_____ МАГНИТНЫЕ ЛОВУШКИ

УДК 537.533;537.534;519.6

ЧИСЛЕННОЕ МОДЕЛИРОВАНИЕ ИСТОЧНИКА ЭЛЕКТРОННОГО ПУЧКА УСТАНОВКИ ГДЛ

© 2022 г. В. Т. Астрелин^{*a*,*}, Е. И. Солдаткина^{*a*,**}

^а Институт ядерной физики СО РАН им. Г.И. Будкера, Новосибирск, Россия *e-mail: V.T.Astrelin@inp.nsk.su **e-mail: E.I.Soldatkina@inp.nsk.su Поступила в редакцию 26.04.2021 г. После доработки 30.06.2021 г. Принята к публикации 30.07.2021 г.

Представлены результаты численного моделирования формирования электронного пучка в неоднородном магнитном поле в условиях облучения его источника плазмой, содержащей сверхзвуковой поток дейтронов. Для моделирования эмиссии ионов из плазмы используются граничные условия, полученные решением одномерного уравнения Пуассона в дебаевском слое на поверхности плазмы. Получены угловые характеристики пучка, определены условия его прохождения через магнитную пробку с большим пробочным отношением в открытую магнитную ловушку ГДЛ. Показано негативное влияние потенциала лайнера, запирающего поток плазмы на входе в источник пучка, приводящее к увеличению угловой расходимости его электронов.

Ключевые слова: численное моделирование, плазменный эмиттер ионов, электронный пучок, магнитная пробка, газодинамическая ловушка

DOI: 10.31857/S0367292122010024

1. ВВЕДЕНИЕ

На открытой магнитной ловушке ГДЛ в ИЯФ СО РАН [1] ведутся эксперименты по инжекции электронного пучка в дейтериевую плазму. Ловушка представляет собой пробкотрон с большим пробочным отношением и торцевыми расширителями магнитного поля, в одном из которых на его оси расположен источник электронного пучка [2]. Нагрев плазмы до субтермоядерных параметров проводится наклонной инжекцией мощных атомарных пучков и СВЧ-излучением на электронном циклотронном резонансе [3].

Для уменьшения до безопасного уровня разрушительного действия мощного потока энергии плазмы, выходящего из пробкотрона вдоль магнитного поля, источник размещается в ослабленном магнитном поле расширителя. Поэтому выходящие из источника электроны пучка должны иметь малые питч-углы, чтобы в нарастающем магнитном поле пройти в ловушку через ее пробку.

Эксперименты [2] показали, что при попадании даже разреженного потока плазмы внутрь источника в нем могут возникать электрические пробои между электродами, нарушающие его работу. Для выяснения причин пробоев методом двумерного численного моделирования проводился анализ электронно-оптической системы источника электронного пучка с проникающей в него плазмой. В стационарном случае граница плазмы в таком источнике устанавливается там, где электрическое поле на ней достаточно велико для того, чтобы отразить электронную компоненту плазменного потока, остановив его продвижение. При этом ионы выходят через поверхность плазмы, ускоряясь и формируя в источнике электронов встречный ионный поток, дающий вклад в электрическое поле системы так же, как и электронный пучок.

Условие равновесия плазменной границы в электрическом поле зависит от параметров плазмы, в частности, от ее электронной температуры, характеристик ионного потока и от параметров проходящего через нее электронного пучка. Это условие было аналитически получено в работе [4] для плазмы с модельными функциями распределения частиц, основанными на экспериментальных измерениях и подтвержденными теоретическими оценками. В аналитическом решении уравнения Пуассона для потенциала в области дебаевского слоя на поверхности плазмы учитывалось, что в плазме, входящей в источник, направленная скорость ионного потока в условиях эксперимента десятикратно превышает ионнозвуковую скорость. Полученное одномерное решение в форме граничных условий на электрическое поле и потенциал на поверхности плазмы далее использовалось для двумерного численного решения стационарной задачи формирования ионных потоков и электронного пучка в источнике со сложной формой электродов и структуры магнитного поля [5].

