## \_\_\_\_ ДИНАМИКА \_\_\_ ПЛАЗМЫ

УДК 533.9

# ПАРАМЕТРЫ ЛАВИНЫ ЭЛЕКТРОНОВ В ГЕЛИИ В СИЛЬНЫХ ЭЛЕКТРИЧЕСКИХ ПОЛЯХ

© 2022 г. Е. И. Бочков<sup>а, \*</sup>, Л. П. Бабич<sup>а, \*\*</sup>

<sup>а</sup> Российский федеральный ядерный центр — Всероссийский научно-исследовательский институт экспериментальной физики (ВНИИЭФ), Саров, Нижегородская область, Россия

\*e-mail: e\_i\_bochkov@mail.ru \*\*e-mail: leonid.babich52@gmail.com Поступила в редакцию 28.10.2021 г. После доработки 19.11.2021 г. Принята к публикации 20.11.2021 г.

Методом Монте-Карло рассчитаны зависимости кинетических и транспортных коэффициентов электронов в гелии от приведенной к концентрации атомов N напряженности электрического поля E/N в диапазоне от 15 до 1000 Тд. Выполнено сравнение с известными из литературы данными измерений. Показано, что имеющиеся экспериментальные данные содержат значительную ошибку в области больших значений E/N, обусловленную тем, что в сильных полях не достигается равновесия ансамбля электронов с полем. Показано, что в гелии диффузионно-дрейфовое приближения для концентрации электронов становится неприменимым, начиная с  $E/N \approx 200$  Тд. Рассчитан коэффициент усиления внутри наполненного гелием пропорционального счетчика, значений коэффициента усиления с ранее рассчитанными теоретическими значениями.

*Ключевые слова:* гелий, лавина электронов, электрическое поле, метод Монте-Карло, транспортные и кинетические коэффициенты

DOI: 10.31857/S0367292122030039

## 1. ВВЕДЕНИЕ

В задачах по численному моделированию газового разряда необходимо рассчитывать кинетику электронов в самосогласованном электрическом поле. Наиболее точное решение возможно в рамках уравнения Больцмана, которое в наиболее общем случае является интегро-дифференциальным уравнением для функции распределения электронов (ФРЭ) в шестимерном фазовом пространстве (**r**, **p**). Для решения полного уравнения Больцмана требуются вычислительные ресурсы, намного превышающие ресурсы современных персональных компьютеров. По этой причине описание развития газовых разрядов чаще всего ведется в терминах уравнений для моментов ФРЭ [1]. Так, поведение концентрации электронов *n*<sub>e</sub> в пространстве и времени описывается хорошо известным уравнением непрерывности

$$\frac{\partial n_e}{\partial t} + \nabla \cdot \Gamma_e = R_e. \tag{1}$$

Здесь  $\Gamma_e$  — поток электронов,  $R_e$  — источник или сток электронов. Обычно  $\Gamma_e$  аппроксимируется

диффузионно-дрейфовым уравнением

$$\Gamma_e = -\mu_e E n_e - D_e \nabla n_e, \qquad (2)$$

где Е — вектор напряженности электрического поля,  $n_e$  — концентрация электронов,  $\mu_e$  и  $D_e$  — коэффициенты подвижности и диффузии электронов. В общем случае коэффициент диффузии электронов является тензором, и в отсутствии магнитного поля имеет два компонента: продольный  $D_L$  и поперечный  $D_T$  относительно вектора Е.

Источник или сток электронов  $R_e$  в уравнении (1) определяется реакциями, протекающими в плазме. В случае чистого гелия

$$R_e = k_{ion} N n_e - k_{pe} n_p n_e.$$
(3)

Здесь  $k_{ion}$  — коэффициент ионизации атомов электронами,  $k_{pe}$  — коэффициент рекомбинации положительных ионов с электронами, N — концентрация атомов.

Для решения системы уравнений (1)–(2) необходимо знать транспортные коэффициенты  $\mu_e$ ,  $D_e$ и скорости реакций. В рамках приближения локального поля полагается, что  $\mu_e$ ,  $D_e$  и  $k_{ion}$  являются функциями приведенной напряженности поля *E*/*N* 

$$\mu_e = \mu_e(E/N), \quad D_e = D_e(E/N),$$

$$k_{ion} = k_{ion}(E/N).$$
(4)

Зависимости (4) могут быть рассчитаны теоретически методом Монте-Карло (МК) или с помощью уравнения Больцмана, либо измерены экспериментально. Однако использование в уравнениях (1)-(2) экспериментальных зависимостей сталкивается с определенными трудностями. Как известно, выполняются три типа экспериментов по измерению параметров лавины электронов: time-of-flight (TOF), steady-state Townsend (SST), pulsed Townsend (РТ) [2]. Значения параметров, полученные в разных типах экспериментов, могут существенно отличаться друг от друга. Так, в работе [2] для аргона показано, что различие в рассчитанной методом МК скорости дрейфа электронов для условий SST- и TOF-экспериментов может достигать полтора раза в области сильных полей (≈500 Тд). Возникает вопрос о том, какие экспериментальные зависимости можно использовать в уравнениях (1)-(2). Кроме того, в экспериментах SST и TOF частота ионизации  $(k_{ion}N)$  прямо не измеряется, там измеряется первый коэффициент ионизации Таунсенда  $\alpha_{ion}$ , т.е. количество электронов, рождаемых на единице длины. Также в этих экспериментах измеряют отношения  $D_L/\mu_e$  и  $D_T/\mu_e$  (последнее называют характеристической энергией), а не непосредственно коэффициенты продольной  $D_L$  и поперечной диффузии *D*<sub>T</sub>.

Большинство измерений параметров лавины электронов в гелии выполнены в области малых и средних значений E/N (до 200 Тд), причем данные различных измерений в целом согласуются друг с другом [3]. В литературе описано лишь небольшое число экспериментов, выполненных при высоких значениях E/N, которые достигаются путем использования очень низких давлений гелия, что трудно реализовать на практике.

