### \_\_\_\_\_ ЭКСПЕРИМЕНТАЛЬНЫЕ \_\_\_\_ СТАТЬИ

УЛК 581.1

# ДЫХАНИЕ И ВОВЛЕЧЕНИЕ АЛЬТЕРНАТИВНОГО ПУТИ В СВЯЗИ С ВОЗРАСТОМ И ФЕНОЛОГИЧЕСКОЙ СТРАТЕГИЕЙ ЛИСТА

© 2019 г. Е. В. Гармаш<sup>1</sup>

Институт биологии Коми научного центра Уральского отделения Российской академии наук, Сыктывкар, Россия Поступила в редакцию 06.04.2018 г.
После доработки 10.05.2018 г.
Принята к публикации 24.05.2018 г.

Изучена возрастная динамика дыхательной активности, соотношения дыхательных путей и влияния альтернативного пути (АП) на величину коэффициента  $Y_{AT\Phi/\Gamma \Pi 0 K O 3}$ , отражающего энергетическую эффективность дыхания (ЭЭД) листа яровой пшеницы и озимой ржи, имеющих разную фенологическую стратегию. Дыхательная способность при 20°C листа пшеницы была выше, чем ржи, что обусловлено снижением уровня метаболизма ржи в осенний период вегетации. Дыхание снижалось с возрастом и относительной скоростью роста листа (ОСР). Дыхание молодого листа площадью 20-30% от конечной протекало в основном по цитохромному пути, что связано с энергетическими нуждами на синтез de novo. Увеличение с возрастом листа яровой пшеницы доли АП с 25 до 40% от общего дыхания указывает на то, что альтернативное дыхание относится к компоненте дыхания поддержания. Уменьшение вклада АП в зрелом листе ржи (с 35 до 15% от общего дыхания) было направлено на поддержание ЭЭД при адаптации растений к пониженным температурам. Обнаружено изменение направления градиента дыхания вдоль листа. Меристематически активная часть листа разного возраста характеризовалась наиболее высокой интенсивностью дыхания, долей АП (до 45% от общего дыхания) и скоростью теплопродукции, что указывает на участие альтернативного дыхания в диссипации энергии и регуляции энергетического баланса. В целом, величина  $Y_{AT\Phi/r_{ЛЮКОЗа}}$  на уровне листа разного возраста пшеницы и ржи не менялась и была в среднем равна 20 моль АТФ/моль глюкозы, что на треть меньше теоретически возможной. Это можно расценивать как признак соответствия уровня метаболизма и его адаптации условиям среды.

**Ключевые слова:** *Triticum aestivum* — *Secale cereale* — лист — возраст — фенологическая стратегия — дыхание — альтернативный путь — энергетическая эффективность дыхания

**DOI:** 10.1134/S0015330319030047

#### **ВВЕДЕНИЕ**

Лист как главный орган фотосинтеза обеспечивает все части растения восстановленным углеродом, играет важную роль в энергопластическом обмене и продукционном процессе. В работах А.Т. Мокроносова [1—3] сформулирована концепция возрастной физиологии фотосинтеза, в основе которой лежат исследования структурных и функциональных характеристик фотосинтеза по мере роста листовой пластинки и разновозрастных

участков листа. А.Т. Мокроносовым совместно с сотрудниками кафедры физиологии и биохимии растений Уральского университета исследовано множество процессов, вовлеченных в формирование и функционирование фотосинтетического аппарата в онтогенезе листа: хлоропластогенез, изменения мезоструктуры фотосинтетического аппарата, ассимиляция углерода, направленность фотосинтетического метаболизма, изменение состава продуктов первичного биосинтеза, транспорт ассимилятов, старение листа и хлоропласта, гормональная регуляция фотосинтеза. Эти комплексные многолетние исследования позволили заключить, что возрастные изменения фотосинтетической функции листа подчинены общим закономерностям функционирования целого растительного организма [3].

Важная роль в обеспечении роста растения энергией и метаболитами принадлежит дыханию. На это указывал и А.Т. Мокроносов [3], ссылаясь на работы О.А. Семихатовой [4]. В эти годы еще

Сокращения: АОХ — альтернативная оксидаза; ОСР — относительная скорость роста листа; СГК — салицилгидроксамовая кислота; ЦП, АП — цитохромный и альтернативный путь дыхания соответственно; ЭЭД — энергетическая эффективность дыхания;  $V_{\text{сyt}}, V_{\text{alt}}, V_{\text{res}}$  — активность ЦП, АП и остаточного дыхания соответственно;  $V_{\text{t}}$  — активность темнового дыхания, измеренного по скорости поглощения  $O_2$ ;  $Y_{\text{AT}\Phi/\Gamma,\text{ЛЮКОЗа}}$  — коэффициент эффективности окисления глюкозы для образования АТФ.