В экспериментах по инжекции электронного пучка в ловушку с плазмой проверялось две конфигурации источника пучка диодного типа. Первый вариант [2] характеризовался наличием заземленной диафрагмы на торце источника с отверстием диаметром 6 см. Через это отверстие выходил электронный пучок и входил встречный поток плазмы. Но работа этого источника была нестабильной из-за систематических электрических пробоев в диоде, ограничивающих длительность пучка до 1-10 мкс. Поэтому во второй версии источника [5] вместо диафрагмы был установлен лайнер – металлическая трубка с внутренним диаметром 4 см, на которую для запирания потока плазмы может подаваться потенциал. Лайнер закрыт от прямого попадания плазменного потока заземленным металлическим кожухом с таким же входным отверстием диаметром 4 см. Расстояние между лайнером и кожухом около 1 см. Длительность работы модернизированного источника при параметрах пучка, несколько меньших проектных значений, существенно возросла и практически ограничивалась его питанием.

Для второго варианта источника проводилось численное моделирование. Оно показало, что при заземленном лайнере в рабочем режиме ловушки плазменный поток из нее может проникать внутрь источника практически до его гексаборид лантанового катода, эмиссия электронов с которого ограничивалась его температурой. При этом угловая расходимость выходящего из источника электронного пучка зависит от глубины проникновения плазмы, но основная часть пучка оказывается внутри конуса потерь пробкотрона и может проходить в ловушку через магнитную пробку.

Предварительные эксперименты по запиранию плазменного потока, проходящего в источник, потенциалом лайнера определенного результата не дали. При подаче потенциала до -2 кВ заметных изменений в характеристиках пучка и в работе источника не наблюдалось. Поэтому представляет интерес исследование численным моделированием условия запирания потока плазмы потенциалом лайнера и его влияния на характеристики пучка. Ниже содержатся основные результаты новых и ранее проведенных численных исследований работы источника пучка.

В работе приведены условия эксперимента, описание источника электронного пучка, уста-

новленного в ГДЛ, краткое описание характеристик плазменного потока в расширителе ловушки и конфигурация ионных потоков в ней. Описана схема численного моделирования источника электронного пучка, в котором присутствует анодная плазма, эмитирующая сверхзвуковой поток ионов, а также метод нахождения формы поверхности плазмы, эмитирующей ионы. Для одномерного случая получены граничные условия на потенциал и электрическое поле в дебаевском слое плазмы, остановленной этим полем. Подробное описание части этих результатов рассмотрено в работах [4, 5].

Далее приведены параметры численной модели и результаты моделирования для случая нулевого потенциала лайнера. Рассмотрены некоторые результаты численного моделирования электронного пучка в условиях проникновения плазменного потока через заземленный лайнер внутрь источника. Основное отличие от работ [4, 5] заключается в уточнении эмиссионных характеристик плазмы с использованием характеристик ионных потоков внутри плазмы. Проведено моделирование формирования электронного пучка в источнике без анодной плазмы и с плазмой при различных её плотностях. Приведены вакуумный предельный ток, потери тока в лайнере и уточнены угловые характеристики электронного пучка.

Проведено численное моделирование для определения условий остановки плазменного потока потенциалом лайнера и влияния образовавшегося профиля плазменной границы внутри лайнера на характеристики выходящего из источника электронного пучка.

2. УСЛОВИЯ ЭКСПЕРИМЕНТА

Схема эксперимента приведена на рис. 1. Источник пучка триодного типа с термокатодом и полым анодом расположен в расширителе на оси ловушки на расстоянии ~150 см от катода до пробки с полем В₀ ~ 12 Тл. Распределение магнитного поля на оси от катода до центра ловушки показано на рис. 2. В районе источника поле приведено также в увеличенном масштабе. Магнитное поле источника пучка формируется его соленоидом и близко к однородному $B_c \sim 0.15$ Тл на катоде в области ускорения электронов, далее достигает локального минимума ~0.034 Тл на z ~ 34 см и увеличивается до $B \sim 0.04$ Тл на выходе пучка из источника ($z \sim 43$ см), далее нарастая к пробке ГДЛ. Такая конфигурация поля позволяет значительно уменьшить плотность ионного тока на входную диафрагму до ~0.036 A/см².

Рис. 1. Схема газодинамической магнитной ловушки ГДЛ: *1* – источник электронного пучка; *2* – центральный объем ловушки; *3* – источник нейтральных атомов.

Рис. 2. Распределение магнитного поля в ГДЛ. Координата *z* = 0 – катод пушки, *z* ~ 1.54 м – магнитная пробка, *z* ~ 5 м – центр ловушки.

Рис. 3. Источник электронного пучка: *1* – LaB₆ эмиттер и *2* – катодный электрод, находящиеся под отрицательным потенциалом; *3* – анодный электрод, заземлен; *4* – лайнер; *5* – силовая линия магнитного поля; *6* – соленоид пушки.

