_____ ПЫЛЕВАЯ ПЛАЗМА

УДК 533.9

ВЛИЯНИЕ НЕВЗАИМНЫХ СИЛ НА БРОУНОВСКОЕ ДВИЖЕНИЕ ПЛАЗМЕННОГО КРИСТАЛЛА

© 2022 г. А. М. Игнатов*

Институт общей физики им. А.М. Прохорова РАН, Москва, Россия *e-mail: aign@fpl.gpi.ru Поступила в редакцию 23.02.2022 г. После доработки 12.03.2022 г. Принята к публикации 25.03.2022 г.

Теоретически исследуется влияние невзаимности межчастичных сил на броуновское движение однослойного плазменного кристалла с гексагональной решеткой. Используется потенциал взаимодействия для точечного заряда в плазме, состоящей из максвелловских электронов и направленного потока холодных ионов. Показано, что спектральная плотность смещений частиц содержит большое число особенностей, обусловленных критическими точками частот различных ветвей колебаний. При приближении к порогу неустойчивости связанных волн одновременные корреляторы скоростей демонстрируют существенное отклонение от закона равнораспределения кинетической энергии по степеням свободы.

Ключевые слова: пылевая плазма, плазменный кристалл, броуновское движение **DOI:** 10.31857/S0367292122700135

1. ВВЕДЕНИЕ

Плазменный кристалл представляет собой ансамбль заряженных частиц (пылинок) в приэлектродной области газового разряда, образующих двумерную решетку. Структура и динамика плазменных кристаллов, а также другие многочисленные аспекты физики пылевой плазмы обсуждаются в обзорах [1–4].

Значительную роль в физике пылевой плазмы занимает исследование броуновского движения пылевых частиц, которое подробно обсуждается в цитированных обзорах. Помимо этого следует отметить недавние работы [5, 6], посвященные численному моделированию ансамблей взаимодействующих частиц под действием случайной внешней силы. Во всех известных мне работах предполагалось, что частицы взаимодействуют между собой посредством парного изотропного потенциала.

Однако в пылевой плазме существенным фактором является невзаимность межчастичных сил, для которых нарушается третий закон Ньютона. В конечном итоге невзаимность обусловлена обменом импульсом между отдельными частицами и окружающей плазмой. Некоторые общие вопросы статистической физики подобных систем обсуждались в работе [7].

В настоящей статье исследуется влияние невзаимности на корреляционные функции плазменного кристалла, при этом используются общие соотношения, полученные в работе [8]. Более подробно принятая в настоящей работе модель обсуждается в разд. 2. В разд. 3 обсуждаются особенности спектрального распределения корреляционных функций смещений частиц, а в разд. 4 приведены результаты вычислений одновременных корреляторов скоростей. При описании броуновского движения используется подход и терминология учебника [9].

2. ИСХОДНЫЕ УРАВНЕНИЯ

Рассматривается ансамбль взаимодействующих идентичных пылинок с координатами \mathbf{r}_i , расположенных в слабоионизованной плазме. Предполагается, что в вертикальном направлении (ось *z*) частицы удерживаются параболическим потенциальным полем с характерной частотой колебаний Ω_0 . Частицы имеют одинаковые постоянные заряды *Q* и расположены в плазме, состоящей из направленного вдоль оси *z* потока холодных ионов (скорость -u) и больцмановских электронов с температурой T_e .

Используются безразмерные переменные с масштабом длины $\lambda = u/\omega_{pi}$, где ω_{pi} – ионная плазменная частота. Межчастичные силы нормализованы на Q^2/λ^2 , а масштаб времени для частиц с массой M_0 равен $M_0^{1/2}\lambda^{3/2}/|Q|$. В этих пере-

менных электрический потенциал, создаваемый точечным зарядом, имеет вид

$$U(\rho, z) = \frac{1}{\pi} \int_{0}^{\infty} dk \int_{-\infty}^{\infty} dk_{z} \frac{k J_{0}(k\rho) \exp(ik_{z}z)}{(k_{z}^{2} + k^{2})\epsilon(k_{z}, \sqrt{k_{z}^{2} + k^{2}})}, \quad (1)$$

где диэлектрическая проницаемость плазмы равна $\epsilon(\omega, k) = 1 + M^2/k^2 - 1/(\omega(\omega + i0))$ и величина $M = (n_e/n_i)u\sqrt{m_i/T_e}$ пропорциональна числу Маха ионного потока.

