_____ КОЛЕБАНИЯ И ВОЛНЫ ____ В ПЛАЗМЕ

УДК 533.9

ОБ ОДНОЙ РАСПРОСТРАНЕННОЙ НЕТОЧНОСТИ И ЕЕ УСТРАНЕНИИ В ТЕОРИЯХ НЕЛИНЕЙНЫХ ЭЛЕКТРОСТАТИЧЕСКИХ ВОЛН В ПЛАЗМЕ, БАЗИРУЮЩИХСЯ НА МЕТОДЕ ПСЕВДОПОТЕНЦИАЛА САГДЕЕВА

© 2023 г. А. Е. Дубинов^{а, b, *}

^а Российский федеральный ядерный центр — Всероссийский научно-исследовательский институт экспериментальной физики, Саров, Россия

^b Саровский физико-технический институт — филиал Национального исследовательского Ядерного университета "Московский инженерно-физический институт", Саров, Россия *e-mail: dubinov-ae@yandex.ru

Поступила в редакцию 26.09.2022 г. После доработки 25.10.2022 г. Принята к публикации 10.11.2022 г.

Сообщается об обнаружении противоречия, возникающего в решениях задач о профилях нелинейных продольных электростатических волн в плазме методом псевдопотенциала Сагдеева. Противоречие проявляется в неравенстве среднего за период значения концентрации частиц и заданной концентрации невозмущенной плазмы. Показано, что причина возникновения противоречия связана с весьма распространенной неточностью в постановке таких задач. Предложено корректировать постановку подобных задач и изменить интерпретацию получаемых этим методом решений, применив иные начальные условия: необходимо задавать вместо концентрации невозмущенной плазмы концентрацию частиц в точках, в которых потенциал ϕ принят равным нулю. С такими начальными условиями противоречие полностью снимается.

Ключевые слова: плазма, нелинейные волны, солитон, псевдопотенциал **DOI:** 10.31857/S0367292122601187, **EDN:** MZUBBD

1. ВВЕДЕНИЕ

При анализе нелинейных волн большой амплитуды в плазме, особенно для определения условий существования периодических, солитонных и ударно-волновых решений, широко применимы методы механической аналогии. Наиболее известен из них - метод псевдопотенциала Сагдеева. Это метод носит имя Роальда З. Сагдеева, который вместе с коллегами применил его для анализа нелинейных ионно-звуковых волн в бесстолкновительной плазме с холодными ионами и безынерционными распределенными по Больцману электронами, [1–3]. В результате им была показана возможность нелинейных дозвуковых периодических и сверхзвуковых уединенных ионно-звуковых волн (солитонов), а также определена предельная скорость солитонов (критическое число Маха).

Справедливо указать на более ранние работы А.И. Ахиезера и Р.В. Половина [4, 5], применивших другой вариант метода механической аналогии для анализа нелинейных электронных волн в плазме.

Техника и многочисленные примеры применения метода псевдопотенциала Сагдеева описаны в многочисленных оригинальных работах, общее число которых перевалило за несколько тысяч, и во многих книгах по теории волн и физике плазмы [6–11]. Укажем также работы [12, 13], в которых был представлен новый вариант метода механической аналогии — метод псевдопотенциала Бернулли.

Однако при детальном анализе решений, получаемых с помощью методов псевдопотенциала, а также в самом решении Сагдеева нами были обнаружены некоторые противоречивые моменты, на которые ранее нигде не обращалось внимание. В данных методических заметках описаны эти противоречия, а также представлена новая интерпретация полученного в [1–3] решения, которая устраняет указанные противоречия.

2. ПОДРОБНОЕ ОПИСАНИЕ РЕШЕНИЯ САГДЕЕВА НАХОЖДЕНИЯ ПРОФИЛЯ НЕЛИНЕЙНОЙ ИОННО-ЗВУКОВОЙ ВОЛНЫ В ПЛАЗМЕ

Здесь дается детализированное решение задачи о профиле нелинейной ионно-звуковой волны в холодной плазме, нежели в оригинальных работах Сагдеева и др. [1–3], в которых решение представлено весьма кратко. Обращается внимание на некоторые нюансы, которые полезны для исследователей и которые обычно опускают, считая их тривиальными. Некоторые из нюансов, которые важны при устранении возникающего противоречия, выделены шрифтом.

Следуя [3], рассмотрим одномерное волновое движение нерелятивистской бесстолкновительной плазмы, содержащей квазинейтральную смесь электронного и ионного газов с концентрациями n_{0e} и n_{0i} в невозмущенном волной состоянии при условии $n_{0e} = n_{0i} = n_0$. При этом будем считать, что ионный газ – холодный.