Источник электронного пучка

Источник представляет собой трехэлектродную электронную пушку (рис. 3). Она должна формировать пучок с малой угловой расходимостью скоростей электронов, такой, чтобы он мог пройти в ловушку через пробку с большим пробочным отношением. Допустимая величина максимального питч-угла электронов определяется отношением магнитного поля в пробке к полю на

 $\sim R^{-0.5} \sim 0.06$ радиан.

В рассматриваемом режиме потенциал катода $U_0 = -25$ кВ, ток пучка $I_0 = 6.5$ А, ограничен температурой эмиттера. Борид-лантановый эмиттер диаметром $2R_c = 2$ см находится на торце катодного электрода диаметром 6 см. Эмиттер представляет собой выпуклый сферический сегмент с радиусом сферы 2.6 см. Такая форма катода была

выходе пушки $R = B_0/B \sim 300$ и составляет $\theta_{\text{max}} \sim$

выбрана для формирования пучка с высокой плотностью тока и малыми питч-углами в источнике с магнитной изоляцией [6]. Расстояние между катодом и выходным отверстием кожуха источника равно 43 см. Плотность тока замагниченных электронов пучка изменяется вдоль источника и составляет $j_e \sim 2$, 0.47 и 0.55 A/cm² в точках z = 5, 34 и 43 см соответственно. При энергии электронов 25 кэВ плотность их объемного заряда в этих точках будет равна $n_b \sim 1.2 \times 10^9$, 2.7×10^8 и 3.2×10^8 см⁻³.

Лайнер предназначался для уменьшения потока плазмы, проходящего в диод, с целью увеличения длительности работы диода. Длина лайнера равна 12 см, а его диаметр 4 см был выбран таким, чтобы магнитный поток, пересекающий эмиттер, проходил внутри лайнера, не касаясь его стенки. Расстояние от катода до начала лайнера, на котором происходит ускорение пучка, составляет ~30 см. В большей части проведенных экспериментов лайнер был заземлен.

Параметры плазмы в ловушке и расширителе

Рассматриваемый далее режим работы установки относится к наиболее изученным, допускающим ее длительную эксплуатацию. Центральный объем ловушки заполнен дейтериевой плазмой, нагреваемой пучками нейтральных атомов. В пробках плотность плазмы $n_0 \sim 10^{13} \text{ см}^{-3}$, температура электронов и ионов $T_0 \sim T_{e0} \sim T_{i0} \sim 200$ эВ. Электроны, вышедшие через пробку в расширитель, в основном, возвращаются обратно полем плавающего потенциала плазмы, а ионы выходят, не возвращаясь. Поэтому распределение скоростей в пробке принято максвелловским для электронов и полумаксвелловским для ионов. Из равенства их токов через пробку получаем плавающий потенциал плазмы равным $\phi_{pl0} \sim 0.75$ кВ. Плотность ионного тока, выходящего через пробку в расширитель, составляла $j_{i0} \sim 12.5 \text{ A/см}^2$.

Выходящий в расширитель поток плазмы распространяется по силовым линиям расходящегося магнитного поля практически бесстолкновительно и поглощается коллектором. При этом электроны замагничены. и их плотность определяется больцмановским распределением в потенциале плазмы. Измерения показали, что потенциал плазмы у поверхности коллектора плазмы в расширителе ~30 эВ, а средняя температура электронов $T_e \sim 20$ эВ [7]. Низкотемпературные электроны, в основном, возникают за счет вторичной эмиссии с коллектора и при ионизации остаточного газа этими электронами, осциллирующими между пробкой и коллектором. Вклад в плотность плазмы у коллектора пролетных электронов, вышедших из ловушки, не превышает 9%. Это позволяет в первом приближении ими пренебречь и учитывать только низкотемпературные электроны. Что касается потока ионов в расширителе, их поперечная тепловая энергия адиабатически переходит в продольную одновременно с продольным ускорением амбиполярным электрическим полем до энергии $\varepsilon_{i0} \sim 1$ кэВ. Изменение функции распределения ионов по энергии f_i(ε) при их движении в убывающем магнитном поле было получено ранее теоретически в работе [8]. Было показано, что средняя энергия ионов близка к $6T_0$, а полуширина распределения близка к T_0 , что находится в хорошем согласии с экспериментом [8]. Это означает, что ионы вблизи коллектора приближенно можно считать моноэнергетическими со скоростью $v = (2\varepsilon_{i0}/M)^{1/2}$, десятикратно превышающей скорость ионного звука $C_s =$ $= (T_{e}/M)^{1/2}$.

