ПЫЛЕВАЯ ПЛАЗМА

УДК 537.525.1

СЕПАРАЦИЯ ЧАСТИЦ В ПЫЛЕВОЙ ПЛАЗМЕ В СМЕСЯХ ИНЕРТНЫХ ГАЗОВ

© 2023 г. Л. А. Новиков^{*a*, *, **, В. Ю. Карасев^{*a*}, С. И. Павлов^{*a*}, М. В. Балабас^{*a*}, И. Р. Крылов^{*a*}, Е. С. Дзлиева^{*a*}, С. А. Майоров^{*b*, *c*, *d*}}

^а Санкт-Петербургский государственный университет, Санкт-Петербург, Россия

^b Институт общей физики им. А.М. Прохорова РАН, Москва, Россия

^с Объединенный институт высоких температур РАН, Москва, Россия

^d Институт теоретической и экспериментальной физики, Казахский национальный университет им. аль-Фараби,

Алматы, Республика Казахстан

*e-mail: plasmadust@yandex.ru **e-mail: l.novikov@spbu.ru Поступила в редакцию 16.08.2022 г.

После доработки 15.10.2022 г. Принята к публикации 20.10.2022 г.

Предложен и реализован метод управления размером пылевых частиц при вариации электронной температуры посредством добавления в разряд малой доли примеси газа с низким потенциалом ионизации. Показано, что при использовании максимально разнящихся по массе инертных газов Не и Хе, размер отобранных пылевых частиц отличается вдвое. Выполнены численные оценки среднего размера отобранной частицы на основе баланса сил, действующих на пылевую частицу, с учетом влияния примеси на заряд частиц и скорость потока ионов. Метод настройки пылевой ловушки на размер удерживаемых частиц, работает в интервале порядка 1–10 мкм.

Ключевые слова: пылевая плазма, тлеющий разряд, полидисперсные частицы, смесь инертных газов **DOI:** 10.31857/S0367292122600911, **EDN:** BIDNAK

1. ВВЕДЕНИЕ

При формировании пылевой плазмы в плазменных ловушках происходит процесс самоорганизации [1–3]. С экспериментальной точки зрения он характеризуется рядом факторов в пылевой подсистеме: отбором частиц по размеру и форме, установлением величины межчастичного расстояния и типа упаковки частиц, соотношением заряда пылевых частиц и плотности плазмы. Для первого фактора возможно провести исследование с полидисперсными частицами произвольной формы в относительно широком диапазоне плазменных условий.

Одним из характерных параметров низкотемпературной плазмы является температура (средняя энергия) электронов [4–6]. Она главным образом задает основную характеристику пылевых частиц – их заряд, и существенно связана с величиной продольного электрического поля, удерживающего частицы в ловушке. Можно предположить, что, варьируя электронную температуру, например, при изменении газового состава плазмы, можно управлять характеристиками пылевой подсистемы, прежде всего, размером и зарядом частиц.

Для реализации подобного метода управления размером пылевых частиц требуется использование разряда в смесях газов, возможно, для большей эффективности в газах с сильно различающимися потенциалами ионизации/массами, а также улавливание отобранных пылевых частиц непосредственно из плазменно-пылевой ловушки. В наших предыдущих работах был предложен способ улавливания и определения размеров пылевых частиц, левитирующих в ловушке в страте в тлеющем разряде в неоне [7–11], который можно применить и к смесям газов. В работах [12, 13] описаны исследования пылевой плазмы в бинарных смесях гелий-аргон и гелий-криптон. Но исследование зависимости размера пылевых частиц от параметров разряда (состава примененных смесей) в них не производилось.