Насколько нам известно, для дрейфовой скорости электронов в области очень высоких значений Е/N имеются лишь измерения, выполненные Стерном методом SST [4] в области 40 Тд  $\leq E/N \leq$ ≤ 823 Тд. В дальнейшем анализе мы будем использовать числовые данные, приведенные в табл. 1.2 обзорной статьи Даттона [5]. Стерн указывает, что в области значений Е/Р, превышающих 140 В/(см торр) (≈385 Тд), измерения в его эксперименте выполнены при столь низком давлении, что длина свободного пробега электронов сравнима с радиусом использованной разрядной трубки, в результате чего "Since collisions with the wall and the sheath become important in this regime, the electron mobility may begin to lose its significance". Однако это важное обстоятельство в

обзоре [5] не отмечается. В статье [6] методом МК рассчитаны параметры лавины электронов, в частности, вычислена дрейфовая скорость электронов. Две модели углового рассеяния электронов в процессе ионизации использовались в этой работе: в модели (А) рассеяние происходит как при упругом взаимодействии, а в модели (В) полагается изотропное рассеяние электронов. С данными измерений Стерна [4] лучше всего согласуются результаты расчетов, выполненных по модели (В), они приведены в книге [7] (табл. 3.8) в качестве рекомендуемых значений дрейфовой скорости в области больших значений Е/N вплоть до 1000 Тд. Однако, как показывает анализ, рассеяние электронов в процессе ионизации происходит в основном на малые углы [8] и, следовательно, модель (В) неверно описывает рассеяние электронов. Учитывая выше сказанное, возникает необходимость в проведении дополнительных исследований с целью установить насколько точны результаты измерений Стерна [4] в области сильных полей.

Для первого коэффициента Таунсенда  $\alpha_{ion}$  в области больших полей имеются измерения методом SST Ченина и Рорка [9] (8 Тд  $< E/N \le$ ≤ 832 Тд). Однако, в эксперименте в области полей E/P > 100 B/(см · торр) (288 Тд) не достигалось равновесие электронов с полем, и соответственно в этой области по утверждению самих авторов "the validity of the data is highly questionable". Tem не менее на основании этих экспериментальных данных в книге [7] получены рекомендованные значения α<sub>ion</sub> в области сильных полей, которые приведены без каких-либо замечаний о достоверности экспериментальных данных. Между тем использование данных работы [9] для  $\alpha_{ion}$  вне области E/N < 288 Тд достоверно измеренных значений α<sub>ion</sub> может приводить к заметным ошибкам. Так, авторы работ [10, 11] использовали данные [9] для расчета коэффициента усиления электронов внутри гелиевого пропорционального счетчика (helium-filled proportional counter – HFPC) и получили, что рассчитанные значения коэффициента усиления в разы превосходят измеренные значения. Ниже мы покажем, что различие обусловлено тем, что в области высоких полей значения коэффициента ионизации, измеренные в [9], заметно превосходят теоретические значения, рассчитанные в данной работе.

Отношение  $D_T/\mu_e$  было измерено в работе [12] методом SST (3 Tд  $\leq E/N \leq$  847 Тд) и в [13] методом TOF (56.5 Tд < E/N < 5650 Тд). По утверждению авторов [13] при больших значениях E/N в их эксперименте не достигается равновесия ансамбля электронов с полем. Чтобы определить граничное значение E/N, при котором нарушается равновесие, авторы предлагают сравнивать измеренные и расчетные значения. Выполнив сравнения с расчетами по модели (В) работы [6], они делают вывод, что равновесие нарушается в области значений E/N, превышающих 600 Тд. Но как отмечалось выше, в МК модели [6] рассеяние электронов в неупругих процессах рассчитывается неверно.

Основной целью нашей работы был расчет методом МК зависимостей от *E/N* дрейфовой скорости, частоты ионизации, коэффициентов продольной и поперечной диффузии, которые непосредственно можно использовать в уравнениях (1)–(2). Кроме того, с целью верификации нашей МК программы вычислены значения дрейфовой скорости, коэффициента ионизации Таунсенда и характеристической энергии для условий различных экспериментов и выполнено сравнение с данными измерений. Кроме того, верификация выполнена моделированием ионизационных процессов внутри гелиевого пропорционального счетчика.

## 2. ПАРАМЕТРЫ ЛАВИНЫ ЭЛЕКТРОНОВ

Подробно наша МК программа описана в работе [8]. Здесь приведем лишь основные особенности. Учитываются 10 процессов взаимодействия электронов с атомами: упругое столкновение, ионизация и возбуждение 8 состояний атомов гелия (2<sup>1</sup>P, 2<sup>1</sup>S, 2<sup>3</sup>P, 2<sup>3</sup>S, 3<sup>1</sup>P, 3<sup>1</sup>S, 3<sup>3</sup>P, 3<sup>3</sup>S). В нашей МК-программе мы старались по возможности использовать только теоретически рассчитанные сечения. Для интегрального и дифференциального сечения упругого столкновения использованы данные работы [14] и расчеты по программе ELSEPA [15]. Полное и дифференциальное сечение ионизации рассчитаны по BED модели [16]. Для интегральных сечений возбуждения использованы аналитические аппроксимации из работы [17]. Отметим, что эти аппроксимации хорошо описывают экспериментальные и расчетные данные в области энергий больших 30 эВ, но не воспроизводят резонансную структуру сечений вблизи порога возбуждения [3]. Также в нашей МК-программе мы постарались максимально точно описать угловое рассеяние электронов в неупругих процессах. Обычно в МК-программах угловое рассеяние электронов в процессах возбуждения и ионизации (первичные электроны) описывается также как при упругом рассеянии. Такой подход используется, например, в известной программе MAGBOLTZ [18]. Однако, как показывает анализ [8], в области энергий больших 100 эВ электрон в процессе упругого взаимодействия рассеивается значительно сильнее, чем в процессах ионизации и возбуждения, что может оказывать заметное влияние на  $\Phi P \Im$ , и соответственно на параметры лавины, в области больших значений Е/N, где средняя энергия электронов превышает 100 эВ.