3. ДВИЖЕНИЕ ИОНОВ В МАГНИТНОМ ПОЛЕ [5]

Для определения характеристик ионов в потоке плазмы предварительно был проведен расчет движения ионов в магнитном поле ловушки и источника электронного пучка. При попадании ионов в неоднородное поле соленоида пушки адиабатичность их движения нарушается, приводя к перераспределению потока плазмы у входа в пушку. Результат вычисления траекторий ионов, вылетающих из пробки с энергией 1 кэВ, в магнитном поле расширителя в приближении нулевого электрического поля в плазме приведен на рис. 4. Считая, что распределение плотности плазмы в расширителе будет определяться плотностью ионов в потоке, из этих данных можно получить распределение плотности тока и угловых скоростей ионов в любом месте плазменного потока, используя их далее в численном моделировании. Значения плотности тока и плотности плазмы в двух точках (на входе потока в источник и в 3 см от катода) представлены в таблице 1, приведенной ниже.

4. МЕТОД ЧИСЛЕННОГО РЕШЕНИЯ ЗАДАЧИ

Задача численного моделирования систем с плазменными эмиттерами характеризуется существенной разномасштабностью размеров элементов ускорительной системы и толщины дебаевского слоя на поверхности плазмы. С учетом этого численное моделирование источника проводится следующим образом [9, 10]. Задаётся поверхность анодной плазмы с формой, близкой к ожидаемой. Она разбивается на небольшие участки, поверхность которых можно считать плоской. К каждому такому участку со стороны области

Рис. 4. Траектории ионов и силовые линии магнитного поля. Справа на рисунке – магнитная пробка ГДЛ, слева – электронная пушка с соленоидом.

ускорения примыкает слой толщиной d, масштаба десятка дебаевских радиусов, образуя плоский минидиод. Поверхность плазмы эмитирует поток ионов, навстречу которому движется электронный пучок, проходящий в плазму с энергией электронов eU_0 . Решением уравнения Пуассона находятся граничные условия на поверхности плазмы в дебаевском слое.

Граничные условия на поверхности плазмы

Определим потенциал φ и электрическое поле *E* в глубине квазинейтральной плазмы равными нулю. В этом случае уравнение Пуассона имеет вид [4]

$$\frac{d^2 \varphi}{dz^2} = 4\pi e \left(n_e + n_{eb} - n_i \right) =$$

$$= 4\pi e n \left(\left(1 - \eta \right) \exp \left(e \varphi / T_e \right) + \right)$$

$$+ \eta \frac{\sqrt{U_0}}{\sqrt{U_0 + \varphi}} - v / \sqrt{v^2 - 2e\varphi / M} \right).$$
(1)

Здесь n_e и n_i — плотности электронов и ионов плазмы в диодном зазоре и $\eta = n_{eb}/n$ — отношение плотности электронов пучка n_{eb} к невозмущенной плотности плазмы n при $\varphi = 0, e > 0$ — элементарный заряд, v — проекция начальной скорости ионов **v** на нормаль к поверхности плазмы. Она связана с плотностью ионного тока соотношением $j_i = env$. Учитывая граничные условия в плазме $\varphi \to 0$, $E = -d\varphi/dz \to 0$ на координате $z \to -\infty$, однократно проинтегрируем уравнение и запишем его в безразмерных переменных $\chi = \varphi/U_0, \xi = z/d, u_0 = v/\sqrt{T_e/M}, \tau = T_e/eU_0$:

$$\frac{E^2}{8\pi n T_e} = \left[(1-\eta) \left[\exp(\chi/\tau) - 1 \right] + \frac{2\eta}{\tau} \left(\sqrt{1+\chi} - 1 \right) + u_0 \sqrt{u_0^2 - 2\chi/\tau} - u_0^2 \right].$$
(2)

Это выражение описывает распределение электрического поля в диодном зазоре как функцию от потенциала при различных значениях направленной скорости ионов u_0 и плотности заряда электронного пучка η . В нашем случае $u_0 \sim 10$, $\eta \sim 0.045$, $\tau \sim 6 \times 10^{-4}$. Определим потенциал

The second and the second of 	Таблица	1.	Парамет	ры пучка	а и плазмы	в источнике	для численного	моделирования
--	---------	----	---------	----------	------------	-------------	----------------	---------------