Пылевые частицы различаются между собой при помощи индекса **l**, который считается двумерным целочисленным вектором, т.е. $\mathbf{l} = (l_1, l_2)$, где $l_{1,2}$ – целые числа. Предполагается, что все частицы расположены примерно в одной плоскости *xy*. На каждую частицу со стороны окружающей среды действует сила трения и внешняя случайная сила **f**_l. В используемых безразмерных переменных динамика ансамбля описывается при помощи уравнений Ланжевена

$$\ddot{\mathbf{r}}_{\mathbf{l}} = -\Omega_0^2 \mathbf{e}_z z_{\mathbf{l}} - \gamma \dot{\mathbf{r}}_{\mathbf{l}} + \sum_{\mathbf{l}' \neq \mathbf{l}} \mathbf{F}(\mathbf{r}_{\mathbf{l}} - \mathbf{r}_{\mathbf{l}'}) + \mathbf{f}_{\mathbf{l}}, \qquad (2)$$

где γ – коэффициент трения о нейтральный газ. Межчастичные силы считаются потенциальными $\mathbf{F}(\mathbf{r}) = -\nabla U(\mathbf{r})$ и, в общем случае, невзаимными и анизотропными, т.е. $U(\mathbf{r}) = U(\rho, z) \ (\rho = \sqrt{x^2 + y^2})$, причем $U(\rho, -z) \neq U(\rho, z)$. Для численных расчетов используется потенциал (1).

Внешние силы \mathbf{f}_{l} в (2) обусловлены стационарным случайным процессом с корреляционной функцией [9]

$$\left\langle f_{\mathrm{l}i}(t)f_{\mathrm{l}'j}(t')\right\rangle = 2D\delta_{i,j}\delta_{\mathrm{l},\mathrm{l}'}\delta(t-t'), \quad (i,j=x,y,z), \, (3)$$

где угловые скобки означают усреднение по ансамблю, D – интенсивность источника внешних сил и $\langle \mathbf{f}_{\mathbf{l}} \rangle = 0$. Заметим, что явный вид коррелятора (3) принципиальной роли не играет [8]. Однако, если случайный процесс обусловлен взаимодействием с термостатом с температурой T_0 (например, с нейтральным газом), то в силу известного соотношения Эйнштейна $D = \gamma T_0$.

Предполагается, что в отсутствие внешних сил частицы расположены на одной высоте z^0 в узлах треугольной решетки с горизонтальными координатами $\mathbf{p}_1^0 = a(\mathbf{a}_1 l_1 + \mathbf{a}_2 l_2)$, где a – межчастичное расстояние, и базис решетки задается единичными векторами $\mathbf{a}_1 = (1,0)$ и $\mathbf{a}_2 = (1,\sqrt{3})/2$. Величины a, M и Ω_0 считаются независимыми управляющими параметрами. Линеаризуем уравнения (2) по малым отклонениям от положений равновесия $\mathbf{r}_{l} \rightarrow \mathbf{r}_{l}^{0} + \mathbf{r}_{l}$ и совершим дискретное преобразование Фурье

$$\tilde{\mathbf{r}}(\mathbf{k}) = \sum_{\mathbf{l}} e^{i\mathbf{k}\cdot(l_{\mathbf{l}}\mathbf{a}_{1}+l_{2}\mathbf{a}_{2})} \mathbf{r}_{\mathbf{l}}.$$
(4)