Об экспериментах в разрядах в смесях газов литературные данные не многочисленны, но, например, монографии [14, 15] позволяют проанализировать проблему. Для выбора рабочих параметров эксперимента очень важен цикл работ [16–20], в котором рассчитаны характеристики

Рис. 1. Схема экспериментальной установки: 1 - исследуемая пылевая ловушка в нижней страте; <math>2 - контейнер для инжекции частиц в разряд; <math>3 - устройстводля сбора частиц; <math>4 - магнит, с помощью которогоустройство (3) перемещалось вдоль горизонтальнойчасти камеры; <math>5 - стеклянная вставка, стабилизирующая страты; <math>6 - лазерная подсветка для визуализации наличия частиц в ловушке; <math>7 -анод; 8 -катод.

дрейфа ионов и электронов, изменение электронной температуры в смесях при добавлении в инертные газы малых до 5% количеств легкоионизуемых газов и паров металлов, а также доли энергии электронов, расходуемых на ионизации основного иона и иона примеси. С экспериментальной точки зрения сложность представляет создание плазменно-пылевой ловушки в сильно отличающихся газах при одинаковых параметрах разряда. Но можно полагать, что требуемые смеси плазмоформирующего газа можно осуществлять при малой/ограниченной доле тяжелого газа. Согласно [16-20], основные изменения характеристик дрейфа и энергии ионов и электронов должны происходить при крайне малых примесях, порядка единиц процентов.

В экспериментах с исследованием действия силы ионного увлечения на пылевую структуру в магнитном поле [21, 22] было показано, что добавка 5% Хе в основной газ Не, увеличивает скорость ионного потока настолько, что сила ионного увлечения возрастает вдвое. Таким образом, литературные данные показывают, что параметрами разряда можно управлять через изменение пропорции в смеси газов, таким образом, варьируя условия в пылевой ловушке.

В настоящей работе проводится экспериментальное исследование зависимости размера отобранных плазмой полидисперсных частиц кварца от малой доли Xe, добавленного в разряд He. По-

Рис. 2. Пример изображения частиц, извлеченных из разряда после левитации при следующих условиях: смесь гелия и ксенона в соотношении 85:15 при давлении 0.67 Торр и разрядном токе 1.5 мА. Частицы – кварц. Цена деления шкалы 10 мкм.

лученная зависимость интерпретируется с учетом изменения заряда частиц, поля и скорости потока ионов, входящих в баланс действующих на пылевую частицу сил. На основании результатов можно создать метод тонкой настройки пылевой ловушки на улавливание заданного размера пылевых частиц.

2. ЭКСПЕРИМЕНТ

Метод улавливания пылевых частиц из плазменной ловушки в тлеющем разряде был предложен в [7, 8], в общих чертах он заключается в следующем. Применяется разрядная трубка специальной конструкции, имеющая внутри подвижное устройство для сбора пылинок (рис. 1). В случае пылевой ловушки в тлеющем разряде, стоячие страты формируются в вертикальном участке трубки. Пылевые частицы инжектируются в разряд из контейнера с сетчатым дном, расположенным в верхней части трубки. Нижняя часть трубки переходит в горизонтальный участок. С одной его стороны располагается катод, сюда проходит разряд, с другой стороны вне области разряда может перемещаться собирающее устройство. Последнее подводится под пылевую ловушку, при выключении разряда (либо при охлаждении нижней части стенки) левитирующие в плазме частицы падают на собирающее устройство. Процесс сбора пылевых частиц контролируется визуально при помощи лазерной подсветки. Пример собранных пылевых частиц, сфотографированных в оптическом микроскопе, показан на рис. 2.

Ключевой особенностью исследования является управление параметрами разряда (пылевой ловушки) посредством смешивания плазмоформирующих газов с сильно различающимися потенциалами ионизации. В смеси Не и Хе при изменении пропорций существенно меняются характеристики плазмы: электронная температура (средняя энергия), напряженность электрического поля, скорость дрейфа ионов и их средняя энергия, а также типа иона. Расчеты [18–20] показывают, что при степени ионизации газа порядка 10^{-7} добавка долей процента Хе к основному газу Не приводит к полной замене типа ионов. Как следствие происходит изменение заряда пылевой частицы, баланса сил и условия равновесия, а следовательно, и размера левитирующих в ловушке частиц. Это и было целью эксперимента.

