_____ ПЫЛЕВАЯ __ ПЛАЗМА

УДК 533.9

ПЫЛЕВЫЕ ИОНИЗАЦИОННЫЕ И ПЫЛЕВЫЕ АКУСТИЧЕСКИЕ ВОЛНЫ В ГАЗОВОМ РАЗРЯДЕ ПОСТОЯННОГО ТОКА ПРИ НИЗКОМ ДАВЛЕНИИ В УСЛОВИЯХ МИКРОГРАВИТАЦИИ

© 2022 г. Д. И. Жуховицкий^{а, *}

^а Объединенный институт высоких температур РАН, Москва, Россия *e-mail: dmr@ihed.ras.ru Поступила в редакцию 07.06.2022 г. После доработки 01.07.2022 г. Принята к публикации 01.07.2022 г.

Предложена единая теория пылевых ионизационных волн (ПИВ), обнаруженных в недавнем эксперименте, и пылевых акустических волн (ПАВ). ПИВ возникают из-за осцилляций скорости электронно-ионной рекомбинации на поверхности пылевых частиц. Теоретический подход основан на уравнениях движения и непрерывности для пылевых частиц, уравнении баланса для холодных ионов, распределении Больцмана для горячих электронов и уравнении Пуассона. Получено единое дисперсионное соотношение, позволяющее интерпретировать закономерности ПИВ и ПАВ, наблюдаемые экспериментально.

Ключевые слова: пылевые ионизационные волны, пылевые акустические волны, закон дисперсии, микрогравитация, комплексная плазма

DOI: 10.31857/S0367292122600650

1. ВВЕДЕНИЕ

Низкотемпературную плазму, содержащую микрочастицы с размером от долей микрона до сотен микрон, называют комплексной плазмой. Различные реализации комплексной плазмы можно встретить в лабораторных установках, технологических приложениях и астрофизике [1, 2]. Микрочастицы могут образовывать протяженные облака с упорядоченной структурой, аналогичной присутствующей в жидкости или в твердом теле [3–5]. Облака микрочастиц могут быть достаточно однородными в условиях микрогравитации, которых можно достичь на борту Международной космической станции (МКС) [6, 7].

Колебания с участием микрочастиц имеют частоты до десятков герц. Пылевые акустические волны (ПАВ) рассматривались в первом теоретическом исследовании [8], а затем в [9]. Недавно сообщалось об открытии пылевых ионизационных волн (ПИВ) на установке ПК-4 на борту МКС [10]. В этом эксперименте микрочастицы инжектировались в разряд аргона или неона низкого давления постоянного тока с переключением полярности. Эти частицы образовывали облако, вытянутое в направлении оси разрядной трубки. Бегущие волны ПИВ возбуждались в этом облаке осциллирующим полем специального электрода. Фазовая скорость ПИВ оказалась очень высокой по сравнению со скоростью ПАВ, а волновое число практически не зависело от частоты. Целью данной работы является демонстрация того, что ПИВ и ПАВ являются длинноволновыми и коротковолновыми пределами осцилляций с участием микрочастиц. С этой целью находится точное решение линеаризованных уравнений гидродинамического приближения [11]. Полученное решение определяет единое дисперсионное соотношение для ПИВ и ПАВ.

2. ОСНОВНЫЕ УРАВНЕНИЯ

Рассмотрим плоскую волну, распространяющуюся в бесконечном слабонеоднородном облаке микрочастиц в газовом разряде низкого давления постоянного тока. Предположим, что микрочастицы определяют скорость рекомбинации. Тогда полная система уравнений для ПИВ включает уравнение импульса

$$\frac{\partial u}{\partial t} + u \frac{\partial u}{\partial x} = -\frac{c_a^2}{n_d} \frac{\partial n_d}{\partial x} + \frac{Ze}{M} \frac{\partial \varphi}{\partial x} - \nu u + A \frac{n_d'}{n_{d0}}, \quad (1)$$

где u — поле скоростей частиц; c_a — скорость ПАВ; n_d — концентрация микрочастиц; Z — заряд частицы в единицах заряда электрона — e; ϕ — потенциал электрического поля ПИВ; M — масса микро-