В дальнейшем образы Фурье любой величины обозначаются тильдой. Обратное преобразование имеет вид

$$\mathbf{r}_{1} = \frac{1}{s_{0}} \int d\mathbf{k} e^{-i\mathbf{k} \cdot (l_{1}\mathbf{a}_{1} + l_{2}\mathbf{a}_{2})} \tilde{\mathbf{r}}(\mathbf{k}), \qquad (5)$$

где интеграл берется по любой элементарной ячейке обратной решетки с площадью s_0 [10]. Например, в качестве области интегрирования можно выбрать первую зону Бриллюэна, представляющую собой шестиугольник со стороной $4\pi/3$ и площадью $s_0 = 8\pi^2/\sqrt{3}$. При численном интегрировании удобнее вычислять (5) в косоугольных координатах $\theta_{1,2} = \mathbf{k} \cdot \mathbf{a}_{1,2}$, при этом $d\mathbf{k}/s_0 = d\theta_1 d\theta_2/(2\pi)^2$ и интеграл берется по области $-\pi < \theta_{1,2} < \pi$.

После линеаризации и преобразования Фурье уравнения (2) записываются в виде

$$\dot{\tilde{\mathbf{r}}}(\mathbf{k}) = -\tilde{\mathbf{F}}(\mathbf{k}) \cdot \tilde{\mathbf{r}}(\mathbf{k}) - \gamma \dot{\tilde{\mathbf{r}}}(\mathbf{k}) + \tilde{f}(\mathbf{k}).$$
(6)

Используемое в дальнейшем выражение для силовой матрицы $\tilde{\mathbf{F}}(\mathbf{k})$ в приближении ближайших соседей в явном виде выписано в работе [11], а здесь мы отметим лишь некоторые существенные ее свойства.

Матрица $\hat{\mathbf{F}}(\mathbf{k})$ симметрична, однако вследствие невзаимности межчастичных сил ее элементы, связывающие вертикальные и горизонтальные смещения, отличны от нуля, т.е. $\tilde{F}_{xz}(\mathbf{k}) = \tilde{F}_{zx}(\mathbf{k}) \neq 0$, $\tilde{F}_{yz}(\mathbf{k}) = \tilde{F}_{zy}(\mathbf{k}) \neq 0$. Элементы матрицы $\tilde{F}_{xz}(\mathbf{k})$ и $\tilde{F}_{yz}(\mathbf{k})$ оказываются мнимыми нечетными функциями вектора \mathbf{k} , а остальные матричные элементы являются действительными четными функциями \mathbf{k} .

Поскольку решетка плазменного кристалла инвариантна относительно поворотов на угол $\pi/3$, матрица $\tilde{F}(\mathbf{k})$ удовлетворяет тождеству

$$\tilde{\mathbf{F}}(\mathbf{R} \cdot \mathbf{k}) = \mathbf{R} \cdot \tilde{\mathbf{F}}(\mathbf{k}) \cdot \mathbf{R}^{-1}, \tag{7}$$

где **R** — матрица поворота на угол $\pi/3$ вокруг оси *z*.

Наша цель заключается в исследовании корреляционных функций смещений частиц $K_{ij}(\tau, \mathbf{l}, \mathbf{l}') = \langle r_{li}(t)r_{l'j}(t+\tau) \rangle$ и их спектральных плотностей $\mathbf{K}(\omega, \mathbf{l}, \mathbf{l}') = \int d\tau e^{i\omega\tau} \mathbf{K}(\tau, \mathbf{l}, \mathbf{l}')$. В силу трансляционной инвариантности матрица $\mathbf{K}(\omega, \mathbf{l}, \mathbf{l}') =$ = $\mathbf{K}(\omega, \mathbf{l} - \mathbf{l}')$ зависит лишь от разности векторов **l** и **l**'. Общее выражение для преобразования Фурье (4) матрицы **K**(ω ,**l**) получено в работе [8]: $\tilde{\mathbf{K}}(\omega, \mathbf{k}) = 2\tilde{\mathbf{Q}}(\omega, \mathbf{k})D$, где D – интенсивность источника шума (3). Матрица $\tilde{\mathbf{Q}}(\omega, \mathbf{k})$ имеет вид

$$\tilde{\mathbf{Q}}(\boldsymbol{\omega}, \mathbf{k}) = \left[\tilde{\mathbf{T}}^{\dagger}(\boldsymbol{\omega}, \mathbf{k}) \cdot \tilde{\mathbf{T}}(\boldsymbol{\omega}, \mathbf{k})\right]^{-1}, \qquad (8)$$