МК-расчеты параметров лавины были выполнены в следующей постановке. В начальный момент времени t = 0 в точке  $\mathbf{r}(x, y, z) = (0, 0, 0)$  в однородном поле с напряженностью  $\mathbf{E}(\mathbf{r}) = -E \cdot \mathbf{e}_{\tau}$ задавался изотропный моноэнергетический источник, содержащий  $N_e(0) = 10^3$  электронов с энергией  $\varepsilon_0 = 1$  эВ. Концентрация атомов гелия полагалась равной числу Лошмидта N = 2.69 × 10<sup>25</sup> м<sup>-3</sup>. Атомы гелия считались неподвижными (температура газа равна нулю). Данная постановка задачи позволяет выполнить прямое сравнение пространственного распределения электронов, полученного методом МК, с решением диффузионно-дрейфового уравнения (ДДУ) (1)-(2), которое в цилиндрической системе координат  $(z, \rho)$  имеет вид

$$n_{e}(z,\rho,t) = n_{e}(z,\rho,t) = \frac{exp\left(-\frac{(z-v_{d}t)^{2}}{4D_{L}t}\right)}{(4\pi D_{L}t)^{1/2}} \frac{exp\left(-\frac{\rho^{2}}{4D_{T}t}\right)}{4\pi D_{T}t},$$
(5)

где  $v_{ion}$  — частота ионизации,  $v_d$  — дрейфовая скорость электронов. Отметим, что величина  $v_d$  — это скорость центра масс лавины электронов.

Численное моделирование методом МК велось до момента времени  $t_{run}$ , когда число электронов достигало значения  $N_e(0) \exp(8) \approx 3 \times 10^6$ . Как показали результаты расчетов, выбранное таким образом значение  $t_{run}$  достаточно, чтобы характеристики лавины (средняя энергия электронов, дрейфовая скорость, частота ионизации) достигли стационарных значений.

Частота ионизации рассчитывалась по линейному участку зависимости  $\ln(N_e(t)/N_e(0))$  следующим образом:

$$v_{ion} = \frac{\ln(N_e(t)/N_e(0))}{t}.$$
 (6)

Дрейфовая скорость и коэффициенты диффузии вычисляются по соотношениям

$$v_{d} = \frac{\langle z \rangle_{\rm MC}}{t_{run}}, \quad D_{L} = \frac{\langle (z - \langle z \rangle_{\rm MC})^{2} \rangle_{\rm MC}}{2t_{run}}, \quad (7)$$
$$D_{T} = \frac{\langle \rho^{2} \rangle_{\rm MC}}{\pi t_{run}}.$$

Здесь  $\langle z \rangle_{\rm MC}$  – среднее значение *z*-координаты лавины электронов,  $\langle (z - \langle z \rangle_{\rm MC})^2 \rangle_{\rm MC}$  – среднее значение квадрата отклонения *z*-координаты от  $\langle z \rangle_{\rm MC}$ ,  $\langle \rho^2 \rangle_{\rm MC}$  – среднее значение квадрата  $\rho$ -координаты лавины электронов, полученные методом MK.

| нов в гелии        |                 |                                |                           |                                 |                               |  |  |  |  |  |
|--------------------|-----------------|--------------------------------|---------------------------|---------------------------------|-------------------------------|--|--|--|--|--|
| <i>Е/N</i> ,<br>Тд | <u></u> .<br>эВ | <i>v<sub>d</sub></i> ,<br>км/с | $D_T N$ , $10^{25}/(M c)$ | $D_L N$ , $10^{25}/({\rm M~c})$ | $k_{ion}$ , м <sup>3</sup> /с |  |  |  |  |  |
|                    |                 |                                | 10 / (11 0)               | 10 / (11 0)                     | 10                            |  |  |  |  |  |
| 15                 | 6.93            | 33.7                           | 1.0                       | 1.1                             | $3.44 \times 10^{-19}$        |  |  |  |  |  |
| 20                 | 7.39            | 46.1                           | 1.1                       | 1.2                             | $1.56 \times 10^{-18}$        |  |  |  |  |  |
| 25                 | 7.76            | 59.3                           | 1.2                       | 1.3                             | $4.22 \times 10^{-18}$        |  |  |  |  |  |
| 30                 | 8.10            | 73.3                           | 1.2                       | 1.4                             | $8.65 \times 10^{-18}$        |  |  |  |  |  |
| 35                 | 8.42            | 88.0                           | 1.3                       | 1.5                             | $1.53 \times 10^{-17}$        |  |  |  |  |  |
| 40                 | 8.74            | 103.7                          | 1.4                       | 1.7                             | $2.42 \times 10^{-17}$        |  |  |  |  |  |
| 50                 | 9.36            | 136.8                          | 1.5                       | 2.0                             | $4.96 \times 10^{-17}$        |  |  |  |  |  |
| 60                 | 9.98            | 173.4                          | 1.7                       | 2.3                             | $8.57 \times 10^{-17}$        |  |  |  |  |  |
| 70                 | 10.6            | 213.5                          | 1.8                       | 2.6                             | $1.35 \times 10^{-16}$        |  |  |  |  |  |
| 80                 | 11.2            | 256.4                          | 2.0                       | 3.1                             | $1.95 \times 10^{-16}$        |  |  |  |  |  |
| 90                 | 11.9            | 336.7                          | 2.2                       | 3.6                             | $2.68 \times 10^{-16}$        |  |  |  |  |  |
| 100                | 12.6            | 356.4                          | 2.5                       | 4.3                             | $3.59 \times 10^{-16}$        |  |  |  |  |  |
| 125                | 14.4            | 511.3                          | 3.2                       | 7.0                             | $6.41 \times 10^{-16}$        |  |  |  |  |  |
| 150                | 16.6            | 708.6                          | 4.5                       | 17.4                            | $1.01 \times 10^{-15}$        |  |  |  |  |  |
| 200                | 23.3            | 1380                           | —                         | —                               | $2.03 \times 10^{-15}$        |  |  |  |  |  |
| 250                | 35.2            | 2122                           | —                         | —                               | $3.30 \times 10^{-15}$        |  |  |  |  |  |
| 300                | 51.2            | 2759                           | —                         | —                               | $4.58 \times 10^{-15}$        |  |  |  |  |  |
| 350                | 69.7            | 3207                           | —                         | —                               | $5.81 \times 10^{-15}$        |  |  |  |  |  |
| 400                | 90.1            | 3567                           | —                         | —                               | $6.90 \times 10^{-15}$        |  |  |  |  |  |
| 500                | 136             | 4194                           | —                         | —                               | $8.82 \times 10^{-15}$        |  |  |  |  |  |
| 600                | 189             | 4776                           | —                         | —                               | $1.04\times10^{-14}$          |  |  |  |  |  |
| 700                | 249             | 5337                           | —                         | —                               | $1.18 \times 10^{-14}$        |  |  |  |  |  |
| 800                | 315             | 5883                           | —                         | —                               | $1.29 \times 10^{-14}$        |  |  |  |  |  |
| 900                | 389             | 6402                           | —                         | —                               | $1.38 \times 10^{-14}$        |  |  |  |  |  |
| 1000               | 468             | 6982                           | —                         | —                               | $1.45 \times 10^{-14}$        |  |  |  |  |  |

