указанный эффект может приводить к развитию плазменной неустойчивости, аналогично, например, ситуации, в которой пылевая плазма у поверхости Луны взаимодействует с плазмой хвоста магнитосферы Земли [13].

Ионный состав ионосферы Марса вблизи высоты 100 км представлен, в основном, положительными ионами, причем наибольший вклад вносят ионы O_2^+ . Температура ионов $T \ge 90$ K [8, 14] (см. рис. 1). Таким образом, тепловая скорость ионов v_{Ti} , по крайней мере, не меньше 150 м/с. При этом невозможна ситуация, реализуемая при $\omega \ge kv_{Ti}$, когда могла бы развиваться гидродинамическая неустойчивость типа неустойчивости Бунемана [15]. Здесь **k** – волновой вектор, $k = |\mathbf{k}|$, ω – частота волны.

Действительно, если неустойчивость в случае $\omega \ge kv_{Ti}$ могла бы реализоваться, то возбуждались бы ионно-звуковые волны, причем решением дисперсионного уравнения было бы $\omega = ku + \delta \omega$, где $\delta \omega \ll ku$ (см., например, [13]). Но это означает, что $u \ge kv_{Ti}$. Итак, существование относительной скорости между ионами и пылевыми частицами, обусловленной горизонтальными ветрами, не может приводить к возбуждению ионнозвуковых волн.

Однако существует другой пример неустойчивости, которая может приводить к возбуждению электростатических волн, — это кинетическая

Рис. 1. Высотное распределение температуры в области высот z над поверхностью Марса от 60 до 120 км по данным измерений ультрафиолетового спектрометра SPICAM, установленного на космическом аппарате Mars Express [14].

пылевая звуковая (по аналогии с ионно-звуковой) неустойчивость. Ее развитие возможно, если

$$\tau \ll \mathbf{v}_{dn}^{-1},\tag{1}$$

где т – характерное время развития неустойчивости, $v_{dn} = 2\sqrt{2\pi T m_n} a^2 n_n / 3\sqrt{3} m_d$ — частота столкно-вений пылевых частиц с нейтралами, вычисленная для кнудсеновского режима течения газа (см., например, [16]), m_n – масса нейтрала, m_d – масса пылевой частицы, *n_n* – концентрация нейтралов, *T* – температура плазмы, *a* – размер пылевой частицы. Отметим также, что время, за которое выравниваются направленные скорости ионов и пылевых частиц в результате действия нейтрального ветра, также имеет порядок v_{dn}^{-1} . Следовательно, развитие кинетической пылевой звуковой неустойчивости возможно в течение времени $\sim v_{dn}^{-1}$ после того, как нейтральный ветер начал действовать на плазменно-пылевое облако. Таким образом, условие (1) представляет собой необходимое условие для развития неустойчивости, а сама неустойчивость может развиваться в течение времени v_{dn}^{-1} .

Отметим, что предлагаемый в настоящей работе подход отличается от подхода, развиваемого в работах [17—19], где потоковые неустойчивости в атмосферах планет приводят к возбуждению волн, распространяющихся в вертикальном направлении. Работа [17], по существу, является первой работой, в которой исследовалась пылевая звуковая мода. В случае вертикального распространения пылевых звуковых волн в атмосферах планет часто важно учитывать дисперсию размеров (а, следовательно, и зарядов) пылевых частиц [18, 19]. В настоящей же работе, когда воз-

электрона.