Параметры плазмы и источника	Обозначения	Значения
Плотность плазмы при $z = 43$ см и $z = 3$ см	п	$(0.7-1.3) \times 10^{10} \mathrm{cm}^{-3}$
Плотность ионного тока в этих же точках	j _i	$(0.036-0.06) \text{ A/cm}^2$
Энергия движения ионов	ϵ_{i0}	1 кэВ
Температура электронов плазмы в расширителе	T_e	20 эВ
Потенциал плазмы в диоде	Φ_{pl}	30 B
Безразмерная скорость ионов	$u_0 = (2\varepsilon_{i0}/T_e)^{1/2}$	≤10
Безразмерная плотность электронов пучка	$\eta = n_{eb}/n$	0.03-0.2
Безразмерная температура электронов плазмы	$\tau = T_e/eU_0$	6×10^{-4}
Потенциал катода	U_0	—25 кВ
Ток пучка	I_0	6.5 A
Средняя плотность тока на катоде	j_{0e}	2 А/см ²

 $\varphi = -4T_e/e$ (т.е., $\chi/\tau = -4$) как потенциал поверхности плазмы, разделяющей дебаевский слой и область ускорения ионов. На этой границе плотность электронов плазмы спадает более чем в 50 раз ($n_e/n < 0.02$), так что в области ускорения ими можно пренебречь.

На определенной таким образом границе плазмы величины ее потенциала, электрического поля, скорости и плотности ионного потока представляют собой набор граничных условий на поверхности плазмы, полученных ранее в работе [4]. Они совместно с потенциалами остальных электродов источника используются для решения двумерной задачи электронной оптики — задачи формирования электронного пучка.

Нахождение формы плазменной границы

Весь объем источника пучка разделяется на две части – объем, прилегающий к поверхностям эмиттеров, состоящий из мини-диодов, и остальная его часть. Напряжение на каждом таком мини-диоде определяется на предыдущем шаге итерационного процесса, согласующего электромагнитные поля, учитывающие вклад всех потоков частиц в источнике, с его траекторной частью. Аналогично выводу предельного тока в "законе трех вторых", решением уравнения Пуассона (1) с полученными выше граничными условиями на поверхности плазмы для всех минидиодов нахолится предельная плотность ионного тока. Затем проводится сравнение полученных предельных токов с токами, определяемыми параметрами анодной плазмы. Далее каждый рассматриваемый участок поверхности плазмы смещается так, чтобы эти значения плотностей токов сблизились. Итерационный процесс повторяется до тех пор, пока токи не совпадут с заданной точностью. Это означает, что эмитируемые плазмой ионные токи проходят без отражения в источник, создавая при этом электрическое поле на границе, удовлетворяющее граничным условиям, а сама граница плазмы находится в равновесном положении.

5. ПАРАМЕТРЫ И ДОПУЩЕНИЯ ЧИСЛЕННОЙ МОДЕЛИ

Для проведенных экспериментов параметры эксперимента и численной модели для участка границы анодной плазмы, эмитирующего ионы в сторону катода, сведены в таблицу. Основными допущениями модели [5] было задание потенциала плазмы, заходящей в источник пучка, равным ее потенциалу, измеренному зондом у коллектора плазмы, $\varphi_{pl} = +30$ В, а также пренебрежение поперечным электрическим полем в плазме при ускорении ионов в расширителе и пространственным зарядом высокотемпературных ($T_e \sim 200$ эВ) элек-

тронов, выходящих из ГДЛ, в дебаевском слое плазмы и в области ускорения пучка. Равновесное положение боковой поверхности плазменной струи, прошедшей в источник через диафрагму и лайнер вдоль магнитного поля. не вычислялось. поскольку в коде не были заложены законы диффузии плазмы поперек магнитного поля и не решались уравнения магнитной гидродинамики для плазмы. Ее положение оценивалось по форме траекторий периферийных ионов плазменной струи, соответствующей рис. 4, с дополнительным учетом угловой расходимости тепловых скоростей ионов, которая адиабатически уменьшается при движении ионов в расходящемся магнитном поле. Максимальное значение питч-углов ионов на входе в источник составляет θ_{max} ~ $\sim (B/B_0)^{1/2} \sim 0.06$ рад, где *В* и B_0 – магнитное поле на входе и в пробке. Расширение боковой поверхности плазмы внутри источника после прохождения лайнера, где адиабатичность движения ионов может нарушаться, оценивалось как $\Delta r(z) \sim$ $\sim \theta_{\max}(z_1 - z)(B/B_1)^{1/2}$, где z_1 и B_1 – координата ближней к катоду границы лайнера и поле на ней. Площадь фронтальной эмитирующей поверхности плазмы и плотность выходяшего из нее ионного тока соответствуют ионному потоку, прошедшему через лайнер в источник.