частицы, $v = (8\sqrt{2\pi}/3) \delta m_a n_a v_T a^2/M$ – обратное время торможения частицы в газе [12], $\delta \simeq 1.4$ – коэффициент аккомодации, соответствующий случаю диффузного отражения нейтралов от поверхности микрочастиц при сохранении модуля скорости; m_a — масса молекулы газа; n_a и $v_{T_a} = (T_a/m_a)^{1/2}$ — плотность и тепловая скорость молекул газа соответственно, $T_a = 300 \text{ K} - \text{темпе-}$ ратура газа; а – радиус микрочастицы. Первое слагаемое справа соответствует уравнению состояния пылевого облака с постоянной скоростью ПАВ, значения которой, как правило, находятся в пределах от 2 до 3 см/с. В последнем члене в правой части уравнения (1), который учитывает действующие на микрочастицу силу ионного увлечения и силу со стороны амбиполярного поля, $n'_d = n_d - n_{d0}$ представляет собой отклонение концентрации микрочастиц от ее стационарного значения n_{d0} , а A – коэффициент неустойчивости. Параметр А пропорционален градиенту концентрации частиц, поэтому он может быть как положительным, так и отрицательным. Анализ дисперсионного соотношения для ПАВ показывает, что амплитуда ПАВ увеличивается в случае распространения волны в направлении градиента концентрации частиц [13]. В уравнении (1) не учитывается изменение силы ионного увлечения, связанное с появлением поля волны $-\partial \phi / \partial x$. Это допустимо, если данное поле много меньше амбиполярного поля, когда изменение силы ионного увлечения оказывается величиной второго порядка малости.

Другие уравнения представляют собой уравнение баланса микрочастиц

$$\frac{\partial n_d}{\partial t} + \frac{\partial}{\partial x}(un_d) = 0, \qquad (2)$$

уравнение Больцмана для электронов

$$\frac{\partial \varphi}{\partial x} = \frac{T_e}{e n_e} \frac{\partial n_e}{\partial x},\tag{3}$$

где n_e — концентрация электронов и уравнение баланса для ионов

$$\frac{\partial}{\partial x} \left(D \frac{T_e}{T_i} \frac{n_i}{n_e} \frac{\partial n_e}{\partial x} + D \frac{\partial n_i}{\partial x} \right) = R n_i n_d - K n_e n_a, \qquad (4)$$

где D — коэффициент диффузии ионов в газе нейтралов, R — коэффициент рекомбинации на поверхности микрочастиц, K — коэффициент ионизации электронным ударом. Уравнение (4) получено с использованием соотношения Эйнштейна между коэффициентом диффузии и подвижностью. Первое слагаемое в левой части учитывает дрейф ионов в электрическом поле, а второе — их

ФИЗИКА ПЛАЗМЫ том 48 № 10 2022

диффузию в плазмообразующем газе. Данные уравнения дополняются уравнением Пуассона

$$\frac{\partial^2 \varphi}{\partial x^2} = 4\pi e(Zn_d + n_e - n_i), \qquad (5)$$

из которого следует, что при выполнении условия $r_{De}k_d \ll 1$, где $r_{De}^2 = T_e/4\pi n_{e0}e^2$ – электронный дебаевский радиус, k_d – характерное для ПИВ волновое число, можно использовать условие локальной квазинейтральности $Zn_d + n_e = n_i$.

Из линеаризованных уравнений (1)–(5) можно получить волновое уравнение, предполагающее постоянство всех входящих в него коэффициентов,

$$k_{d}^{2} \frac{\partial^{2} n_{e}'}{\partial t^{2}} + \omega_{d}^{2} \frac{\partial^{2} n_{e}'}{\partial x^{2}} + \frac{\partial^{4} n_{e}'}{\partial t^{2} \partial x^{2}} + v k_{d}^{2} \frac{\partial n_{e}'}{\partial t} + v \frac{\partial^{3} n_{e}'}{\partial t \partial x^{2}} + A k_{d}^{2} \frac{\partial n_{e}'}{\partial x} + A \frac{\partial^{3} n_{e}'}{\partial x^{3}} - \omega_{a}^{2} \frac{\partial^{2} n_{e}'}{\partial x^{2}} - c_{a}^{2} \frac{\partial^{4} n_{e}'}{\partial x^{4}} = 0,$$
(6)

где $v_d^2 = T_e/M$, $n_{e,i} = n_{e,i} - n_{e0,i0}$ – отклонения концентраций электронов и ионов от их стационарных значений n_{e0} и n_{i0} соответственно,

$$k_{d}^{2} = \frac{H}{1+H} \frac{T_{i}}{T_{e}} \frac{Rn_{d0}}{D},$$
(7)

$$\omega_d^2 = Z v_d^2 \frac{1 + 2H}{1 + H} \frac{T_i}{T_a} \frac{R n_{d0}}{D},$$
(8)

— масштабы, обратные длине волны и периоду ПИВ, $H = Zn_{d0}/n_{e0}$ и $\omega_a = c_a k_d$. Характерный масштаб скорости ПИВ есть $c_d = \omega_d/k_d$,

$$c_d^2 = Z v_d^2 \frac{1+2H}{H}.$$
 (9)

Уравнение (6) имеет решение $n'_e \sim e^{i(\omega t - kx)}$ при выполнении следующего дисперсионного соотношения [11]:

$$\tilde{\omega}^2 - i2\tilde{v}\tilde{\omega} - q^2 + i2\beta\tilde{k} = 0, \qquad (10)$$

где

$$q^{2} = \alpha^{2} \tilde{k}^{2} + 1 + \frac{1}{\tilde{k}^{2} - 1},$$
(11)

 $\tilde{k} = k/k_d, \tilde{\omega} = \omega/\omega_d, \alpha = \omega_a/\omega_d = c_a/c_d, \tilde{v} = v/2\omega_d,$ и коэффициент неустойчивости $\beta = A/2c_d\omega_d$ – безразмерные параметры.