Обозначим e < 0 — заряд электрона и — e положительный заряд однократно заряженного иона. Тогда, имеет место соотношение квазинейтральности невозмущенной плазмы $en_{0e} - en_{0i} = 0$. Так как обычно масса иона *m* велика по сравнению с массой электрона, пренебрежем электронной массой, т.е. будем считать электронный газ безынерционным.

Запишем следующую общую систему одномерных уравнений, описывающую динамику ионного газа в плазме:

- уравнение непрерывности

$$\frac{\partial n_i}{\partial t} + \frac{\partial (v_i n_i)}{\partial x} = 0; \tag{1}$$

уравнение движения

$$\frac{\partial v_i}{\partial t} + v_i \frac{\partial v_i}{\partial x} = \frac{e}{m} \frac{\partial \varphi}{\partial x}; \qquad (2)$$

- электростатическое уравнение Пуассона

$$\frac{\partial^2 \varphi}{\partial x^2} = -4\pi e \left(n_e - n_i \right), \tag{3}$$

в которых обозначено *v_i* — скорость ионов в волне, φ — электростатический потенциал.

Будем считать, что электронный газ подчинен распределению Больцмана

$$n_e = n_0 \exp\left(-\frac{e\varphi}{kT_e}\right). \tag{4}$$

Найдем решение уравнений (1)-(4) в форме стационарной продольной ионно-звуковой волны, распространяющейся в положительном направлении оси 0x, т.е. вправо, с фазовой скоростью *V*. Для этого введем волновую переменную

$$\xi = x - Vt, \quad \frac{\partial}{\partial t} = -V \frac{d}{d\xi}, \quad \frac{\partial}{\partial x} = \frac{d}{d\xi}.$$
 (5)

Эта подстановка преобразует систему уравнений в частных производных в систему обыкновенных дифференциальных уравнений.

ФИЗИКА ПЛАЗМЫ том 49 № 3 2023

Рекомендуем перейти из лабораторной системы отсчета (ЛСО) в систему отсчета, связанную с волной (ВСО). Для этого воспользуемся правилом Галилея

$$u_i = v_i - V. \tag{6}$$

В этой системе невозмущенная волной плазма движется с отрицательной скоростью *-V*, т.е. влево.

Здесь следует обратить внимание на следующий нюанс. Во многих работах, следуя [3, 6], обычно делают замену (5), оставаясь при этом в ЛСО, т.е. записывая уравнения (1) и (2) для переменной v_i . В книге [14], делая замену (5), предложено переходить к переменной u_i в ВСО в соответствии с (6), что является более естественным и существенно упрощает вид решения. Так поступим и мы. Тогда исходные уравнения (1)–(3) перепишутся в виде

$$\frac{d(n_i u_i)}{d\xi} = 0; \tag{7}$$

$$u_i \frac{du_i}{d\xi} = \frac{e}{m} \frac{d\Phi}{d\xi};$$
(8)

$$\frac{d^2\varphi}{d\xi^2} = -4\pi e \left(n_e - n_i \right). \tag{9}$$

Проинтегрируем уравнения (7) и (8) при условиях $\lim_{u_i \to -V} n_i = n_0$ и $\lim_{u_i \to -V} \phi = 0$, получив при этом

$$n_i u_i = -n_0 V; \tag{10}$$

$$\frac{u_i^2}{2} - \frac{V^2}{2} = \frac{e}{m}\varphi.$$
 (11)

Обратим внимание на то, что в (10) скорость ионов в ВСО отрицательна, т.е. направлена влево. Это замечание важно, если необходимо, например, вычислять ионный поток в ионно-звуковой волне [15].

Комбинируя (10) и (11), получим зависимость n_i от φ

$$n_i = \frac{n_0}{\sqrt{1 + \frac{2e\phi}{mV^2}}},\tag{12}$$

при подстановки (12) вместе с зависимостью n_e от ϕ (4) в уравнение Пуассона (9), оно примет вид

$$\frac{d^2\varphi}{d\xi^2} = -4\pi e n_0 \left[\exp\left(-\frac{e\varphi}{kT_e}\right) - \frac{1}{\sqrt{1 + \frac{2e\varphi}{mV^2}}} \right] \equiv F_S(\varphi).$$
(13)

Уравнение (13) имеет вид уравнения движения некой псевдочастицы единичной массы в неоднородном силовом поле $F_s(\phi)$ в отсутствии тре-

ДУБИНОВ

Рис. 1. Графики нормированного псевдопотенциала Сагдеева $\frac{U_s(\phi)}{4\pi n_0 k T_e}$ (14) в зависимости от параметра $-\frac{e\phi}{mV^2}$: а) –

при
$$\sqrt{\frac{mV^2}{kT_e}} = 0.6; 6$$
) — при $\sqrt{\frac{mV^2}{kT_e}} = 1.4; в$) — при $\sqrt{\frac{mV^2}{kT_e}} = 1.6$

ния, в котором ϕ играет роль псевдокоординаты, а $\xi-$ псевдовремени.