где значок † означает эрмитово сопряжение,

$$\tilde{\mathbf{T}}(\boldsymbol{\omega}, \mathbf{k}) = \boldsymbol{\omega}(\boldsymbol{\omega} + i\boldsymbol{\gamma})\mathbf{I} - \tilde{\mathbf{F}}(\mathbf{k})$$
(9)

и I — единичная 3 × 3 матрица.

Собственные значения матрицы $\tilde{\mathbf{F}}(\mathbf{k})$, входящей в уравнение движения (6), определяют частоты колебаний плазменного кристалла $\Omega_i(\mathbf{k})^2$ (i = 1, 2, 3) в отсутствие трения и внешнего шума. Выражение для матрицы (8) показывает, что $\tilde{\mathbf{Q}}(\omega, \mathbf{k})$ является фильтром, выделяющим определенные частоты из спектра внешнего шума. Заметим, что матрицу (8) можно представить в виде суммы

$$\tilde{\mathbf{Q}}(\omega, \mathbf{k}) =$$

$$= \sum_{i,j=1,2,3} \frac{\tilde{\mathbf{Q}}_{ij}(\mathbf{k})}{(\omega(\omega + i\gamma) - \Omega_i(\mathbf{k})^2)(\omega(\omega - i\gamma) - \Omega_j(\mathbf{k})^2)},^{(10)}$$

откуда видно, что для достаточно малого трения ($\gamma \ll \Omega_i(\mathbf{k})$) матрица (8) имеет острые максимумы при $\omega = \pm \Omega_i(\mathbf{k})$. Явные выражения для матриц $\tilde{\mathbf{Q}}_{ij}(\mathbf{k})$ в (10), зависящих только от волнового вектора, весьма громоздки, однако легко рассчитываются численными методами.

Заметим, что матрицы $\tilde{\mathbf{T}}(\omega, \mathbf{k})$ (9) и $\bar{\mathbf{Q}}(\omega, \mathbf{k})$ (8) также обладают свойством симметрии (7) и, кроме того, матрица $\tilde{\mathbf{Q}}(\omega, \mathbf{k})$ при действительной частоте ω является эрмитовой.

3. СИНГУЛЯРНОСТИ ВАН ХОВА

Собственные частоты колебаний кристалла с межчастичным потенциалом взаимодействия (1) подробно обсуждались в работе [11]. Для устойчивого кристалла можно считать, что $\Omega_1(\mathbf{k}) < \Omega_2(\mathbf{k}) < \Omega_3(\mathbf{k})$. В длинноволновой области при $\mathbf{k} \rightarrow 0$ ветвь колебаний с частотой $\Omega_1(\mathbf{k})$ соответствует поперечному звуку, с частотой $\Omega_2(\mathbf{k}) -$ продольному звуку, а в случае колебаний с частотой $\Omega_3(\mathbf{k}) \approx \Omega_0$ частицы смещаются в вертикальном направлении. При конечной величине волнового вектора **k** поляризации различных колебаний становятся более сложными, однако для простоты мы их по-прежнему называем поперечными, продольными и вертикальными.

В плоскости внешних параметров *а* и *M* существуют области, в которых одна из частот $\Omega_{1,2}(\mathbf{k})$

становится чисто мнимой, что соответствует апериодическим неустойчивостям кристалла. Вне этих областей кристалл устойчив, если частота Ω_0 достаточно велика, $\Omega_0 > \Omega_{cr}(a, M)$. При $\Omega_0 < \Omega_{cr}(a, M)$ развивается осцилляционная неустойчивость связанных волн, обусловленная гибридизацией продольных и вертикальных колебаний.