Из уравнения (10) зависимость $\tilde{\omega}(\tilde{k})$ можно записать явно в виде $\tilde{\omega} = \omega' + i\omega''$, где

$$\omega' \simeq \sqrt{q^2 - \tilde{v}^2} \tag{12}$$

И

$$\omega'' \simeq \tilde{v} - \frac{\beta \tilde{k}}{\sqrt{q^2 - \tilde{v}^2}}.$$
(13)

Из (12) фазовая скорость равна

$$c_{\rm ph} = c_d \frac{\omega}{\tilde{k}} = c_d \sqrt{\alpha^2 + \frac{1 - \tilde{v}^2}{\tilde{k}^2} + \frac{1}{\tilde{k}^2(\tilde{k}^2 + 1)}},$$
 (14)

а групповая скорость может быть выражена как

$$c_{\rm gr} = c_d \frac{d\omega'}{d\tilde{k}} = \frac{c_d^2}{c_{\rm ph}} \left[\alpha^2 - \frac{1}{(\tilde{k}^2 - 1)^2} \right].$$
(15)

Поскольку $c_{\rm gr}$ обращается в нуль для волнового числа $\tilde{k} = \tilde{k}_0 = \sqrt{1 + \alpha^{-1}}$, минимальная частота $\omega'_{\rm min}$, при которой возможно распространение волны, есть

$$\omega'_{\min} = \sqrt{(1+\alpha)^2 - \tilde{v}^2} = \sqrt{\alpha^2 \tilde{k}_0^4 - \tilde{v}^2}.$$
 (16)

На рис. 1 показаны зависимости волнового числа от действительной части частоты в безразмерных переменных для разных α и фиксированной \tilde{v} . Как видно, единое дисперсионное соотношение имеет гиперболический вид с асимптотами $\tilde{k} = 1$ и $\tilde{k} = \omega'/\alpha$ при $\omega \to \infty$. Первая

Рис. 1. Единое дисперсионное соотношение для ПИВ и ПАВ (12) в безразмерных величинах для различных α . Ветви ПИВ и ПАВ обозначены разными линиями. Пунктиром показана высокочастотная асимптотика ПАВ $\tilde{k} = \omega'/\alpha$, а штрихпунктирной линией, разделяющей ветви ПИВ и ПАВ, соединены точки минимумов ω' при различных α и фиксированном $\tilde{v}^2 = 0.33$.

асимптота соответствует режиму ПИВ, вторая – ПАВ. Линия минимума соединяет точки минимально допустимых ω' и соответствующих им волновых чисел $\tilde{k} = \tilde{k}_0$.

3. ОБСУЖДЕНИЕ

Для оценки параметров ПИВ k_d (7) и ω_d (8) достаточно вычислить Rn_{d0} . Поскольку Rn_{i0} – скорость рекомбинации на одной микрочастице, поток электронов на микрочастицу можно аппроксимировать выражением $\sqrt{8\pi}n_{e0}v_{Te}a^2e^{-\Phi}$, где $v_{Te} = \sqrt{T_e/m_e}$. Поэтому

$$Rn_{d0} = \sqrt{8\pi} \frac{V_{Te} n_{d0} a^2}{1+H} e^{-\Phi}.$$
 (17)

Коэффициент диффузии ионов, необходимый для расчета параметров k_d и ω_d , оценивается как $D = \sqrt{8/9\pi}v_{Ti}/n_a\sigma_{ia}$, где $v_{Ti} = (T_i/m_i)^{1/2}$ – тепловая скорость ионов; $T_i = T_a$ и m_i – температура и масса иона соответственно; $n_a = p_{gas}/T_a$; $p_{gas} = 11.5$ Па и T_a – давление и температура атомов аргона соответственно; $\sigma_{ia} \simeq 2 \times 10^{-14}$ см² – сечение столкновения иона с атомом аргона. В условиях эксперимента [10], для которых характерны значения параметров $n_{i0} = 10^8$ см⁻³, $n_{d0} = 7 \times 10^4$ см⁻³, $2a = 3.38 \times 10^{-4}$ см, $T_e = 3$ эВ, и $T_a = 300$ К, получаем $\omega_d/2\pi = 6.27$ Гц, $\omega'_{min}/2\pi = 0.276$. Несмотря на некоторый сдвиг частоты отсечки, теория и эксперимент демонстрируют удовлетворительное качественное и количественное соответствие.