Умножим обе части уравнения (13) на $d\phi/d\xi$ и проинтегрируем его с условием $U_s(\phi)_{\phi=0} = 0$, дающем точку равновесия. В результате получим выражение для псевдопотенцила Сагдеева

$$-\frac{1}{2} \left(\frac{d\varphi}{d\xi} \right)^2 = 4\pi e n_0 \times \\ \times \left\{ k T_e \left[1 - \exp\left(-\frac{e\varphi}{k T_e} \right) \right] + \\ + m V^2 \left(1 - \sqrt{1 + \frac{2e\varphi}{m V^2}} \right) \right\} \equiv U_S(\varphi),$$
(14)

полученное в [1-3].

Повторное интегрирование (14) методом разделения переменных дает точное выражение профиля волны $\phi(\xi)$ в неявной форме. Получаемое при этом выражение громоздко и неудобно для анализа, поэтому оно здесь опущено.

Квадратурное решение уравнения (14) не будет полным без анализа того, какие типы волн в ней возможны и при каких условиях. Проще всего это сделать, анализируя псевдопотенциал (14).

На рис. 1а—в показаны три возможных варианта графиков псевдопотенциала $U_s(\varphi)$ при различных значениях скорости волны V. Все кривые на них ограничены справа точкой A, в которой подкоренное выражение в (12) обращается в нуль. При бо́льших значениях потенциала φ корень становится мнимым, что соответствует отражению ионов от потенциального барьера в волне и появлению многозначности в профиле ионной плотности, т.е. опрокидыванию волны назад.

При малых значениях скорости волны *V*, меньших скорости ионного звука $V_s = \sqrt{kT_e/m}$ (это выражение можно вывести из дисперсионного уравнения для ионно-звуковых волн малой амплитуды – см., напр., [9, 13]) псевдопотенциал имеет локальный минимум в нуле (рис. 1а). Колебания псевдочастицы в потенциальной яме вблизи этого минимума соответствуют периодической ионно-звуковой волне, а наибольший отрицательный размах колебаний происходит до точки локального максимума потенциала, где псевдосила обращается в нуль ($F_s(\phi) = 0$).

Точное решение этого трансцендентного уравнения можно выразить через отрицательную ветвь W-функции Ламберта $W_{-1}(x)$ [13, 16], которая есть функция, обратная к функции $y = x \exp x$, при этом выражение для ϕ_{max} имеет вид:

$$\varphi_{\max} = -\frac{mV^2}{2e} \left\{ 1 + \frac{2kT_e}{mV^2} W_{-1} \left[-\frac{mV^2}{2kT_e} \exp\left(-\frac{mV^2}{2kT_e}\right) \right] \right\}.$$
(15)

Колебания псевдочастицы максимального размаха, начинающиеся из положения локального максимума, определяют сепаратрису на фазовом портрете, и могли бы соответствовать уединенной волне. Однако такое решение не удовлетворяет условию $\phi \to 0$ при $\xi \to \pm \infty$ и должно быть отброшено. Поэтому дозвуковые уединенные ионно-звуковые волны (солитоны) не существуют.

Для сверхзвуковой волны существуют две формы кривых псевдопотенциала: обе с локальным максимумом в нуле и с локальным минимумом при некотором $\varphi > 0$. Кривые отличаются только тем, что точка A на рис. 1 может находиться или выше (рис. 1б), или ниже (рис. 1в) горизонтальной оси $U_s(\varphi)_{=0} = 0_{\varphi}$.

Колебания псевдочастицы в потенциальной яме вблизи локального минимума не удовлетворяют условию $\int_0^{\Lambda} \varphi(\xi) d\xi = 0$ для периодической волны с периодом Λ , являющемуся следствием квазинейтральности невозмущенной плазмы. Следовательно, сверхзвуковые периодические ионно-звуковые волны не существуют.