буждение волн (горизонтальными однородными ветрами) в ионосфере Марса рассматривается в горизонтальных слоях, эффектом дисперсии размеров пылевых частиц можно пренебречь. Действительно, предполагается, что по своему происхождению облака субмикронных частиц на высотах около 100 км в ионосфере Марса напоминают серебристые облака в мезосфере Земли [10, 11]. При этом частицы льда СО₂, составляющие облака, образуются в процессе конденсации паров СО₂ и последующего взаимодействия с молекулами СО2 атмосферы, происходящего при седиментации в гравитационном поле Марса. В свою очередь, указанные процессы для частиц, находяшихся на одной высоте над поверхностью планеты, проходят с одинаковой интенсивностью [11, 20]. Поэтому следует ожидать отсутствия существенной дисперсии по размерам частиц при рассмотрении горизонтальных движений, тогда как при вертикальном распространении волн дисперсия частиц по размерам может сказываться существенным образом. Итак, в настоящей работе дисперсией размеров (а, следовательно, и зарядов) пылевых частиц пренебрегается.

Кинетическая пылевая звуковая неустойчивость реализуется при $kv_{Td} \ll \omega \ll kv_{Ti}$, где v_{Td} – тепловая скорость пылевых частиц. Дисперсионное уравнение в этом случае имеет вид

$$1 + \frac{1}{k^2 \lambda_{De}^2} + \frac{1}{k^2 \lambda_{Di}^2} \left(1 + i \sqrt{\frac{\pi}{2}} \frac{\omega - ku}{k v_{Ti}} \right) - \frac{\omega_{pd}^2}{\omega^2} = 0.$$
 (2)

Здесь $\lambda_{De(i)}$ — дебаевский радиус электронов (ионов), ω_{pd} — плазменная частота пылевых частиц.

Линейная дисперсия волн в данном случае соответствует пылевым звуковым волнам и имеет вид

$$\omega_k = \frac{\omega_{pd}\lambda_D k}{\sqrt{1 + k^2 \lambda_D^2}},\tag{3}$$

где

$$\frac{1}{\lambda_D^2} = \frac{1}{\lambda_{De}^2} + \frac{1}{\lambda_{Di}^2}.$$
 (4)

Инкремент неустойчивости определяется выражением

$$\gamma_k = \frac{\omega_k^3}{k^2 \lambda_{Di}^2 \omega_{pd}^2} \sqrt{\frac{\pi}{8}} \frac{ku - \omega_k}{kv_{Ti}}.$$
 (5)

Характерное значение инкремента имеет вид

$$\gamma \sim \omega_{pd} \frac{u}{v_{Ti}}.$$
 (6)

ФИЗИКА ПЛАЗМЫ том 46 № 12 2020

Условие развития неустойчивости

$$u > \omega_{pd} \lambda_D \tag{7}$$

легко реализуется в условиях плазмы в области плазменно-пылевых облаков на высотах около 100 км в атмосфере Марса. Для параметров плазмы $T \approx 90$ К, $n_n = 10^{12}$ см⁻³, $m_n \approx 7 \times 10^{-23}$ г, $u \approx 100$ м/с, $n_d \approx 1$ см⁻³, $a \sim 100$ нм имеем $\gamma \sim$ ~ 0.1 с⁻¹, $v_{dn} \sim 10^{-2}$ с⁻¹. Таким образом, условие $\tau \sim \gamma^{-1} \ll v_{dn}^{-1}$ выполняется, возбуждаются пылевые звуковые волны, более того, возможна генерация нелинейных волн.

3. Важным видом нелинейных волн, свойственных плазменным средам, являются солитоны. Их исследования интенсивно проводятся для самых разнообразных видов плазменных сред (см., например, [21, 22]). Рассмотрим пылевые звуковые солитоны, которые могут существовать в ночной ионосфере Марса на высотах около 100 км.