Таблица 1. Рассчитанные параметры лавины электронов в гелии

В табл. 1 приведены рассчитанные зависимости средней энергии электронов  $\overline{\epsilon}$ , дрейфовой скорости  $v_d$ , коэффициентов диффузии  $D_T N$  и  $D_L$ N и ионизации  $k_{ion} = v_{ion}/N$  от приведенной напряженности поля E/N в диапазоне от 15 до 1000 Тд. Коэффициенты диффузии приведены только до значения E/N = 150 Тд, поскольку в более сильных полях диффузионно-дрейфовое приближение становится неприменимым. Это можно наблюдать на рис. 1, на котором приведены пространственные распределения электронов в лавине. Видно, что для E/N = 200 Тд результаты, полученные решением ДДУ и численным моделированием методом МК, не согласуются. Распределение электронов по оси *z*, рассчитанное по ДДУ, более широкое; его максимум смещен вперед по отношению к максимуму распределения, полученному методом МК, тогда как пространственное распределение электронов, полученное методом МК, несимметрично и "вытянуто" вдоль оси *z*. Последнее связано с появлением большого числа быстрых электронов, опережающих основную массу электронов. То обстоятельство, что при расчете дрейфовой скорости и коэффициента  $D_L$  по формулам (7) используются средние значения координаты и квадрата отклонения от среднего значения, и обусловливает отличие в распределениях на рис. 1 при *E*/*N* = 200 Тд.

На рис. 2 приведены энергетические и угловые распределения электронов, полученные в МКрасчетах. Также на рисунке для сравнения показано распределение Максвелла, нормированное на значение средней энергии электронов, полученном в МК-расчете. Видно, что при E/N == 200 Тд энергетическое распределение электронов отличается от максвелловского, а угловое распределение электронов становится существенно анизотропным и для него нарушается приближение Лоренца (двучленное разложение ФРЭ по углам), так как в рамках данного приближения угловое распределение подчиняется линейному закону относительно косинуса угла между векторами Е и импульса электрона (линейное приближение на рис. 2 нормировано на значение среднего косинуса из МК-расчета). Как известно диффузионно-дрейфовое приближение выводится из уравнения Больцмана с использованием приближения Лоренца [1], и наши расчеты подтверждают, что нарушение приближения Лоренца ведет к нарушению диффузионно-дрейфового приближения.

Как говорилось выше, во всех наших расчетах за время моделирования  $t_{run} \approx 8\tau_{ion} (\tau_{ion} = 1/\nu_{ion})$  достигалось равновесие электронов с полем. На рис. 3 для случая E/N = 1000 Тд приведена зависимость от времени средней энергии электронов и функция распределения электронов по энергиям в моменты времени  $t = 5\tau_{ion}$ ,  $7\tau_{ion}$  и  $8\tau_{ion}$ . Видно, что средняя энергия электронов достигает стационарного значения, и распределение электронов по энергиям достигает равновесия.

Как уже говорилось во Введении, обычно в МК-программах расчета транспорта электронов полагается, что рассеяние электронов в неупругих процессах происходит также как при упругом рассеянии. Но в работах [8, 19] было показано, что данное упрощение оказывает заметное влияние на процесс ускорения электронов в сильных электрических полях как в гелии, так и в воздухе. Согласно нашим расчетам (см. табл. 1), в сильных электрических полях средняя энергия электронов достигает значения в несколько сотен электрон-



**Рис. 1.** Нормированное на единицу пространственное распределение электронов вдоль оси *z* (слева) и ρ (справа) в момент времени *t<sub>run</sub>*. МК-расчет и решение ДДУ.

вольт, поэтому представляет интерес оценить влияние модели углового рассеяния электронов на параметры лавины.

С этой целью мы выполнили расчеты по упрощенной МК-модели, в которой угловое рассеяние электронов в процессах возбуждения и ионизации (первичные электроны) происходит также как при упругом столкновении. Для вторичных электронов полагалось изотропное рассеяние. На рис. 4 показаны зависимости подвижности и средней энергии электронов, рассчитанные по полной (ПМ) и упрощенной (УМ) МК-моделям. Видно, что значения подвижности электронов, рассчитанные по обеим моделям, согласуются между собой до значения E/N = 150 Тд, в области же больших полей наблюдается заметное расхождение. Максимальная относительная разница составляет 35% при E/N = 250 Тд. Значения средней энергии электронов, полученные по полной модели, заметно превосходят значения, рассчитанные по упрощенной модели, начиная с E/N == 250 Тд. Максимальная относительная разница достигает 32% при E/N = 400 Тд. Отметим, также, что отличия в значениях коэффициента ионизации, вычисленных по обеим моделям, не превосходят 15%.