Что касается солитонов, то они существуют только для случая рис. 16, когда нулевой уровень псевдоэнергии, касательный к точке локального максимума в нуле, пересекает кривую при $\phi > 0$, т.е. когда существует замкнутая сепаратриса на

фазовом портрете псевдоосциллятора. Критическая (максимально возможная) скорость солитона V_{max} определяется из условия нахождения точки A на оси 0 φ , т.е. когда $U_S(\varphi)_{\varphi=-mV^2/2e} = 0$:

$$\exp\left(\frac{mV_{\max}^2}{2kT_e}\right) = \frac{mV_{\max}^2}{2kT_e} + 1.$$
 (16)

В [2] было дано приближенное решение трансцендентного уравнения (16) в виде $V_{\text{max}} \approx 1.6V_s$, а максимальная амплитуда солитона при этой скорости волны — $\phi_{\text{max}} \approx -1.3kT_e/e$. Точное решение этого уравнения удается получить опять же с помощью W-функции Ламберта [16]

$$V_{\max} = V_s \sqrt{-2W_{-1} \left[-\frac{1}{2} \exp\left(-\frac{1}{2}\right) \right]} - 1 \approx$$

$$\approx (1.585201065...) V_s.$$
(17)

Укажем, что для некоторых других моделей плазмы критические числа Маха были найдены в [17].

Таким образом, скорость солитона лежит в диапазоне $V_s > V > V_{max}$, причем при максимальной скорости его амплитуда максимальна и равна $\phi_{max} = -mV_{max}^2/e \approx -(1.2566431208...)kT_e/e$. Заметим, что амплитуда ионно-звукового солитона положительна, т.к. заряд электрона e < 0.

В итоге, в результате анализа псевдопотенциала Сагдеева $U_s(\phi)$ получено, что дозвуковой периодической волной и сверхзвуковым солитоном исчерпывается набор стационарных нелинейных ионно-звуковых волн. Их профили, вычисленные методом Рунге—Кутты из уравнения (13), показаны на рис. 2 и 3 соответственно. Другие типы волн при анализе задачи при этом не проявились.

Важно отметить, что профиль потенциала в периодической волне на рис. 2 не симметричен относительно нуля, что является следствием несимметричности потенциальной ямы на рис. 1а относительно точки равновесия *n*₀ на дне этой ямы.

Этими выводами исчерпывается анализ нелинейных ионно-звуковых волн произвольной амплитуды в плазме в [1—3]. Подобными выводами обычно ограничиваются и многие другие исследователи, рассматривая другие типы электростатических волн (например, электронно-акустические, пыле-акустические волны) в плазмах различного состава и с разными законами распределения частиц, отличающихся от больцмановского.

А каковы профили концентраций плазменных компонентов в волне? Следующий раздел посвящен ответу на этот вопрос.

3. ВЫЧИСЛЕНИЕ ПРОФИЛЯ КОНЦЕНТРАЦИИ ИОНОВ В НЕЛИНЕЙНОЙ ИОННО-ЗВУКОВОЙ ВОЛНЕ И ОБНАРУЖЕНИЕ ПРОТИВОРЕЧИЯ

Далее рассматриваются только нелинейные периодические ионно-звуковые волны.

Для вычисления профиля концентрации ионов в волне проще всего воспользоваться уже посчитанным профилем потенциала $\varphi(\xi)$ из рис. 2 и формулой (12). На рис. 4 представлен профиль ионной концентрации $n_i(\varphi)$, вычисленный при тех же параметрах, что и $\varphi(\xi)$ на рис. 2. Видно, что $n_i(\varphi)$ осциллирует относительно значения n_0 , формируя фазы сжатия и разрежения в волне. Видно, что эти колебания несимметричны, фазы сжатия и разрежения в них имеют сильно различающиеся друг от друга профили. Эта асимметрия является следствием отмеченной выше асимметрии профиля $\varphi(\xi)$ на рис. 2.

Рис. 4. Профиль относительной концентрации ионов $\frac{n_i}{n_0}$ в периодической ионно-звуковой волне при $\sqrt{\frac{mV^2}{kT_e}} = 0.6$; 1 - уровень плотности квазинейтральной плазмы, <math>2 -средний уровень возмущенной плотности ионов в волне.