В эксперименте использовался полидисперсный порошок кварца широкого размерного диапазона, отсеянный через сито с ячейкой в 25 мкм. При наблюдении в оптический микроскоп обнаружено, что в интервале от 1 до 25 мкм было равномерное распределение по размеру засыпных частиц. Особенности пылевых ловушек в двух применяемых газах заключаются в сильно разнящихся величинах напряженности электрического поля и температур электронов. В Хе оптимальным для наполнения пылевой ловушки оказалось давление в интервале 0.1–0.2 Торр, в то время как в Не оптимальным оказался диапазон 1.0-1.4 Торр. В предварительных экспериментах мы пытались найти условия, при которых при одинаковых давлениях и токах разряда можно собирать пылевые частицы в обоих рабочих газах. Так при токе i = 1.5 мА, давлении p = 0.33 Торр в разрядной трубке диаметром 1.9 см удалось собрать определенное количество пылевых частиц из ловушек в обоих газах. Эти предварительные эксперименты показали возможный диапазон размеров улавливаемых частии: от 3 мкм в Хе до 7 мкм в Не. Управление ионным увлечением в смесях газов [21, 22], а также теоретические расчеты [16, 17] указывают на то, что существенное изменение параметров разряда происходит при примеси Хе к основному газу Не в количестве до 5%. В соответствии с этим, для основного эксперимента были выбраны следующие условия: давление смеси газов p = 0.7 Торр, диапазон примеси Xe от 1 до 15%.

Перед каждым измерением производился контроль чистоты рабочего газа. Электроды длительно тренировались при повышенном токе, чистота газа контролировалась по ВАХ-разряда. При проведении эксперимента в приготовленной смеси газов зажигался разряд, вбрасывались пылевые частицы, их левитация в ловушках контролировалась посредством метода визуализации. Далее под ловушку (под вертикальный участок трубки) подводилось собирающее устройство, разряд гасился и пылевые частицы улавливались. Собранные на подложку пылевые частицы извлекались вместе с ней из разрядной трубки и помещались в

Рис. 3. Распределение частиц по размеру: условия соответствуют рис. 2 (а); смесь гелия и ксенона в соотношении 98 : 2 при давлении 0.67 Торр и разрядном токе 1.5 мA (б).

оптический микроскоп для фотографирования и дальнейшей обработки.

При наблюдении в микроскоп мы имеем образ частицы в двумерной проекции. Для оценки размера частиц используется ряд методов [23]. Применение простейшего из них, среднего проекционного размера (d = (x + y)/2, где x и y – максимальный и минимальный размеры), оказалось достаточно чувствительным к изменению как давления, так и типа плазмоформирующего газа. Например, для условий сбора частиц показанных на рис. 2, распределение частиц по размеру показано на рис. За, среднее значение порядка d == 3 мкм. Для смеси гелия и ксенона в соотношении 98 : 2 пример распределения показан на рис. 36, со средним значением порядка 4 мкм.

3. РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЕ

При обработке образов нескольких сотен пылевых частиц были построены их распределения по характерному размеру. Для каждого процентного соотношения смеси определены средние значения и ширины распределений. Зависимость среднего проекционного размера извлеченных частиц от процентного содержания газов представлена в табл. 1.

Таблица 1. Средний размер частиц в смесях

Xe, %	0	1	2	3	4	5	15
<i>d</i> , мкм	6.5	4.5	4.0	3.9	3.8	3.7	3.2

Таблица 2. Параметры плазмы в смесях

N	Xe, %	<i>Т</i> _e , эВ	<i>T_i</i> , K	M _{eff}	τ	z
1	0	5.2	1213	1.59	8	2.5
2	5	3.5	6051	2.35	10	3.5
3	15	2.9	600	_	86	2.7
4	100 (0.03 Tor)	2.5	487	0.88	100	3.0