При вычислении матриц $Q(\omega, \mathbf{l})$ или $\mathbf{K}(\omega, \mathbf{l})$ необходимо вычислять интегралы вида (5). Поскольку при $\gamma \rightarrow 0$ подынтегральные выражения имеют острые максимумы в определенных областях, при изменении частоты ω возникают некоторые особенности, обусловленные топологической перестройкой линий уровня $\omega = \Omega_i(\mathbf{k})$. В теории твердого тела эти особенности, возникающие при вычислении плотности состояний, называются сингулярностями Ван Хова [10]. Для случая двумерного движения и экранированного кулоновского потенциала взаимодействия сингулярности Ван Хова обсуждались в работе [8]. Рассмотрим характерные особенности на примере вычисления функции $O(\omega, 0)$, определяющей корреляционные функции смещений одной частицы.

Отметим прежде всего, что поскольку $\hat{\mathbf{Q}}(\omega, \mathbf{k})$ удовлетворяет соотношению (7), матрица

$$\mathbf{Q}(\boldsymbol{\omega}, 0) = \frac{1}{s_0} \int d\mathbf{k} \tilde{\mathbf{Q}}(\boldsymbol{\omega}, \mathbf{k})$$
(11)

является диагональной, причем $Q_{xx}(\omega, 0) = Q_{yy}(\omega, 0) \neq Q_{zz}(\omega, 0)$.

На рис. 1 показан пример дисперсионных зависимостей $\Omega_i(k_x)$ вдоль одной из осей симметрии $(k_v = 0)$, построенных для потенциала (1) при a = 3, M = 0.5, $\Omega_0 = 0.614$, при этом $\Omega_{cr} \approx 0.604$. Из рисунка видно, что по мере увеличения частоты встречаются несколько критических точек. При $\omega = \omega_n \approx 0.21$ частоты продольных и поперечных колебаний совпадают, что, также как и в двумерном случае [8], соответствует точкам Дирака в вершинах зоны Бриллюэна. При $\omega = \omega_{maxl} \approx 0.35$ дисперсионная кривая продольных колебаний достигает максимума, а при $\omega = \omega_{min} \approx 0.44$ наблюдается минимум частоты вертикальных колебаний. В диапазоне $\omega_{max1} <$ < $\omega < \omega_{min}$ лежит запрещенная зона, в которой отсутствуют действительные решения уравнений $\omega = \Omega_i(\mathbf{k})$ и интеграл (11) должен быть мал.

На рисунках 2–4 показаны контурные графики всех трех ветвей колебаний в первой зоне Бриллюэна. На этих графиках крестиками отмечены седловые точки, в которых $\partial \Omega(\mathbf{k})/\partial \mathbf{k} = 0$, а квадратичная форма вторых производных не знакоопределена. Локальные максимумы отмечены

Рис. 1. Дисперсия колебаний вдоль оси х: 1 – поперечные волны, 2 – продольные волны, 3 – вертикальные волны.

Рис. 2. Контурный график дисперсии поперечных колебаний.

сплошными дисками, минимумы — кружками. Из рисунков видно, что в пределах первой зоны Бриллюэна лежит большое число критических точек.

Для случая поперечных волн (рис. 2) помимо точек Дирака, лежащих в вершинах, имеются седловые точки, расположенные в серединах сторон зоны Бриллюэна, с частотами $\omega_{s1} \approx 0.16$. В спектре продольных волн (рис. 3) шесть седловых точек с частотами $\omega_{s2} \approx 0.23$ также расположены на краях зоны Бриллюэна. Кроме того, шесть точек максимума ω_{max1} чередуются с седловыми точками с частотами $\omega_{s3} \approx 0.33$, расположенными внутри зоны Бриллюэна. Наконец, в спектре вертикальных колебаний точки минимума ω_{min} чередуются с седловыми точками с частотами $\omega_{s4} \approx 0.46$, и на границах зоны Бриллюэна расположены локальные максимумы с частотами $\omega_{max2} \approx 0.49$. Глобальный максимум частоты вертикальных колебаний с частотой Ω_0 расположен в центре зоны Бриллюэна.