Легко вычислить среднее за период волны значение концентрации $\langle n_i(\phi) \rangle_{\Lambda}$. Это среднее показано на рис. 4 горизонтальной прямой 2. Здесь мы приходим к серьезному противоречию: оказывается $\langle n_i(\phi) \rangle_{\Lambda} < n_0$, т.е. не выполнен закон сохранения числа ионов в плазме! Для параметров, при которых вычислялся профиль рис. 4, расчеты дают, что $\langle n_i(\phi) \rangle_{\Lambda} \approx 0.8923n_0$. Куда делись недостающие 10% ионов? Ответа на этот вопрос до недавнего времени не было.

Нами была исследована величина расхождения между $\langle n_i(\varphi) \rangle_{\Lambda}$ и n_0 . Было найдено, что это расхождение растет с ростом амплитуды волны и максимально при φ_{max} (15).

Надо сказать, что аналогичные расхождения между средней за период и невозмущенной концентрациями ионов обнаруживались и в других моделях плазмы при вычислении потоков частиц, генерирующих ионно-звуковой волной [15, 18], и ранее — в других задачах [19–21]. Но поскольку объяснений им не было, внимание на них не заострялось.

4. ВЫЧИСЛЕНИЕ ПСЕВДОПОТЕНЦИАЛА БЕРНУЛЛИ: ПРОТИВОРЕЧИЕ УСИЛИВАЕТСЯ

Для устранения ряда математических трудностей при выводе псевдопотенциала Сагдеева для электростатических волн в плазме сложного состава был разработан метод псевдопотенциала Бернулли $U_B(n_i)$ [12, 13, 22–24]. В нем роль псевдокоординаты играет концентрация, например, ионов, а в квантовой плазме – химический потенциал [25, 26]. Псевдопотенциал Бернулли в отличие от псевдопотенциала Сагдеева оказался более универсальным и более удобным для анализа эволюции концентрации компонентов плазмы и пространственного заряда в волне. Подробно этот метод описан в [12, 13]. В различных моделях плазмы получение псевдопотенциала Бернулли осуществляется путем сведения исходных уравнений к дифференциальному уравнению 1-го порядка Бернулли относительно концентрации ионов, интеграл которого и дает псевдопотенциал. Если же известно явное выражение для псевдопотенциала Сагдеева, то получить псевдопотенциал Бернулли можно путем замены переменных и последующей перенормировки. Например, в рассматриваемой в п. 2 задаче следует подставить (4) и (12) в (14), а затем умножить его на функциональный коэффициент,

пропорциональный n_i^{-6} . Это было проделано в [12], в результате чего было получен псевдопотенциал Бернулли в виде

$$U_B(n_i) = \frac{4\pi e^2 n_0}{m} \left(\frac{n_0}{V}\right)^2 \left(\frac{n_0}{n_i}\right)^6 \times \left\{ \left(1 - \frac{n_0}{n_i}\right) + \frac{kT_e}{mV^2} \left[1 - \exp\left(-\frac{mV^2}{2kT_e}\left(\frac{n_0^2}{n_i^2} - 1\right)\right)\right] \right\},$$
(18)

для которого должно выполняться $U_B(n_i)_{n_i=n_0} = 0$.

На рис. 5 представлен график псевдопотенциала Бернулли для периодической ионно-звуковой волны при $V < V_s$ и при тех же параметрах, что и для псевдопотенциала Сагдеева на рис. 1а. Прокомментируем его.

Видно, что псевдопотенциал Бернулли имеет локальный минимум в точке $n = n_0$. Колебания псевдочастицы в потенциальной яме вблизи этого минимума соответствуют периодической ионно-звуковой волне, а наибольший отрицательный размах колебаний происходит до точки локального максимума потенциала, где псевдосила Бернулли обращается в нуль.

Принципиально, что потенциальная яма несимметрична. В ней склон, соответствующий фазе сжатия везде круче, чем склон, соответствующий фазе разрежения. Это свидетельствует о том, что псевдочастица при любой амплитуде колебаний будет дольше находиться в фазе разрежения, чем в фазе сжатия. Следовательно, среднее положение псевдочастицы всегда меньше равновесного: $\langle n_i(\phi) \rangle_{\Lambda} < n_0!$ При этом, чем больше амплитуда колебаний, тем больше и расхождение. Этот факт усиливает противоречие, отмеченное в разд. 3.

Отметим, что асимметрия пседопотенциала Бернулли относительно n_0 для периодических электростатических волн возникала и в других исследованных моделях плазмы и типов волн в [13, 19, 20, 27].

Таким образом, обнаруженное и подтвержденное противоречие, которое заключается в неравенстве средней за период волны концентрации ионов и заданного в задаче значения концентрации плазмы, требует скорейшего разрешения.