Задача расчета электронно-оптических характеристик источника пучка решалась в двумерном осесимметричном приближении с применением пакета программ COMSOL и численного кода POISSON-2 [9], адаптированного для условий эксперимента. В частности, в алгоритмах кода при решении локальной одномерной задачи Пуассона в минидиодах было заложено движение ионов из плазмы в диод под углом к нормали к поверхности плазмы, как и в работе [5]. Это учитывалось во вкладе ионов в пространственный заряд и нахождении равновесной формы плазменной границы, обращенной к катоду. Плазма моделировалась как область без объемного заряда и электрического поля, ограниченная поверхностью с заданным потенциалом ϕ_{pl} . Магнитные поля соленоидов и потоков заряженных частиц в ней при расчете траекторий частиц учитывались полностью.

6. РЕЗУЛЬТАТЫ МОДЕЛИРОВАНИЯ ИСТОЧНИКА С ЗАЗЕМЛЕННЫМ ЛАЙНЕРОМ

В работе [5] моделирование проводилось для нескольких режимов формирования электронного пучка в диоде пушки. Приведем некоторые результаты расчетов.

Рис. 5. Траектории ионов, электронов пучка и эквипотенциальные линии при потоке плазмы с плотностью ионного тока $j_i \sim 0.06 \text{ A/cm}^2$ на ее границе и заземленным лайнером. Эквипотенциали проведены через 1 кВ.

Диод без анодной плазмы

Расчет проводился для определения предельного вакуумного тока пучка и его угловых характеристик в отсутствие анодной плазмы. Ток пучка ограничивался пространственным зарядом его электронов.

При решении задачи был получен предельный ток пучка, эмитированного катодом, равный 6 А. Через лайнер выходит 4.9 А (82% тока пучка), остальное поглощается лайнером. Максимальный угол между вектором скорости электронов и вектором магнитного поля (питч-угол) на выходе пучка из источника ($Z \sim 44$ см, $B \sim 0.0335$ Тл) составил 0.045 радиана. Это меньше предельного угла $\theta_{max} = 0.06$ радиан. Следовательно, выходящий из источника электронный пучок пройдет в ловушку без отражения магнитной пробкой.

Диод с анодной плазмой

В режиме облучения источника пучка плазмой, выходящей из ловушки, с уточненными параметрами, приведенными выше в таблице, результат моделирования показан на рис. 5. Здесь ток пучка ограничивался эмиссионной способностью катода (в эксперименте – его температурой) и задавался равным 6.5 А (~2 А/см²). Граница плазмы установилась на расстоянии ~2.4 см от катода. При этом через лайнер проходит ~4.8 А (73% от тока электронов с катода) с питч-углами до ~0.05 рад, остальные 1.7 А попадали на лайнер. Это означает, что выходящий из источника пучок может пройти в ловушку. Основной причиной появления питч-углов в диоде является, очевидно, формирование электростатической линзы, образованной близко расположенными выпуклыми поверхностями эмиттера и анодной плазмы, рассеивающей поток эмитированных электронов. Существенно, что в этом режиме ток катода ограничен его температурой, а не пространственным зарядом электронов. Это означает, что электрическое поле на его поверхности отлично от нуля и может дать значительный вклад в питч-углы электронов за счет угла между векторами электрического и магнитного поля.

Влияние плотности потока плазмы на характеристики пучка

При уменьшении плотности плазмы в 3 раза (плотность ионного тока на границе плазмы в диоде составила $j_i \sim 0.02 \text{ A/cm}^2$) ее граница отодвинулась до ~6 см от катода (см. [5], рис. 6). Из эмитированного катодом тока 6.5 А через лайнер проходит ~4.7 А (~72% эмитированного катодом тока). Питч-углы электронов, вышедших из источника, стали меньше ~0.025 радиана, т.е. меньше угла конуса потерь, равного 0.053 рад. Такой пучок проходит в ловушку без отражения.

Сравнение результатов моделирования

Из сравнения полученных результатов следует, что при рассматриваемых параметрах источника и плазмы в выходном лайнере источника теряется от 20 до 30% тока катода. В рабочем режиме ловушки плазма глубоко проникает в источник, искажая его оптические характеристики и приводя к увеличению питч-углов электронов. При этом электроны пучка приобретают угловые скорости почти до границы конуса потерь.