Рис. 3. Контурный график дисперсии продольных колебаний.

Для случая двумерного кристалла можно ожидать, что в пределе $\gamma \to 0$ интеграл вида (11) при изменении частоты в окрестности максимума или минимума $\Omega_i(\mathbf{k})$ должен скачком изменяться от нуля до конечной величины [8, 10]. При изменении частоты вблизи седловой точки $\Omega_i(\mathbf{k})$ интеграл (11) логарифмически расходится, а в окрестностях точек Дирака должен быть локальный минимум.

Эти закономерности хорошо видны на рис. 5, где показан результат численного интегрирования (11) для достаточно малого затухания $\gamma = 0.01$. При увеличении частоты в спектральной плотности коррелятора горизонтальных смещений (кривая *1* на рис. 5) между двумя острыми максимумами на частотах ω_{s1} , ω_{s2} , связанных с седловыми точками в спектре поперечных и продольных волн (рис. 2, 3), расположен локальный минимум на частоте ω_D , обусловленный точками Дирака. В этой области частот коррелятор вертикальных смещений мал, и на качественном уровне картина соответствует результату [8], полученному в пренебрежении вертикальными движениями.

При дальнейшем увеличении частоты становится заметной связь между корреляторами горизонтальных и вертикальных смещений. Между седловыми точками продольных и вертикальных колебаний ω_{s3} и ω_{s4} (рис. 3, 4) обе корреляционные функции уменьшаются почти до нуля, что

ФИЗИКА ПЛАЗМЫ том 48 № 6 2022

обусловлено щелью в диапазоне $\omega_{max1} < \omega < \omega_{min}$ (рис. 1). Наконец, корреляторы стремятся к нулю при $\omega > \Omega_0$.

Таким образом, в спектре коррелятора смещений отдельной частицы наблюдается большое число (в рассмотренном примере их восемь) характерных особенностей, обусловленных различными критическими точками дисперсии мод колебаний плазменного кристалла. Аналогичные особенности наблюдаются также в спектральной плотности корреляторов различных частиц, однако в отличие от двумерного случая [8], их достаточно сложно представить в графическом виде.

4. ОДНОВРЕМЕННЫЕ КОРРЕЛЯТОРЫ СКОРОСТИ

С учетом соотношения Эйнштейна одновременные корреляторы скорости можно записать в виде

$$\left\langle V_{\mathbf{l}i}(t)V_{\mathbf{l}'j}(t)\right\rangle = W_{ij}(\mathbf{l}-\mathbf{l}')T_0, \qquad (12)$$

где $\mathbf{v}_{l} = \dot{\mathbf{r}}_{l}$ и матрица $\mathbf{W}(\mathbf{l})$ выражается через коррелятор (8)

$$\mathbf{W}(\mathbf{l}) = \frac{1}{s_0} \int d\mathbf{k} e^{-i\mathbf{k}\cdot(l_1\mathbf{a}_1 + l_2\mathbf{a}_2)} \int \frac{d\omega}{2\pi} \omega^2 \tilde{\mathbf{Q}}(\omega, \mathbf{k}).$$
(13)

Интеграл по частоте () в (13) легко вычисляется при помощи представления (10).

Рис. 4. Контурный график дисперсии вертикальных колебаний.

Рис. 5. Зависимость диагональных матричных элементов (11) от частоты: $1 - Q_{xx}(\omega, 0), 2 - Q_{zz}(\omega, 0).$

Заметим, что, если пренебречь эффектом невзаимности, положив $F_{xz}(\mathbf{k}) = F_{yz}(\mathbf{k}) = 0$, то интеграл по волновым векторам в (13) также можно вычислить. В результате получаем $W_{ij}(\mathbf{l}) = \delta_{l,0}\delta_{ij}$, т.е. в соответствии с законами классической статистической физики для любой частицы средняя кинетическая энергия на каждую степень свободы равна $T_0/2$ и флуктуации скоростей различных частиц не скоррелированы.