## 3. СРАВНЕНИЕ С ЭКСПЕРИМЕНТАЛЬНЫМИ ДАННЫМИ

Для сравнения с результатами экспериментов SST и TOF нами было выполнено численное моделирование в следующей постановке. В начальный момент времени t = 0 в точке  $\mathbf{r} = (0,0,0)$  в по-



**Рис. 2.** Нормированное на единицу энергетическое (слева) и угловое (справа) распределение электронов в момент времени *t*<sub>run</sub>.

ле с напряженностью  $\mathbf{E}(\mathbf{r}) = -E \cdot \mathbf{e}_z$  задавался изотропный моноэнергетический рой электронов с энергией  $\varepsilon_0 = 1$  эВ, содержащий  $N_e(0) = 10^3$  частиц. Электроны поглощались в "аноде", достигнув плоскости  $z = L_{gap}$ . Расчеты велись до того момента, когда все электроны достигали "анода". Данная постановка задачи позволяет рассчитать параметры лавины одновременно в рамках экспериментов SST и TOF. Отметим также, что значение  $L_{gap}$  подобрано так, чтобы "анод" достигало  $\approx 10^6$  электронов. Выбранное таким образом значение  $L_{gap}$  достаточно большое, чтобы характеристики лавины (дрейфовая скорость, средняя энергия электронов и коэффициент Таунсенда) достигли стационарных значений.

ФИЗИКА ПЛАЗМЫ том 48 № 3 2022

Дрейфовая скорость  $v_{\text{TOF}}$  и отношение  $D_L/\mu_e$  в рамках эксперимента ТОF определяются следующим образом:

$$v_{\text{TOF}} = \frac{L_{gap}}{\langle t \rangle_{anode}},$$

$$D_L/\mu_e = \frac{V_{gap} v_{\text{TOF}}^2 \left\langle \left(t - \langle t \rangle_{anode}\right)^2 \right\rangle_{anode}}{4L_{gap}^2}.$$
(8)

Здесь  $V_{gap}$  — напряжение на интервале  $[0, L_{gap}]$ ,  $\langle t \rangle_{anode}$  — среднее значение времени прибытия электронов на "анод",  $\langle \left(t - \langle t \rangle_{anode}\right)^2 \rangle_{anode}$  — среднее значение квадрата отклонения времени прибытия от среднего значения.



**Рис. 3.** Зависимость от времени средней энергии электронов (сверху) и функция распределения электронов по энергиям (снизу) для трех моментов времени. *E*/*N* = 1000 Тд.

Отношение  $D_{\rm T}/\mu_{\rm e}$  определяется так

$$D_T/\mu_e = \frac{V_{gap}}{4} \frac{\langle \rho^2 \rangle_{anode}}{L_{gap}^2}.$$
 (9)

Здесь  $\left< \rho^2 \right>_{anode}$  — среднее значение квадрата  $\rho$ -координаты электронов в точке пересечения плоскости "анода".

Дрейфовая скорость  $v_{SST}$  и коэффициент Таунсенда  $\alpha_{ion}$  в рамках эксперимента SST рассчитываются согласно следующей процедуре [2, 20]. Интервал [0,  $L_{gap}$ ] разбивается на *k* слоев равной толщины  $\Delta z = L_{gap}/k$  (в нашем случае k = 20). Далее определим величину  $n_k$  как линейную концетрацию электронов в k-м слое

$$n_k = S_e^0 \sum_i \Delta t_i / \Delta z.$$
 (10)

Здесь суммирование ведется по всем электронам, побывавшим в *k*-м слое,  $\Delta t_i$  – время, которое *i*-й электрон провел в *k*-м слое,  $S_e^0 = N_e(0) \,\delta(t)$  – источник электронов. Далее по наклону кривой  $\ln(n_k(z))$  находится коэффициент Таунсенда

$$\alpha_{ion} = \left(\frac{d(\ln(n_k(z)))}{dz}\right)^{-1}.$$
 (11)

Для расчета дрейфовой скорости  $v_{SST}$  определим величины  $v_k$  как среднее значение направ-



**Рис. 4.** Сравнение результатов, полученных по полной (ПМ) и упрощенной (УМ) МК-модели. Подвижность электронов (сверху) и средняя энергия электронов (снизу).

ленной скорости электронов в слое k

$$v_k = \sum_i \langle v_{z,i} \rangle \Delta t_i / \sum_i \Delta t_i, \qquad (12)$$

здесь  $\langle v_{z,i} \rangle$  — среднее значение *z*-компонента скорости *i*-го электрона за время его нахождения в *k*-м слое. Далее величину дрейфовой скорости *v*<sub>SST</sub> определяем как среднее значение величин *v<sub>k</sub>*.

Числовые значения рассчитанных коэффициентов приведены в табл. 2. На рис. 5 рассчитанная зависимость коэффициента Таунсенда сравнивается с зависимостью, измеренной в работах [9, 21]. Рассчитанные значения хорошо согласуются с данными измерений в диапазоне E/N от 30 до 300 Тд. В области больших E/N измеренные значения заметно превышают теоретические. Как отмечено выше, расхождение связано с тем, что в эксперименте [9], начиная с 288 Тд, не достигалось равновесия электронов с полем.

Наблюдаются также заметные отличия и в области малых полей. Так, при E/N = 20 Тд экспериментальное значение примерно на 25% превосходит расчетное, а при E/N = 15 Тд расхождение

ФИЗИКА ПЛАЗМЫ том 48 № 3 2022



**Рис. 5.** Коэффициент Таунсенда  $\alpha_{ion}/N$  во всей исследованной области значений E/N (сверху) и в области малых полей (снизу).