Для режимов ПИВ и ПАВ длина затухания может быть оценена как $\delta l = c_{\rm ph}/\omega_d \omega''$. Для ПИВ $c_{\rm ph} \simeq \omega/k_d$, а из уравнения (13) $\omega_d \omega'' \simeq \nu/2$. Следовательно, $\delta l = 2\omega/\nu k_d \rightarrow \infty$ при $\omega \rightarrow \infty$. Таким образом, $\delta l = 2c_d/\nu \simeq 1$ см, что достаточно велико. Для ПАВ, напротив, $c_{\rm ph} \simeq c_a$, $\omega_d \omega'' \simeq \nu/2 - -\beta \omega_d/\alpha$, и длина затухания $\delta l \simeq 2c_a/\nu \simeq 0.1$ см становится очень малой. Таким образом, можно заключить, что возбуждение ПИВ возможно, но самовозбуждение ПИВ невозможно. В то же время, при надлежащих условиях ПАВ могут самовозбуждаться, но невозможно возбудить протяженные ПАВ.

4. ЗАКЛЮЧЕНИЕ

В данной работе предлагается теоретическая интерпретация ПИВ, экспериментально наблюдавшихся на установке ПК-4 на борту МКС. Использовано одномерное гидродинамическое приближение для протяженного облака микрочастиц, образующегося в разряде постоянного тока при низком давлении аргона. Решение линеаризованных уравнений дает единое дисперсионное соотношение для ПИВ и ПАВ. Его важным свойством является существование некоторой граничной частоты ω'_{min} , ниже которой распространение волны невозможно и которая является точкой слияния мод.

Показано, что затухание ПИВ определяется только трением микрочастиц о нейтралы, и самовозбуждение ПИВ невозможно. Однако из-за высокой фазовой скорости длина затухания ПИВ достаточно велика, в отличие от ПАВ. Оценки, выполненные для экспериментальных условий [10], демонстрируют соответствие теории и эксперимента.

СПИСОК ЛИТЕРАТУРЫ

- 1. Complex and Dusty Plasmas: From Laboratory to Space. Series in Plasma Physics / Eds. V.E. Fortov and G.E. Morfill. CRC Press: Boca Raton, FL, 2010.
- Goertz C.K. // Rev. Geophys. 1989. V. 27. P. 271. https://doi.org/10.1029/RG027i002p00271
- Chu J.H., Lin I. // Phys. Rev. Lett. 1994. V. 72. P. 4009. https://doi.org/10.1103/PhysRevLett.72.4009
- Thomas H., Morfill G.E., Demmel V., Goree J., Feuerbacher B., Möhlmann D. // Phys. Rev. Lett. 1994. V. 73. P. 652.

https://doi.org/10.1103/PhysRevLett.73.652

- Hayashi Y., Tashibana S. // Jpn. J. Appl. Phys. 1994.
 V. 33. P. L804. https://doi.org/10.1143/JJAP.33.L804
- Morfill G.E., Thomas H.M., Konopka U., Rothermel H., Zuzic M., Ivlev A., Goree J. // Phys. Rev. Lett. 1999. V. 83. P. 1598. https://doi.org/10.1103/PhysRevLett.83.1598
- Schwabe M., Zhdanov S.K., Thomas H.M., Ivlev A.V., Rubin-Zuzic M., Morfill G.E., Molotkov V.I., Lipaev A.M., Fortov V.E., Reiter T. // New J. Phys. 2008. V. 10. P. 033037. https://doi.org/10.1088/1367-2630/10/3/033037
- Rao N.N., Shukla P.K., Yu M.Y. // Planet. Space Sci. 1990. V. 38. P. 543. https://doi.org/10.1016/0032-0633(90)90147-I
- 9. D'Angelo N. // J. Phys. D: Appl. Phys. 1995. V. 28. P. 1009. https://doi.org/10.1088/0022-3727/28/5/024
- Naumkin V.N., Zhukhovitskii D.I., Lipaev A.M., Zobnin A.V., Usachev A.D., Petrov O.F., Thomas H.M., Thoma M.H. // Phys. Plasmas. 2021. V. 28. P. 103704. https://doi.org/10.1063/5.0064497
- Zhukhovitskii D.I. // Phys. Plasmas. 2022. V. 29. P. 073701. https://doi.org/10.1063/5.0094038
- 12. *Epstein P.* // Phys. Rev. 1924. V. 23. P. 710. https://doi.org/10.1103/PhysRev.23.710
- Zhukhovitskii D.I. // Phys. Plasmas. 2021. V. 28. P. 073701. https://doi.org/10.1063/5.0053178