Для учета влияния невзаимности интеграл по **k** рассчитывался численно. Обсудим несколько ха-

рактерных примеров. Легко показать, что при $\mathbf{l} = 0$ матрица (13) диагональна, причем $W_{xx}(0) = W_{yy}(0) \neq W_{zz}$.

На рис. 6 изображена зависимость диагональных элементов **W**(0) (13) при фиксированном межчастичном расстоянии (a = 3) от числа Маха Mионного потока для различных значений частоты Ω_0 . При этом из расчетов исключался диапазон 0.93 < M < 1.48, в котором развивается апериодическая неустойчивость поперечных волн [11]. Кривые *1* на рис. 6 рассчитывались на пороге не-

ФИЗИКА ПЛАЗМЫ том 48 № 6 2022

Рис. 6. Зависимость диагональных матричных элементов **W**(0) от M(a = 3). Сплошные кривые – $W_{xx} = W_{yy}$, пунктирные кривые – W_{zz} . Кривые 1 рассчитаны при $\Omega_0 = \Omega_{cr}(a, M)$, кривые 2 при $\Omega_0 = 1.2\Omega_{cr}(a, M)$.

Рис. 7. Зависимости собственных значений матрицы (13) от M; $l_1 = 1$, $l_2 = 0$. Номера кривых соответствуют номерам собственных векторов.

устойчивости связанных волн при $\Omega_0 = \Omega_{cr}(a, M)$. Из рисунка видно, что в этом случае средние значения кинетической энергии отдельной частицы в вертикальном и горизонтальных направлениях заметно отличаются, причем оба значения существенно превышают $T_0/2$. При увеличении частоты Ω_0 эффекты невзаимности перестают играть существенную роль (кривые 2 на рис. 6 построены при $\Omega_0 = 1.2\Omega_{cr}(a, M)$), и диагональные элементы W(0) стремятся к единице.

Невзаимность межчастичных сил приводит также к тому, что одновременные корреляторы скоростей различных частиц отличны от нуля. Для описания этих корреляторов заметим, что все точки решетки можно расположить на концентрических окружностях с центрами в начале координат и радиусами $|\mathbf{p}_i^0| = a, \sqrt{3}a, 2a...$ При этом число точек N_i на каждой окружности кратно 6.

Матрицы (13), соответствующие точкам решетки, лежащим на одной окружности, связаны с друг другом преобразованием поворота на угол $2\pi/N_i$, а их собственные значения равны. По этой причине достаточно исследовать матрицы (13) с индексами **l**, соответствующими лишь одной точке на каждой окружности.

При I \neq 0 интеграл (13) определяет коррелятор скоростей частицы, лежащей в начале координат, и частицы с невозмущенными координатами ρ_i^0 . Этот интеграл представляет собой действительную симметричную матрицу, которая полностью характеризуется соответствующими собственными векторами w_i , образующими ортонормированный репер, и действительными собственными значениями λ_i (i = 1, 2, 3). Один из собственных векторов (обозначим его как w_i) матрицы (13) лежит в плоскости *ху* и перпендикулярен вектору

Рис. 8. Зависимости собственных значений матрицы (13) от M; $l_1 = 1$, $l_2 = 1$. Номера кривых соответствуют номерам собственных векторов.

Рис. 9. Зависимости собственных значений матрицы (13) от M; $l_1 = 2$, $l_2 = 0$. Номера кривых соответствуют номерам собственных векторов.

 ρ_{l}^{0} . Остальные два вектора $w_{2,3}$ лежат в вертикальной плоскости, проходящей через ρ_{l}^{0} , и расположены под некоторыми угломи к плоскости *xy*.