Из результатов моделирования и проведенных ранее экспериментов также следует, что диаметр лайнера должен существенно влиять на эффективность работы источника пучка. Это влияние имеет противоречивый характер. С одной стороны, лайнер облегчает работу источника, поскольку уменьшает количество плазмы, проходящее в него из ловушки. Кроме того, на лайнере теряется периферийная часть пучка с максимальными питч-углами электронов, которые могли бы влиять на работу источника, отражаясь от магнитной пробки ловушки. С другой стороны, токоосаждение на лайнере должно приводить к вторичной электронной эмиссии с него, а энерговыделение – к десорбции газа с его поверхности с последующей его ионизацией, что может приводить к пробоям в источнике.

Рис. 6. Траектории ионов, электронов пучка и эквипотенциальные линии при потоке плазмы с плотностью ионного тока $j_i \sim 0.036 \text{ A/cm}^2$ на ее границе и потенциале лайнера $\varphi_l = -5 \text{ кB}$. Эквипотенциали проведены через 1 кВ.

Рис. 7. Траектории ионов, электронов пучка и эквипотенциальные линии при потоке плазмы с плотностью ионного тока $j_i \sim 0.03 \text{ A/cm}^2$ на ее границе и потенциале лайнера $\varphi_l = -4 \text{ kB}$.

7. ВЛИЯНИЕ ПОТЕНЦИАЛА ЛАЙНЕРА НА ЗАПИРАНИЕ ПОТОКА ПЛАЗМЫ

При проектировании источника пучка предполагалось ограничивать поток плазмы в источник, подавая на лайнер отрицательный потенциал. В этом случае плотность плазмы должна уменьшаться за счет ухода ионов на стенки и запирания электронов потенциалом лайнера. Дебаевская длина в плазме на входе в лайнер составляет $r_d \sim 0.4$ мм ($T_e = 20$ эВ, $n_i \sim 7 \times 10^9$ см⁻³), что значительно меньше радиуса его трубки. При потенциале лайнера $\phi_l = -5 \ \kappa B$ большую часть зазора между плазмой и стенкой лайнера занимает ленгмюровский слой. Малость электронной температуры плазмы по сравнению с направленной энергией ионов в ней позволяет пренебречь действием поперечного электрического поля на движение ионов в дебаевском слое плазмы.

Результат численного моделирования по установлению границы плазмы для основного режима работы ГДЛ при потенциале лайнера $\varphi_l = -5$ кВ приведен на рис. 6. Плазма, входящая в источник справа, проходит на глубину 32 мм и останавливается там, где приходящий к границе ионный поток с плотностью тока $j_i \sim 0.036$ А/см² равен уходящему, ускоряемому электрическим полем ленгмюровского слоя. Радиальное электрическое поле между плазмой и лайнером составляет, в среднем, около 5 кВ/см. Под действием этого поля питч-углы электронов пучка возрастают до 0.18 радиана так, что внутри конуса потерь от выходного тока пучка остается доля

около 7%, которая пройдет в ГДЛ. Бо́льшая часть пучка отразится от входной пробки ловушки. Такой режим для инжекции пучка в ловушку непригоден. Очевидно, что увеличение потенциала лайнера приведет к уменьшению длины проникновения плазмы в лайнер, и к росту плотности радиального ионного потока и радиального электрического поля. Поэтому здесь значительного уменьшения питч-углов ожидать не приходится, а вероятность электрических пробоев на лайнер возрастает.

Уменьшение потенциала лайнера приведет к уменьшению радиального электрического поля и увеличению глубины проникновения плазмы в лайнер. На рис. 7 приведен результат моделирования для потенциала лайнера $\phi_l = -4 \, \kappa B. B$ этом режиме плазма проходит в источник на глубину около 9 см, где плотность эмиссионного тока ионов из плазмы составляет величину порядка $j_i \sim 0.03$ А/см². Максимальный питч-угол электронов, выходящих из источника, близок к 0.15 рад с током пучка внутри конуса потерь ~0.414 А (~6.4% эмиссионного тока катода, или ~8% выходного тока пучка). Это близко к предыдущему случаю с отражением большей части пучка от входной пробки. Как следует из динамики сходимости итерационного процесса решения задачи, процесс сходимости решения близок к завершению, но не закончен. Величины электрического поля на поверхности плазмы недостаточно для ее остановки, граница плазмы в итерациях продолжает медленно продвигаться внутрь лайнера. Учитывая приближенный характер модели и конечную точность используемых алгоритмов, можно рассматривать потенциал лайнера $\phi_l = -4 \text{ kB}$, как критический для остановки потока плазмы, входящей в источник.