5. ОБЗОР ЛИТЕРАТУРЫ, ОБЪЯСНЕНИЕ ПРОТИВОРЕЧИЯ И РЕЦЕПТ ЕГО УСТРАНЕНИЯ

Объяснение описанному выше противоречию основано на выборе начальных условий. Особенно важно, какой смысл придается величине n_0 .

Рассмотрим сначала, каков смысл величине n_0 придавали авторы [1–3]. Работы [1, 2] являются обзорными, в них рассмотрены много разнообразных плазменных задач, но каков смысл n_0 дается именно в задаче о нелинейных ионно-звуковых волнах в них не сказано. Однако в [3] (см. С. 127) в уравнениях (1)–(4) предлагается выбирать следующие начальные условия для невозмущенной плазмы: $\varphi = 0$, v = 0, $n_i = n_e = n_0$, т.е. n_0 – концентрация невозмущенной плазмы. Таким образом, можно утверждать, что и в [1, 2] n_0 – концентрация невозмущенной плазмы.

В целом ряде книг рассмотрена задача о нелинейных ионно-звуковых волнах, в которых не указан физический смысл n_0 , но везде в них дается ссылка на оригинальные работы [1–3]. Например, в книгах [10, 28–31]. Следовательно, можно считать, что и в них полагается, что n_0 – концентрация невозмущенной плазмы. В других книгах таких, как [6, 8, 9, 32, 33], это прямо указано.

Такой выбор начальных условий, когда за n_0 принималась концентрация невозмущенной плазмы, был сделан в огромном количестве оригинальных исследований нелинейных электростатических волн в плазме, базирующихся на методе псевдопотенциала Сагдеева (например, в [34–45]). В большой группе работ выбирались начальные условия для плазмы, находящейся в динамическом равновесии (например, [46–53]). Но легко видеть на рис. 5, что условие невозмущенности и условие равновесия для этой задачи эквивалентны.

Рис. 5. Графики псевдопотенциала Бернулли (18) при $\sqrt{\frac{mV^2}{kT_e}} = 0.6.$

В указанных оригинальных работах профили концентраций частиц не исследовались, поэтому противоречие не было выявлено.

Справедливо также заметить, что автор данной заметки и его соавторы до недавнего времени также использовали начальные условия для невозмущенной плазмы.

В [14] (см. С. 406) предложены иные начальные условия для задачи Сагдеева: $n_i = n_e = n_0$ значения концентрации в точках, в которых потенциал ϕ принят равным нулю. Т.е. n_0 не является здесь концентрацией невозмущенной плазмы!

Для иллюстрации правильности такого выбора начальных условий представим вычисленные синхронизированные профили $n_e(\xi)$ и $n_i(\xi)$ (рис. 6). Эти вычисления были осуществлены с помощью уже посчитанного профиля потенциала $\phi(\xi)$ из рис. 2, а также формул (4) и (12). Видно, что кривые $n_e(\xi)$ и $n_i(\xi)$ пересекаются в точках квазинейтральности $n_i = n_e = n_0$, однако средние их значения, во-первых, лежат на другом уровне и, во-вторых, совпадают друг с другом! В итоге, решения для $n_e(\xi)$ и $n_i(\xi)$ полностью удовлетворяют уравнениям (1)–(4) и начальным условиям из [14].

Возникает закономерный вопрос: а какова же тогда концентрация невозмущенной плазмы для этих профилей? Ответ оказывается весьма прост: невозмущенная плазма имеет концентрации частиц, совпадающие со средним значением $n_i = n_e = n_{средн.}$, причем среднее значение всегда меньше n_0 .

При такой интерпретации все возникшие противоречия снимаются полностью.

Таким образом, задача о нелинейных ионнозвуковых волнах, решенная Сагдеевым и др. [1–3], и другие подобные задачи математически представляют собой своеобразную обратную задачу, в

Рис. 6. Синхронизированные профили концентраций ионов и электронов в периодической ионно-звуковой волне при $\sqrt{\frac{mV^2}{kT_e}} = 0.6$; *I* – уровень квазинейтральности, *2* – средний уровень для обеих кривых.

которой сначала не задается концентрация невозмущенной плазмы. Эту концентрацию можно и нужно определить при анализе решений уравнений (1)—(4) с начальными условиями из [14].

5. ВЫВОДЫ

Сообщается об обнаружении серьезного противоречия, возникающего в решениях задач о профилях нелинейных продольных электростатических волн в плазме методом псевдопотенциала Сагдеева. Противоречие проявляется в неравенстве среднего за период значения концентрации частиц и заданной концентрации невозмущенной плазмы.