Одномерное распространение пылевых звуковых возмущений описывается системой уравнений, включающей в себя, в частности, уравнение непрерывности и уравнение Эйлера для пылевой компоненты, уравнение Пуассона

$$\frac{\partial n_d}{\partial t} + \frac{\partial (n_d v_d)}{\partial x} = 0, \quad \frac{\partial v_d}{\partial t} + v_d \frac{\partial v_d}{\partial x} = \frac{Z_d e}{m_d} \frac{\partial \varphi}{\partial x}, \quad (8)$$
$$\frac{\partial^2 \varphi}{\partial x^2} = 4\pi e \left(n_e + Z_d n_d - n_i \right), \quad (9)$$

где
$$\varphi$$
 – электростатический потенциал; *x* и *t* – пространственная и временная переменные; $n_{e(i)}$ – концентрация электронов (ионов), v_d – направленная скорость движения пылевых частиц, $q_d = -Z_d e$ – заряд пылевой частицы, –*e* – заряд

Кроме того, необходимо учесть распределения ионов и электронов, которые успевают установиться на пылевых звуковых временных масштабах. В случае ночной ионосферы Марса заряды пылевых частиц отрицательные, поскольку они определяются микроскопическими токами электронов и ионов, а подвижность электронов выше подвижности ионов. В этом случае пылевые звуковые солитоны индуцируют отрицательный электростатический потенциал, и условия захвата частиц плазмы солитоном (см., например, [23]) не выполняются. Таким образом, оказывается возможным считать распределения электронов и ионов больцмановскими

$$n_e = n_{e0} \exp\left(\frac{e\varphi}{T_e}\right), \quad n_i = n_{i0} \exp\left(-\frac{e\varphi}{T_i}\right).$$
 (10)

Здесь $n_{e(i)0}$ – невозмущенная концентрация электронов (ионов); $T_{e(i)}$ – температура электронов (ионов).

Рис. 2. Пример профиля $\phi(\xi)$ (а) и сагдеевского потенциала $V(\phi)$ (б), характеризующий пылевые звуковые солитоны в плазменно-пылевых облаках в ночной ионосфере Марса на высотах около 100 км при $n_{e0} = 10^3$ см⁻³, $n_{d0} = 1$ см⁻³, $T_e = T_i = 90$ К, a = 100 нм, $Z_d \approx 10$.

Заряды пылевых частиц на пылевых звуковых временных масштабах также успевают установиться (см., например, [24]). Их значения определяются из уравнения $I_e(q_d) + I_i(q_d) = 0$, где $I_e(q_d)$ и $I_i(q_d)$ — микроскопические токи электронов и ионов соответственно на пылевую частицу. При этом, аналогично ситуации в запыленной мезосфере Земли, оказывается возможным пренебречь изменениями зарядов пылевых частиц в солитоне.

Система уравнений (8)-(10) позволяет исследовать пылевые звуковые солитоны и применима, когда характерная скорость описываемого ей процесса существенно больше, чем тепловая скорость пылевых частиц, и меньше тепловой скорости ионов. Решения этой системы уравнений ищутся в виде локализованного волнового возмущения, движущегося с постоянной скоростью U вдоль оси Ох. Таким образом, все параметры задачи должны зависеть от координаты х и времени t посредством только нормированной переменной $\xi = (x - Ut)/\lambda_{De0}\sqrt{\tau}$, где $\tau = T_i/T_e$, а индекс "0" характеризует невозмущенные солитоном величины. Кроме того, предполагается, что все возмущения исчезают при $\xi \to \pm \infty$. Далее, используется стандартный подход, основанный на нахождении Саглеевского потенциала $V(\phi)$. При этом систему уравнений (8)–(10) можно свести к уравнению, формально совпадающему с законом сохранения энергии:

$$\frac{1}{2}(\varphi_{\xi})^{2} + V(\varphi) = 0, \qquad (11)$$

$$V(\varphi) = \frac{1}{\tau} \bigg[1 - \exp(\varphi \tau) + (1 + Z_d d) \tau (1 - \exp(-\varphi)) + |M| \tau d \bigg[|M| - \sqrt{M^2 + 2Z_d \varphi} \bigg] \bigg].$$
(12)

Здесь использованы безразмерные величины, полученные в соответствии с заменами $e\phi/T_i \to \phi$, $U/c_d \to M$; $c_d = \sqrt{T_i/m_d}$, $d = n_{d0}/n_{e0}$.