Можно перечислить наблюдаемые количественные изменения. Во-первых, при добавлении Хе происходит уменьшение размера левитирующих пылевых частиц. Для выбранного давления размер частиц уменьшается от почти 6.5 мкм до практически 3 мкм при добавлении 15% Хе. Уменьшение размера частиц (как куб уменьшение веса) говорит об уменьшении глубины потенциальной ямы. Во-вторых, основное изменение параметров происхолит при лобавке не более 2%. Поскольку в этой области по измеренным ВАХ не происходило значительного изменения падения потенциала и визуальная картина стоячих страт не менялась, а спад электронной температуры происходит очень плавно, можно связать уменьшение размера частиц именно с заменой сорта иона. Согласно теории [16, 17], замена иона приводит к отсутствию резонансной перезарядки, возрастанию направленной скорости потока ионов, а как следствие, к возрастанию заряда пылевой частицы и увеличению действия силы ионного увлечения [21].

Для установления соответствия размера извлеченных частиц с балансом удерживающих их сил, выполним численные оценки, ряд известных параметров для них сведем в табл. 2. Колонки 3-5 заполнены по данным [16, 17], в колонке 5 приведена скорость потока ионов, выраженная в числах маха M_{eff}. Последние две колонки соответствуют безразмерному заряду пылевой частицы $z = Z_d e^2 / (aT_e)$ и отношению температур электронов и ионов $\tau = T_e/T_i$. По этим значениям была вычислена сила ионного увлечения F_{id}, действующая вместе с силой тяжести вниз, и проведено ее сравнение с силами тяжести и удерживающей электрической силой. Напряженность электрического поля для вычислений оценена по экспериментальным данным.

Для первого ряда таблицы (в чистом гелии) баланс сил выглядит так: $qE = mg \gg F_{id}$ (3.7 × 10⁻¹² H и 10⁻¹³ H). Для второго ряда (5% ксенона) баланс сил: $qE = mg + F_{id}$ (1.1 × 10⁻¹² H и (0.8 + 0.3) ×

ФИЗИКА ПЛАЗМЫ том 49 № 1 2023

 10^{-12} Н). Для нижних рядов ионное увлечение уже превышает силу тяжести: $qE = F_{id} > mg$ (для 15% соответствующие значения сил: 1.5, 1.1 и 0.4 при 10^{-12} Н). Можно сказать, что наблюдающееся почти вдвое уменьшение размеров пылевых частиц выбранной плотности при наибольшей доле Хе в смеси связано не только с изменением заряда пылевой частицы и поля в ловушке, но и с относительным увеличением роли силы ионного увлечения, доминирующей над весом частицы.

Экспериментальное определение размера пылевых частиц в стоячей страте в смесях газов и понимание изменения действующих на них сил позволяет использовать стоячую страту как ловушку, способную настраиваться на заданный размер удерживаемых пылевых частиц. При использовании более легких и наиболее востребованных полимерных частиц, диапазон улавливаемых размеров при данном методе существенно расширяется.

ЗАКЛЮЧЕНИЕ

Предложен способ управления балансом сил, действующих на пылевые частицы в тлеющем разряде, за счет вариации состава плазмообразующего газа. Произведен сбор полидисперсных пылевых частиц из пылевой ловушки при малых добавках Хе в Не. Определена зависимость характерного размера частиц от процентной доли добавки Хе. Выполненные численные оценки баланса сил при учете влияния примеси на параметры разряда находятся в согласии с экспериментом и показывают, что даже при умеренных количествах Хе, в балансе сил сила ионного увлечения доминирует над силой тяжести. Результаты позволяют создать пылевую ловушку/пылевой фильтр, настраиваемый на заданный размер пылевых частиц.

Работа поддержана РНФ, грант № 22-22-00154.