8. ЗАКЛЮЧЕНИЕ

Проведено численное моделирование источника электронного пучка в неоднородном магнитном поле в условиях облучения мощным потоком плазмы со сверхзвуковым потоком ионов, вытекающим из торцевой магнитной пробки газодинамической ловушки ГДЛ. С этой целью разработана одномерная теория плазменного эмиттера сверхзвукового потока ионов для задания граничных условий на потенциал и электрическое поле на поверхности анодной плазмы, втекающей в источник. Разработаны численные алгоритмы в рамках кода POISSON-2 для двумерного моделирования электронно-оптической системы источника электронного пучка с анодной плазмой в неоднородном магнитном поле.

Сформулирована физическая модель и проведено численное моделирование формирования электронного пучка в источнике для одного из режимов работы ГДЛ. Показано, что при нулевом потенциале лайнера периферийная часть пучка поглощается лайнером. Выходящие из источника электроны пучка имеют угловые скорости, достаточные для прохождения в ловушку через ее входную пробку без отражения. В режиме ограничения тока эмиссии электронов температурой катода входящий в источник поток плазмы увеличивает угловую расходимость в пучке. При этом углы остаются в пределах конуса потерь ловушки, в том числе при уменьшении плотности плазмы.

Проверялось влияние потенциала лайнера на запирание потока плазмы и угловые характеристики электронов пучка. При потенциале –5 кВ плазма проникает внутрь лайнера на глубину около 3 см и останавливается электрическим полем. Однако в этом поле питч-углы электронов существенно возрастают, так что более 90% тока пучка должно отразиться магнитной пробкой ловушки. Уменьшение напряжения на лайнере до –4 кВ приводит к увеличению глубины проникновения плазмы до ~9 см что, по-видимому, является критическим значением для ее запирания. Питч-углы пучка при этом остаются неприемлемо большими, и большая часть пучка в ловушку не пройдет. Это означает, что при формировании пучка в источнике для ввода в ГДЛ режим запирания плазмы потенциалом лайнера, по-видимому, неэффективен. Учитывая приближенность физической модели, содержащей ряд допущений, этот вывод будет проверяться в эксперименте с определением допустимых напряжений на лайнере.

Авторы искренне признательны П.А. Багрянскому и Д.И. Сковородину за полезные консультации и плодотворные обсуждения. Работа выполнена при поддержке Министерства высшего образования и науки РФ.

СПИСОК ЛИТЕРАТУРЫ

- 1. Иванов А.А., Приходько В.В. // УФН. 2017. Т. 187. С. 547.
- Солдаткина Е.И., Астрелин В.Т., Багрянский П.А., Воскобойников Р.В., Иванов А.А., Трунев Ю.А., Шульженко Г.И. // Тез. докл. XLVI Межд. Звенигородской конф. по физике плазмы и УТС. Звенигород. 2019. С. 96.
- Bagryansky P.A., Shalashov A.G., Gospodchikov E.D., Lizunov A.A., Maximov V.V., Prikhodko V.V., Soldatkina E.I., Solomakhin A.L., Yakovlev D.V. // Phys. Rev. Lett. 2015. V. 114. P. 205001.
- 4. Астрелин В.Т. // Известия вузов. 2020. Т 63 (10). С. 63.
- Astrelin V.T., Bagryansky P.A., Soldatkina E.I., Skovorodin D.I. // IEEE Nuclear and Plasma Sci. Soc.: Proc. 7 Int. Congresson Energy Fluxes and Radiation Effects (EFRE). Tomsk. 2020. Rep. S7-P-021005. P. 403.
- Kuznetsov G.I., Batazova M.A., and Tiunov M.A. // Proc. Int. Symp. "Space Charge Effects in Formation of Intense Low Energy Beams". Dubna. 1999. P. 144.
- Soldatkina E., Anikeev M., Bagryansky P., Korzhavina M., Maximov V., Savkin V., Yakovlev D., Yushmanov P., and Dunaevsky A. // Physics of Plasmas. 2017. V. 24. P. 022505.
- 8. Аникеев А.В., Багрянский П.А., Кузнецов Г.И., Ступишин Н.В. // Физика плазмы. 1999. Т. 25. С. 842.
- 9. *Астрелин В.Т.* // Успехи прикладной физики. 2013. Т. 1. С. 571.
- 10. Котельников И.А., Астрелин В.Т. // УФН. 2015. Т. 185. С. 753.