Для существования локализованных пылевых звуковых структур Сагдеевский потенциал $V(\phi)$ должен иметь локальный максимум в точке $\phi = 0$. Кроме того, у уравнения $V(\phi) = 0$ должно быть, по крайней мере, одно действительное решение $\phi_0 \neq 0$ (необходимым условием для этого является выполнение неравенства $V(-M^2/2Z_d) \ge 0$). Локальный максимум Сагдеевского потенциала $V(\phi) = 0$ в точке $\phi = 0$ существует, если выполнено условие

$$M^2 > \frac{Z_d^2 d}{(1 + \tau + Z_d d)},$$
 (13)

являющееся условием существования пылевых звуковых солитонов. Профиль $\varphi(\xi)$ и график зависимости сагдеевского потенциала $V(\varphi)$, характеризующие пылевые звуковые солитоны в плазменно-пылевых облаках в ночной ионосфере Марса на высотах около 100 км, приведены на рис. 2. Вычисления проводились при $n_{e0} = 10^3$ см⁻³, $n_{d0} = 1$ см⁻³, $T_e = T_i = 90$ К, a = 100 нм, $Z_d \approx 10$. В целом, подобные вычисления для других параметров плазмы позволяют сделать следующие вы-

ФИЗИКА ПЛАЗМЫ том 46 № 12 2020

Рис. 3. Профили амплитуды пылевого звукового солитона φ в зависимости от значений числа Маха *M* и от концентрации пылевых частиц n_{d0} в плазменно-пылевых облаках в ночной ионосфере Марса на высотах около 100 км при $n_{e0} = 10^3$ см⁻³, $T_e = T_i = 90$ K, a = 100 нм, $Z_d \approx 10$.

воды. Амплитуда солитона растет с увеличением концентрации пылевых частиц так, что увеличение n_{d0} на порядок дает рост амплитуды также примерно на порядок. Амплитуда солитона растет и с уменьшением концентрации электронов плазмы. Уменьшение n_{e0} на порядок приводит к росту амплитуды солитона примерно на порядок величины.

На рис. З изображены профили амплитуды пылевого звукового солитона φ в зависимости от значений числа Маха M и от концентрации пылевых частиц n_{d0} в плазменно-пылевых облаках в ночной ионосфере Марса на высотах около 100 км. Данные, приведенные на рис. З, получены для параметров плазменно-пылевой системы, вычисленных при $n_{e0} = 10^3$ см⁻³, $T_e = T_i = 90$ K, a = 100 нм, $Z_d \approx 10$.

4. Итак, в работе показано, что горизонтальные ветры, возникающие в ионосфере Марса вследствие нагрева солнечным излучением и вращения Марса, на начальном этапе их взаимодействия с плазменно-пылевыми облаками на высотах около 100 км могут приводить к появлению условий для возбуждения пылевых звуковых волн за счет развития кинетической неустойчивости. Найдены закон дисперсии пылевых звуковых волн и инкремент их раскачки в рассматриваемых условиях. Время генерации пылевых звуковых волн оказывается достаточно большим так, что возможным оказывается формирование нелинейных плазменных волновых структур, например, солитонов. Исследованы пылевые звуковые солитоны, распространяющиеся в ионосфере Марса в плазменно-пылевых облаках на высотах

ФИЗИКА ПЛАЗМЫ том 46 № 12 2020

около 100 км. Показано, что свойства солитонов существенным образом зависят от параметров пылевой плазмы. Так, рост концентрации пылевых частиц или же уменьшение концентрации электронов на порядок величины приводят к увеличению амплитуды пылевого звукового солитона примерно на порядок величины. Линейные и нелинейные волны в ионосфере Марса могут фиксироваться в измерениях, осуществляемых космическими аппаратами. Возможность возникновения пылевых звуковых волновых возмущений в ионосфере Марса следует учитывать при обработке и интерпретации данных наблюдений.