достигает уже почти 70%, при заявленной в [9] погрешности измерений в 10%. Возможно, расхождение обусловлено влиянием реакций Пеннинга: если энергия возбуждения атома гелия превышает энергию ионизации атомарной или молекулярной примеси A, то могут протекать реакции He\* +  $A \rightarrow$  He +  $A^+$  +  $e^-$  с ионизацией примеси [23]. Согласно Даттону (см. [5] с. 706) в гелии в области E/N < 17 Тд даже содержание примесей на уровне 1 р.т.т. приводит к заметному увеличению значений  $\alpha_{ion}/N$ , и в этой области следует пользоваться теоретическими значениями. Для прояснения этого вопроса необходимы дальнейшие исследования.

На рис. 6 сравниваются рассчитанные и измеренные зависимости дрейфовой скорости. Теоретические значения  $v_{\text{TOF}}$  очень хорошо согласуются с измеренными в работе [6] во всем исследованном диапазоне значений E/N. Для  $v_{\text{SST}}$  в области  $20 \le E/N \le 400$  Тд наблюдается удовлетворительное согласие рассчитанных значений с измерениями [4, 22]. Но, начиная с E/N = 500 Тд, теоретические значения  $v_{\text{SST}}$  начинают заметно превосходят значения, измеренные в [4]; отличие



Рис. 6. Дрейфовая скорость.

достигает  $\approx 80\%$  для  $E/N \approx 800$  Тд. Возможная причина столь большого расхождения обсуждалась во Введении. Другая вероятная причина связана с тем, что, скорее всего, в эксперименте [4] в области больших E/N, как и в случае [9], равновесное состояние электронов в поле не достигалось. В [4] измерения дрейфовой скорости электронов были выполнены в области положительного столба тлеющего разряда. Согласно нашим МК-расчетам средняя энергия электронов в поле 800 Тд равна 315 эВ (см. табл. 1), что сравнимо с напряжением на электродах в тлеющем разряде ~100–1000 В [23].

На рис. 7 наблюдается хорошее согласие рассчитанной зависимости отношения  $D_L/\mu_e$  с экспериментальными данными [6] в пределах погрешности измерений 15%. Расчетные значения  $D_T/\mu_e$  хорошо согласуются с данными [13] в области E/N < 400 Тд, но в более сильных полях теоретические значения заметно превосходят экспериментальные. Можно предположить, что в эксперименте [13] равновесие электронов с полем не достигается, начиная с  $E/N \approx 350-400$  Тд, а не с 600 Тд как предполагали авторы [13], сравнивая данные своих измерений с результатами расчетов [6].



**Рис. 7.** Характеристическая энергия и отношение  $D_L/\mu_e$ .

### 4. РАСЧЕТ КОЭФФИЦИЕНТА УСИЛЕНИЯ ВНУТРИ ГЕЛИЕВОГО ПРОПОРЦИОНАЛЬНОГО СЧЕТЧИКА

Для дополнительной верификации нашей МК-модели выполнены расчеты коэффициента усиления внутри гелиевого пропорционального счетчика (HFPC). В упрощенном виде камера HFPC представляет собой провод диаметром a = 30 мкм (анод) внутри трубы диаметром b = 25 мм (катод) [11]. В рамках цилиндрической симметрии электрическое поле внутри камеры распределено следующим образом:

$$E(\rho) = \frac{V_a}{\rho \ln(b/a)},\tag{13}$$

где  $V_a$  — напряжение на аноде. Коэффициент усиления вычисляется по формуле [10, 11]

$$G(V_a) = \exp\left[\int_a^b \alpha_{\rm ion}(E(\rho)/N) d\rho\right].$$
 (14)

Рассчитанные нами зависимости  $G(V_a)$  и измеренные в работе [11] приведены на рис. 8. Для зависимости  $\alpha_{ion}(E/N)$  авторы использовали дан-