СПИСОК ЛИТЕРАТУРЫ

- 1. *Shukla P.K., Mamun A.A.* Introduction to Dusty Plasma Physics. Bristol: Institute of Physics Publishing, 2002.
- 2. *Tsytovich V.N., Morfill G.E., Vladimirov S.V., Thomas H.M.* Elementary Physics of complex plasmas. Berlin; N.Y.: Springer, 2008.
- 3. *Fortov V.E., Mofill G.E.* Complex and dusty plasmas: from laboratory to space. N. Y.: Taylor & Francis Group, 2010.
- 4. *Райзер Ю.П.* Физика газового разряда. М.: Наука, 1992.
- 5. Голубовский Ю.Б., Кудрявцев А.А., Некучаев В.О., Порохова И.А., Цендин Л.Д. Кинетика электронов в неравновесной газоразрядной плазме. СПб.: Изво Санкт-Петербургского гос. ун-та, 2004.

- 6. Цендин Л.Д. // УФН. 2010. Т. 180. С. 139.
- 7. Дзлиева Е.С., Ермоленко М.А., Карасев В.Ю. // ЖТФ. 2012. Т. 82. С. 147.
- Дзлиева Е.С., Ермоленко М.А., Карасев В.Ю. // Физика плазмы. 2012. Т. 38. С. 591.
- 9. Дзлиева Е.С., Ермоленко М.А., Карасев В.Ю. // ЖТФ. 2012. Т. 82. С. 51.
- Патент № 2568898 С1 Российская Федерация, МПК В01D 59/48, В82В 1/00. Способ разделения полидисперсных частиц в микронном и наноразмерном диапазоне и устройство для его реализации: № 2014132470/07: заявл. 06.08.2014: опубл. 20.11.2015 / В.Ю. Карасев, Е.С. Дзлиева, М.А. Ермоленко, В.А. Полищук; заявитель федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Санкт-Петербургский государственный университет" (СПбГУ).
- Патент на полезную модель № 149100 U1 Российская Федерация, МПК В01D 59/48, В82В 3/00. Разрядная камера для разделения полидисперсных частиц в микронном и наноразмерном диапазоне: № 2014132655/07: заявл. 07.08.2014: опубл. 20.12.2014 / В.Ю. Карасев, Е.С. Дзлиева, М.А. Ермоленко, В.А. Полишук; заявитель федеральное государственное бюджетное образовательное учреждение высшего профессионального образо-

вания "Санкт-Петербургский государственный университет" (СПбГУ).

- Maiorov S.A., Kodanova S.K., Dosbolayev M.K., Ramazanov T.S., Golyatina R.I., Bastykova N.Kh., Utegenov A.U. // Phys. Plasmas. 2015. V. 22. P. 033705.
- Антипов С.Н., Васильев М.М., Майоров С.А., Петров О.Ф., Фортов В.Е. // ЖЭТФ. 2011. Т. 139. С. 554.
- 14. Бочкова О.П., Шрейдер Е.Я. Спектральный анализ газовых смесей. М.: Физматгиз, 1963.
- Шибкова Л.В., Шибков В.М. Разряд в смесях инертных газов. М.: Физматлит, 2005.
- 16. Майоров С.А. // Физика плазмы. 2009. Т. 35. С. 869.
- 17. Майоров С.А. // Физика плазмы. 2006. Т. 32. С. 802.
- Майоров С.А., Голятина Р.И., Коданова С.К., Рамазанов Т.С. // Кр. сооб. физ. ФИАН. 2012. № 1. С. 12.
- 19. *Голятина Р.И., Майоров С.А. //* Прикладная физика. 2014. № 4. С. 5.
- 20. *Майоров С.А. //* Кр. Сооб. Физ. ФИАН. 2014. Т. 41. С. 20.
- Dzlieva E.S., Ermolenko M.A., Karasev V.Yu., Pavlov S.I., Novikov L.A., Maiorov S.A. // JETP Letters. 2014. V. 100. P. 703.
- Dzlieva E.S., Karasev V.Yu., Pavlov S.I., Ermolenko M.A., Novikov L.A., Maiorov S.A. // Contrib. Plasma Phys. 2016. V. 56. P. 197.
- Грин Х., Лейн В. Аэрозоли пыли, дымы и туманы. Л.: Химия, 1969.