Работа выполнена при частичной поддержке РФФИ (проект № 18-02-00341-а).

СПИСОК ЛИТЕРАТУРЫ

- 1. *Shukla P.K., Mamun A.A.* // Introduction to Dusty Plasmas Physics. Bristol/Philadelphia: Institute of Physics Publishing, 2002.
- Tsytovich V.N., Morfill G.E., Vladimirov S.V., Thomas H. // Elementary Physics of Complex Plasmas. Berlin/Heidelberg: Springer, 2008.
- 3. Fortov V.E., Ivlev A.V., Khrapak S.A., Khrapak A.G., Morfill G.E. // Phys. Reports. 2005. V. 421. P. 1.
- Popel S.I., Kopnin S.I., Yu M.Y., Ma J.X., Huang F. // J. Phys. D: Applied Phys. 2011. V. 44. P. 174036.
- 5. Withers P. // Adv. Space Res. 2009. V. 44. P. 277. 2009.04.027.
- Withers P., Fillingim M.O., Lillis R.J., Häusler B., Hinson D.P., Tyler G.L., Pätzold M., Peter K., Tellmann S., Witasse O. // J. Geophys. Res. 2012. V. 117. P. A12307.
- 7. Pätzold M., Tellmann S., Häusler B., Hinson D., Schaa R., Tyler G.L. // Science. 2005. V. 310. P. 837.

- Montmessin F., Bertaux J.L., Quémerais E., Korablev O., Rannou P., Forget F., Perriera S., Fussend D., Lebonnoisc S., Rébéraca A. // Icarus. 2006. V. 183. P. 403.
- Montmessin F., Gondet B., Bibring J.P., Langevin Y., Drossart P., Forget F., Fouchet T. // J. Geophys. Res. 2007. V. 112. P. E11S90.
- 10. Клумов Б.А., Морфилл Г.Е., Попель С.И. // ЖЭТФ. 2005. Т. 127. С. 171.
- Дубинский А.Ю., Резниченко Ю.С., Попель С.И. // Физика плазмы. 2019. Т. 45. С. 913.
- Bougher S. W., Engel S., Roble R.G., Foster B. // J. Geophys. Res. 1999. V. 104. P. 16591.
- 13. Попель С.И., Морозова Т.И. // Физика плазмы. 2017. Т. 43. С. 474.
- Forget F., Montmessin F., Bertaux J.L., González-Galindo F., Lebonnois S., Quémerais E., Reberac A., Dimarellis E, López-Valverde M.A. // J. Geophys. Res. 2009. V. 114. P. E01004.
- 15. Buneman O. // Phys. Rev. 1959. V. 115. P. 603.

- 16. Фортов В.Е., Якубов И.Т., Храпак А.Г. Физика неидеальной плазмы. М.: Физматлит, 2010.
- 17. *Трахтенгерц В.Ю. //* Докл. АН СССР. 1989. Т. 308. С. 584.
- Грач В.С. // Изв. вузов. Радиофизика. 2013. Т. 56. С. 395.
- 19. *Грач В.С. //* Изв. вузов. Радиофизика. 2013. Т. 56. С. 468.
- 20. Дубинский А.Ю., Попель С.И. // Письма ЖЭТФ. 2012. Т. 96. С. 22.
- 21. Srinivas J., Popel S.I., Shukla P.K. // J. Plasma Phys. 1996. V. 55. P. 209.
- 22. Лосева Т.В., Попель С.И., Голубь А.П. // Физика плазмы. 2012. Т. 38. С. 792.
- 23. Копнин С.И., Попель С.И. // Письма ЖТФ. 2019. Т. 45. С. 26.
- 24. Popel S.I., Kopnin S.I., Kosarev I.N., Yu M.Y. // Adv. Space Res. 2006. V. 37. P. 414.