#### ПАРАМЕТРЫ ЛАВИНЫ ЭЛЕКТРОНОВ В ГЕЛИИ

| <i>Е/N</i> ,<br>Тд | <sup>v<sub>TOF</sub>,<br/>км/с</sup> | <sup>v</sup> sst,<br>км/с | <i>D<sub>T</sub></i> /µ <sub>e</sub> ,<br>эВ | <i>D<sub>L</sub></i> /µ <sub>e</sub> ,<br>эВ | $\alpha_{ion}/N, \mathrm{m}^2$ | <i>Е/N</i> ,<br>Тд | <sup><i>v</i><sub>TOF</sub>,<br/>км/с</sup> | <sup>v</sup> sst,<br>км/с | <i>D<sub>T</sub></i> /µ <sub>e</sub> ,<br>эВ | <i>D<sub>L</sub>/µ<sub>e</sub></i> ,<br>эВ | $\alpha_{ion}/N, \mathrm{m}^2$ |
|--------------------|--------------------------------------|---------------------------|----------------------------------------------|----------------------------------------------|--------------------------------|--------------------|---------------------------------------------|---------------------------|----------------------------------------------|--------------------------------------------|--------------------------------|
| 15                 | 33.4                                 | 31.6                      | 4.58                                         | 4.97                                         | $1.02 \times 10^{-23}$         | 150                | 436                                         | 355                       | 10.2                                         | 14.9                                       | $1.88 \times 10^{-21}$         |
| 20                 | 45.2                                 | 42.3                      | 4.87                                         | 5.28                                         | $3.42 \times 10^{-23}$         | 200                | 612                                         | 501                       | 12.5                                         | 18.8                                       | $2.45 \times 10^{-21}$         |
| 25                 | 57.4                                 | 53                        | 5.03                                         | 5.68                                         | $7.21 \times 10^{-23}$         | 250                | 788                                         | 663                       | 15.6                                         | 22.3                                       | $2.87 \times 10^{-21}$         |
| 30                 | 69.8                                 | 63.7                      | 5.27                                         | 6.02                                         | $1.21 \times 10^{-22}$         | 300                | 963                                         | 840                       | 18.1                                         | 26.1                                       | $3.19 \times 10^{-21}$         |
| 35                 | 82.5                                 | 74.4                      | 5.35                                         | 6.17                                         | $1.80 \times 10^{-22}$         | 350                | 1147                                        | 1033                      | 20.6                                         | 28.3                                       | $3.39 \times 10^{-21}$         |
| 40                 | 95.6                                 | 85                        | 5.67                                         | 6.7                                          | $2.44 \times 10^{-22}$         | 400                | 1323                                        | 1240                      | 23.2                                         | 30.6                                       | $3.54 \times 10^{-21}$         |
| 50                 | 122                                  | 107                       | 6                                            | 7.2                                          | $3.86 \times 10^{-22}$         | 500                | 1663                                        | 1680                      | 27.1                                         | 36.0                                       | $3.66 \times 10^{-21}$         |
| 60                 | 150                                  | 130                       | 6.28                                         | 7.98                                         | $5.39 \times 10^{-22}$         | 600                | 2037                                        | 2150                      | 29.8                                         | 40.8                                       | $3.64 \times 10^{-21}$         |
| 70                 | 179                                  | 152                       | 6.71                                         | 8.74                                         | $6.93 \times 10^{-22}$         | 700                | 2387                                        | 2640                      | 30.9                                         | 44.9                                       | $3.57 \times 10^{-21}$         |
| 80                 | 208                                  | 176                       | 7.1                                          | 9.45                                         | $8.54 \times 10^{-22}$         | 800                | 2748                                        | 3140                      | 32.1                                         | 49.9                                       | $3.44 \times 10^{-21}$         |
| 90                 | 238                                  | 200                       | 7.48                                         | 10.1                                         | $1.01 \times 10^{-21}$         | 900                | 3092                                        | 3640                      | 32.5                                         | 54.7                                       | $3.32 \times 10^{-21}$         |
| 100                | 270                                  | 224                       | 7.94                                         | 10.9                                         | $1.17 \times 10^{-21}$         | 1000               | 3449                                        | 4150                      | 32.9                                         | 58.7                                       | $3.17 \times 10^{-21}$         |
| 125                | 352                                  | 288                       | 8.86                                         | 13.1                                         | $1.54 \times 10^{-21}$         |                    |                                             |                           |                                              |                                            |                                |

Таблица 2. Параметры лавины электронов для экспериментов SST и TOF

ные Ченина и Рорка [9]. Видно, что рассчитанные значения G заметно превышают значения, измеренные в [11]. Так для  $V_a = 1200$  В рассчитанное значение равно  $G \approx 350$ , а измеренное  $\approx 100$ . Сами авторы [11] пытаются объяснить эту разницу влиянием процесса Хорнбека—Молнара (Hornbeck— Molnar), т.е. ионизацией атомов при столкновении с возбужденными атомами гелия. Поскольку температура газа внутри детектора равна 4.2 K,



**Рис. 8.** Зависимость коэффициента усиления внутри HFPC от напряжения на аноде.

ФИЗИКА ПЛАЗМЫ том 48 № 3 2022

этот процесс там подавлен. Измерения же Ченина и Рорка выполнены при комнатной температуре, в связи с этим в коэффициент ионизации помимо прямой ионизации электронным ударом может вносить вклад и процесс Хорнбека–Молнара. Это, по мнению авторов [11], и объясняет расхождение между измеренными значениями коэффициента усиления и оценками, выполненными по формуле (14). Однако как отмечалось выше в области E/N > 300 Тд значения, полученные Ченином и Рорком, неверны и завышены по сравнению с рассчитанными в данной работе. Согласно формуле (13), напряженность поля внутри камеры максимальна на поверхности анода и быстро спадает с ростом радиуса. Соответственно, основной вклад в интеграл в формуле (14) вносит область вблизи анода. Для значения  $V_a = 1200$  В максимум напряженности поля равен  $\approx 10^8$  В/м, так что  $E/N \approx 440$  Тд ( $N = 2.45 \times$ × 10<sup>25</sup> м<sup>-3</sup> внутри НFPC). Поэтому значение коэффициента усиления, вычисленное по формуле (14) с помощью зависимости Ченина и Рорка, также должно быть завышенным. Мы выполнили расчет коэффициента усиления по формуле (14), используя наши данные для коэффициента Таунсенда из табл. 2, и получили значение 170, что гораздо ближе к измеренному значению 100. Однако отметим, что рассчитывать коэффициент усиления по формуле (14) некорректно из-за нарушения локального приближения, поскольку в области вблизи анода электрическое поле меняется столь резко, что равновесие электронов с локальным полем не достигается. Поэтому мы также выполнили прямой расчет методом МК в следующей постановке. На поверхности "катода" задавался моноэнергетический пучок электронов с энергией 1 эВ, скорость которых направлена по радиусу к аноду. Концентрация неподвижных атомов гелия полагалась равной  $2.45 \times 10^{25} \text{ м}^{-3}$ . Коэффициент усиления определялся как отношение числа электронов, достигших анода, к начальному числу электронов. Полученные значения G приведены на рис. 8. Видно, что рассчитанные методом МК значения очень близки к данным измерений. В области значений V<sub>a</sub> от 400 до 1200 В теоретические значения немного превышают измеренные, что, возможно, связано с влиянием процесса рекомбинации электронов с положительными ионами внутри камеры. В целом хорошее согласие рассчитанных нами значений коэффициента усиления с данными измерений может служить косвенном доказательством верности полученных нами значений коэффициента Таунсенда в области сильных полей.