Предложено корректировать постановку подобных задач и изменить интерпретацию получаемых этим методом решений, применив иные начальные условия: необходимо задавать вместо концентрации невозмущенной плазмы концентрацию частиц в точках, в которых потенциал ф принят равным нулю. Концентрацию же невозмущенной плазмы следует определять методом усреднения получаемых профилей волн. С такими начальными условиями противоречие полностью снимается. Ранее эти условия были предложены в [14], но широкого распространения не получили.

Представленный здесь вариант метода псевдопотенцила Сагдеева легко переносится на более сложные модели плазмы, например, электронпозитронной плазмы [54, 55] или пылевой плазмы [56, 57], и другие типы электростатических волн: электронно-акустические, пыле-акустические и др.

Таким образом, многочисленные ранее опубликованные результаты исследований нелинейных волн методом Сагдеева следует пересмотреть на предмет правильного указания величины концентраций невозмущенной плазмы. Автор благодарен своим соавторам, и особенно Колоткову Д.Ю., Китаеву И.Н. и Лебедевой К.И., в работах с которыми обнаруживалось рассмотренное здесь противоречие.

СПИСОК ЛИТЕРАТУРЫ

- 1. Веденов А.А., Велихов Е.П., Сагдеев Р.З. // Ядерн. синтез. 1961. Т. 1. № 2. С. 82.
- 2. *Сагдеев Р.3.* // Вопросы теории плазмы. Т. 4. М.: Атомиздат, 1979.
- 3. Арцимович Л.А., Сагдеев Р.З. Физика плазмы для физиков. М.: Атомиздат, 1979.
- 4. *Ахиезер А.И., Половин Р.В.* // Докл. АН СССР. 1955. Т. 102. № 5. С. 919.
- 5. Ахиезер А.И., Половин Р.В. // ЖЭТФ. 1956. Т. 30. № 5. С. 915.
- 6. *Davidson R.C.* Methods in nonlinear plasma theory. NY & Lond.: Academic Press, 1972.
- 7. *Shukla P.K., Mamun A.A.* Introduction to dusty plasma physics. Lond.: IoP, 2002.
- 8. *Чен* Ф. Введение в физику плазмы. М.: Мир, 1987.
- 9. *Рыскин Н.М., Трубецков Д.И.* Нелинейные волны. М.: Наука, 2000.
- 10. *Kono M., Škorić M.M.* Nonlinear physics of plasmas. Heidelberg, Dirdrecht, Lond. & NY: Springer, 2010.
- 11. *Livadiotis G.* Kappa distributions. Theory and applications in plasmas. Amsterdam, Oxford & Cambridge: Elsevier, 2017.
- 12. *Dubinov A.E., Sazonkin M.A.* // Handbook of solitons: research, technology, and applications. NY: Nova Science, 2009.
- 13. *Dubinov A.E.* // Phys. Plasmas. 2022. V. 29. № 2. P. 020901.
- 14. Ахиезер А.И., Ахиезер И.А., Половин Р.В., Ситенко А.Г., Степанов К.Н. Электродинамика плазмы. М.: Наука, 1974.
- Dubinov A.E., Kitayev I.N., Kolotkov D.Y. // Phys. Plasmas. 2021. V. 28. № 8. P. 083702.
- Dubinov A.E., Dubinova I.D. // J. Plasma Phys. 2005. V. 71. № 5. P. 715.