Несколько примеров зависимости собственных значений матрицы (13) от числа Маха M на пороге неустойчивости связанных волн (a = 3, $\Omega_0 = \Omega_{cr}(a, M)$) показаны на рис. 7 ($|\mathbf{p}_1^0| = a$), рис. 8 ($|\mathbf{p}_1^0| = \sqrt{3}a$) и рис. 9 ($|\mathbf{p}_1^0| = 2a$). Для рассмотренных примеров угол между собственными векторами $\mathbf{w}_{2,3}$ и горизонтальной плоскостью слабо зависит от M и составляет примерно $\pi/4$. При увеличении параметра Ω_0 все собственные значения (13) с $\mathbf{l} \neq 0$ быстро уменьшаются до нуля.

Из рис. 7—9 видно, что для вектора \mathbf{w}_1 , лежащего в горизонтальной плоскости, собственное значение матрицы $\mathbf{W}(\mathbf{l})$ всегда отрицательно (кривые *l*). Это означает, что компоненты скоростей соседних частиц в направлении \mathbf{w}_1 в среднем имеют разные знаки. Для ближайших соседей (рис. 7) остальные два собственных значения $\lambda_{2,3}$ оказываются положительными, т.е. флуктуации скоростей в плоскости перпендикулярной \mathbf{w}_1 в среднем параллельны. С ростом расстояния между частицами (рис. 8, 9) собственные значения $\lambda_{2,3}$ могут менять знак при изменении параметра M.

5. ЗАКЛЮЧЕНИЕ

В настоящей работе приведены результаты расчетов корреляционных функций смещений и скоростей частиц плазменного кристалла под действием внешних случайных сил. Показано, что зависимость спектральных плотностей смещений частиц от частоты содержит большое количество особенностей, связанных с критическими точками дисперсии различных колебаний. В целом, наблюдаемая картина похожа на исследованные ранее особенности спектров в двумерном случае для изотропного потенциала взаимодействия, а отличие обусловлено бо́льшим числом критических точек.

Невзаимность межчастичных сил существенным образом влияет на поведение одновременных корреляторов скоростей вблизи порога неустойчивости связанных волн. Во-первых, средняя кинетическая энергия в вертикальном направлении существенно превышает среднюю кинетическую энергию в любом горизонтальном направлении и температуру термостата. Во-вторых, корреляторы скоростей различных частиц оказываются отличными от нуля. Все это нарушает закон классической статистической физики о равнораспределении кинетической энергии по степеням свободы.

СПИСОК ЛИТЕРАТУРЫ

1. Комплексная и пылевая плазма / Ред. Фортов В.Е., Морфилл Г.Е. М.: Физматлит, 2012.

- 2. *Tsytovich V.N., Morfill G.E., Vladimirov S.V., Thomas H.M.* Elementary Physics of Complex Plasmas. Lect. Notes Phys. 731. Belin, Heidelberg: Springer, 2008.
- 3. *Vladimirov S.V., Ostrikov K., Samarian A.A.* Physics and Applications of Complex Plasmas. Imperial College Press, 2005.
- Кедель Л., Носенко В., Жданов С., Ивлев А.В., Лаут И., Яковлев Е.В., Крючков Н.П., Овчаров П.В., Липаев А.М., Юрченко С.О. // УФН. 2019. Т. 189. С. 1070.
- 5. Саметов Э.А., Лисин Е.А., Ваулина О.С. // ЖЭТФ. 2020. Т. 157. С. 552.
- 6. *Ваулина О.С. //* Физика плазмы. 2022. Т. 48. С. 36.
- Ivlev A.V., Bartnick J., Heinen M., Du C.-R., Nosenko V., Löwen H. // Phys. Rev. X. 2015. V. 5. P. 011035.
- 8. Игнатов А.М. // Физика плазмы. 2017. Т. 43. С. 560.
- 9. Климонтович Ю.Л. Статистическая физика. М.: Наука, 1982.
- 10. Займан Дж. Принципы теории твердого тела. М.: Мир, 1074.
- 11. Игнатов А.М. // Физика плазмы. 2020. Т. 46. С. 358.