#### ЗАКЛЮЧЕНИЕ

Методом МК с использованием разработанной нами программы [8], включающей соответствующий набор сечений упругих столкновений электронов с атомами гелия, ионизации и возбуждения атомов и отличающейся корректным описанием углового рассеяния электронов в неупругих процессах, вычислены зависимости от приведенной напряженности поля E/N в диапазоне от 15 до 1000 Тд средней энергии  $\overline{\epsilon}$  и дрейфовой скорости  $v_d$  электронов, частоты ионизации  $k_{ion}$ , коэффициентов продольной  $D_L$  и поперечной  $D_T$  диффузии, которые рекомендуются для использования в вычислениях эволюции концентрации электронов путем решения уравнения непрерывности.

Для условий двух типов экспериментов по измерению параметров электронной лавины time-of-flight (TOF), steady-state Townsend (SST) с целью верификации МК программы вычислены соответствующие значения дрейфовой скорости  $v_{\rm SST}$  и  $v_{\rm TOF}$ , коэффициента ионизации Таунсенда  $\alpha_{ion}/N$  и отношений  $D_T/\mu_e$  и  $D_L/\mu_e$ , которые сравнивались с данными измерений. Рассчитанные значения  $\alpha_{ion}/N$  согласуются с экспериментальными данными в диапазоне E/N от 30 до 300 Тд. При больших E/N измеренные значения  $\alpha_{ion}/N$ превышают рассчитанные в связи с нарушением равновесия электронов с полем в эксперименте. Отличие в области меньших E/N, скорее всего, обусловлено включением реакций ионизации Пеннинга с участием примесей с энергией иони-

зации ниже порога возбуждения гелия. Рассчитанные значения  $v_{\text{TOF}}$  хорошо согласуются с данными измерений [6]. Значения  $v_{\text{SST}}$ , рассчитанные в области  $20 \le E/N \le 400$  Тд неплохо согласуются с данными измерений [4, 22], но при Е/N≥ 500 Тд превосходят данные [4]. Возможной причиной столь большого расхождения является то обстоятельство, что в эксперименте [4] в области больших E/N, как и в [9], равновесие ансамбля электронов с полем, скорее всего, не достигалось. Рассчитанная зависимость  $D_I/\mu_e$  от E/N согласуется экспериментальными данными [6]. Расчетные значения  $D_T/\mu_e$  в области E/N < 400 Тд согласуются с экспериментальными данными [13], но заметно превышают их в более сильных полях, скорее всего, в связи с нарушением равновесия ансамбля электронов с полем, что отмечают сами авторы [13].

Дополнительно наша МК-модель верифицировалась путем сравнения вычисленного коэффициента усиления G внутри гелиевого пропорционального счетчика с данными измерений [11]. Согласие рассчитанных и экспериментальных значений G косвенно свидетельствует о верности вычисленных нами значений коэффициента  $\alpha_{ion}/N$  в области сильных полей.

#### СПИСОК ЛИТЕРАТУРЫ

- 1. Голант В.Е., Жилинский А.П., Сахаров И.Е. Основы физики плазмы. М.: Атомиздат. 1977.
- Sakai Y., Tagashira H., Sakamoto S. // J. Phys. D: Appl. Phys. 1977. V. 10. P. 1035.
- Alves L.L., Bartschat K., Biagi S.F., Bordage M.C., Pitchford L.C., Ferreira C.M., Hagelaar G.J.M., Morgan W.L., Pancheshnyi S., Phelps A.V., Puech V., Zatsarinny O. // J. Phys. D: Appl. Phys. 2013. V. 46. P. 334002.
- Stern R. A. // Proc. 6th Int. Conf. Phenomena in Ionized Gases (Paris: Serma). 1963. V. 1. P. 331.
- Dutton J. // J. Phys. Chem. Ref. Data. 1975. V. 4. P. 577.
- Kucukarpaci H.N., Saelee H.T., Lucas J. // J. Phys. D: Appl. Phys. 1981. V. 14. P. 9.
- 7. *Raju G.G.* Gaseous Electronics. Tables, Atoms, and Molecules. N.Y.: CRC Press, 2012.
- 8. Бочков Е.И., Бабич Л.П., Куцык И.М. // Физика плазмы. 2021. Т. 47. С. 935.
- Chanin M.L., Rork G.D. // Phys. Rev. 1964. V. 133. P. 1005.
- Kishimoto S., Isozumi Y. // Nucl. Instrum. Methods B. 1990. A286 P. 262.
- 11. Masaoka S., Katano R., Kishimoto S., Isozumi Y. // Nucl. Instrum. Methods B. 2000. V. 171. P. 360.
- 12. Lakshminarasimha C.S., Lucas J. // J. Phys. D: Appl. Phys. 1977. V. 10. P. 313.
- Al-Amin S.A.J., Lucas J. // J. Phys. D: Appl. Phys. 1987. V. 20. P. 1590.

ФИЗИКА ПЛАЗМЫ том 48 № 3 2022

- 14. *Adibzadeh M., Theodosiou C.E.* // Atomic Data and Nuclear Data Tables. 2005. V. 91. P. 8.
- 15. Salvat F., Jablonski A., Powell C.J. // Computer Phys. Communications. 2005. V. 165. P. 157.
- Kim Y.-K., Rudd M.E. // Phys. Rev. A. 1994. V. 505. P. 3954.
- Ralchenko Yu., Janev R.K., Kato T., Fursa D.V., Bray I., de Heer F.J. // Atomic Data and Nuclear Data Tables. 2008. V. 94. P. 603.
- 18. *Biagi S.F.* 2011. Fortran code Magboltz version 8.97 http://consult.cern.ch/writeup/magboltz/.
- Babich L.P., Bochkov E.I. // J. Phys. D: Appl. Phys. 2021. V. 54. P. 465205.
- Dujko S., White R.D., Petrovic Z.Lj. // J. Phys. D: Appl. Phys. 2008. V. 41. P. 245205.
- 21. Davies D.K., Jones F.L., Morgan C.G. // Proc. Phys. Soc. 1962. V. 80. P. 898.
- 22. Anderson J.M. // Phys. Fluids. 1964. V. 7. P. 1517.
- 23. *Райзер Ю.П*. Физика газового разряда. М.: Наука, 1992.