- 17. Дубинов А.Е., Суслова О.А. // ЖЭТФ. 2020. Т. 158. С. 968.
- Dubinov A.E., Lebedeva X.I. // Chaos, Solitons & Fractals. 2021. V. 152. № 1. P. 111391.
- 19. Дубинов А.Е., Сазонкин М.А. // Физика плазмы. 2009. Т. 35. № 1. С. 18.
- 20. Дубинов А.Е., Колотков Д.Ю., Сазонкин М.А. // ЖТФ. 2012. Т. 82. № 5. С. 7.
- Dubinov A.E., Sazonkin M.A. // Phys. Wave Phenom. 2013. V. 21. № 2. P. 118.
- 22. Дубинов А.Е. // Физика плазмы. 2007. Т. 33. № 3. С. 239.
- 23. Дубинов А.Е. // ПМТФ. 2007. Т. 48. № 5. С. 3.
- 24. Дубинов А.Е., Дубинова А.А. // Физика плазмы. 2007. Т. 33. № 10. С. 935.
- 25. Дубинов А.Е., Дубинова А.А., Сазонкин М.А. // Радиотехника и электроника. 2010. Т. 55. № 8. С. 968.
- 26. Дубинов А.Е., Сазонкин М.А. // ЖЭТФ. 2010. Т. 138. № 5(11). С. 979.
- 27. Дубинов А.Е., Сазонкин М.А. // ЖТФ. 2008. Т. 78. № 9. С. 29.
- Лифшиц Е.М., Питаевский Л.П. Физическая кинетика. М.: Наука, 1979.
- Кингсеп А.С. Введение в нелинейную физику плазмы. М.: МФТИ, 1996.
- 30. Swanson D.G. Plasma waves. Lond.: IoP, 2003.
- Pécseli H.L. Waves and oscillations in plasmas. Boca Raton: Taylor & Francis Group, 2013.
- 32. *Shivamoggi B.K.* Introduction to nonlinear fluid-plasma waves. Dordrecht, Boston & Lond.: Kluwer, 1988.
- Saha A., Banerjee S. Dynamical systems and nonlinear waves in plasmas. Boca Raton: Taylor & Francis Group, 2021.
- Srinivas J., Popel S.I., Shukla P.K. // J. Plasma Phys. 1996. V. 55. № 2. P. 209.
- Mamun A.A. // Astrophys. Space Sci. 1999. V. 268. № 4. P. 443.
- 36. Abdelsalam U.M., Moslem W.M., Shukla P.K. // Phys. Lett. A. 2008. V. 372. № 22. P. 4057.
- 37. *Pakzad H.R.* // Phys. Lett. A. 2009. V. 373. № 8–9. P. 847.

- Saha A., Chatterjee P. // Phys. Plasmas. 2014. V. 21. № 2. P. 022111.
- Sayed F.S.H., Turky A.A., Koramy R.A., Moslem W.M. // Adv. Space Res. 2020. V. 66. № 6. P. 1276.
- 40. *Kumar K., Mishra M.K.* // Plasma Res. Express. 2021. V. 3. № 1. P. 015001.
- 41. *Al-Yousef H.A., Alotaibi B.M., Tolba R.E., Moslem W.M.* // Results in Phys. 2021. V. 21. № 1. P. 103792.
- 42. Копнин С.И., Шохрин Д.В., Попель С.И. // Физика плазмы. 2022. Т. 48. № 2. С. 163.
- *Трухачев* Ф.М., Васильев М.М., Петров О.Ф. // Физика плазмы. 2022. Т. 48. № 10. С. 967.
- 44. *Alinejad H.* // Contrib. Plasma Phys. 2022. V. 62. № 9. C. 202200082.
- 45. *Kumar K., Mishra M.K.* // Phys. Plasmas. 2022. V. 29. № 9. P. 092101.
- 46. *Saini N.S., Kourakis I., Hellberg M.A.* // Phys. Plasmas. 2009. V. 16. № 6. P. 062903.
- 47. *Tribeche M., Djebarni L., Amour R. //* Phys. Plasmas. 2010. V. 17. № 4. P. 042114.
- 48. Baluku T.K., Hellberg M.A., Kourakis I., Saini N.S. // Phys. Plasmas. 2010. V. 17. № 5. P. 053702.
- 49. *Bora M.P., Choudhury B., Das G.C.* // Astrophys. Space Sci. 2012. V. 341. № 2. P. 515.
- 50. *Shahmansouri M.* // Pramana J. Phys. 2013. V. 80. Nº 2. P. 295.
- 51. Ghosh B., Banerjee S. // Indian J. Phys. 2015. V. 89. № 12. P. 1307.
- 52. *Rubia R., Singh S.V., Lakhina G.S.* // J. Geophys. Res. 2017. V. 122. № 9. P. 9134.
- 53. Alyousef H.A., Khalid M., Ata-ur-Rahman, El-Tantawy S.A. // Brazil. J. Phys. 2022. V. 52. № 6. P. 202.
- 54. *Lu G., Liu Y., Wang Y., Stenflo L., Popel S.I., Yu M.Y.* // J. Plasma Phys. 2010. V. 76. № 3&4. P. 267.
- 55. Гордиенко В.А., Дубинова И.Д., Дубинов А.Е. // Физика плазмы. 2006. Т. 32. № 11. С. 987.
- 56. Лосева Т.В., Попель С.И., Голубь А.П. // Физика плазмы. 2012. Т. 38. № 9. С. 792.
- Dubinov A.E., Kitayev I.N. // Planet. Space Sci. 2021. V. 195. P. 105142.