Адрес для корреспонденции: Гармаш Елена Владимировна. 167982 Сыктывкар, ул. Коммунистическая, 28. Институт биологии Коми научного центра УрО РАН. Факс: 007 (8212) 24-01-63. Электронная почта: garmash@ib.komisc.ru

только менялись представления о тесной взаимосвязи фотосинтеза и дыхания, координации и регуляции этих процессов на уровне клетки, листа и целого растения [5]. Около 40% энергии, запасенной зелеными листьями в химических связях конечных продуктов фотосинтеза, извлекается в процессе дыхания и используется на рост и поддержание целостности клеточных структур и их функциональной активности [6, с. 130—138].

В онтогенезе листа хлоропластогенез, дифференцировка пластид и рост клеток мезофилла определяют его фотосинтетическую активность [2, 3]. Эти процессы являются энергозависимыми. Хотя хлоропласты могут генерировать АТФ в результате фотофосфорилирования, однако именно АТФ, образованный при дыхании, является основным источником энергии для биосинтетических процессов, включая синтез и деградацию белков фотосинтетического аппарата [7]. Это стало известно сравнительно недавно благодаря исследованиям транспортеров, участвующих в переносе АТФ дыхательного происхождения из цитоплазмы в хлоропласт. Ограничение импорта АТФ в хлоропласт ведет к фотоокислительным повреждениям клетки, нарушению гормонального сигналинга и некрозу (обзор работ в [7]).

Вопросы возрастного хода дыхания достаточно полно освещены в работах Т.К. Головко [6, с. 35-531. Дыхание листа снижается с возрастом. что связано с уменьшением в нем доли меристематически активных тканей, снижением метаболической активности и завершением ростовых процессов. Вместе с тем, в электрон-транспортной цепи растительных митохондрий (мЭТЦ), дополнительно к основному транспорту электронов через цитохромоксидазу (ЦП), функционирует альтернативный путь (АП) через цианидустойчивую альтернативную оксидазу (АОХ). ЦП является основным источником АТФ. Электронный транспорт по АП не связан с двумя пунктами генерации мембранного потенциала, поэтому является энергетически малоэффективным. Основная функция АП состоит в обеспечении поддержания редокс-баланса в мЭТЦ за счет более быстрого окисления НАД.Н и предотвращения избыточного образования АФК [8].

Проблема участия АП в регуляции энергетической эффективности дыхания (ЭЭД) и, в целом, энергетического обмена растения обсуждалась в работах О.А. Семихатовой [9]. С тех пор накоплен большой фактический материал по функционированию АП, но вопросы оценки и регуляции ЭЭД до сих пор остаются предметом исследований. С одной стороны, вовлечение АП снижает ЭЭД, с другой, является механизмом регуляции и стабилизации энергетического баланса клетки и целого растения [10, 11].

Представления о возрастных изменениях дыхательных путей окончательно не сформированы. Полагают, что возрастной ход дыхания листа определяется преимущественно снижением способности основного цитохромного пути (ЦП) и увеличением доли альтернативного пути (АП) [12, 13]. Вместе с тем, дыхание молодых листьев зимне-зеленых растений отличалось более высокой активностью и вовлечением АП по сравнению со зрелыми [14, 15]. Показаны также изменения активности митохондриальных оксидаз у завершившего рост зрелого листа [16]. Возможно, что противоречивость имеющихся в литературе данных связана с разной жизненной формой и стратегией развития растения.

Яровая пшеница и озимая рожь – две формы злаковых, имеющих разную продолжительность полного цикла развития. Яровая пшеница – однолетнее растение с полным циклом развития, в один вегетационный период. Онтогенез озимой ржи продолжается два вегетационных периода с перезимовкой, в процессе которой растения пребывают в состоянии покоя. Важным при выращивании яровой пшеницы, особенно в условиях короткого и прохладного вегетационного периода на Севере, является второй этап органогенеза, связанный с фенофазой третьего листа и кущением. В период кущения — выхода в трубку третий и четвертый лист пшеницы вносят значительный вклад в фотосинтетический потенциал главного побега [17]. Для растений озимой ржи осенний период вегетации заканчивается вторым этапом органогенеза, который соответствует фазе кущения. В этот период пониженных температур происходит интенсивное формирование вегетативной массы растения, закладка узлов с листовыми зачатками и междоузлий, накопление в вегетативных органах пластических веществ при подготовке (закалке) к перезимовке. Таким образом, в период активной вегетации лист яровой пшеницы и озимой ржи имеют разную фенологическую стратегию, характеризующую его сезонную динамику функционирования в соответствии с сезонным ритмом развития растения [18].

Цель работы — сравнить возрастную динамику дыхания листа с разной фенологической стратегией у растений яровой пшеницы (*Triticum aestivum* L., сорт Иргина) и озимой ржи (*Secale cereale* L., сорт Вятка 2), оценить вклад альтернативного пути в дыхание и энергетический баланс листа, рассмотреть физиологическую роль АП в разных частях листовой пластинки.

#### МАТЕРИАЛЫ И МЕТОДЫ

Исследования проводили в 2007—2009 гг. Растения яровой пшеницы (*Triticum aestivum* L., сорт Иргина) и озимой ржи (*Secale cereale*, сорт Вятка-2) выращивали в полевых условиях на делянках пло-

щадью 6  $\rm M^2$  вблизи г. Сыктывкара (61°40′ с.ш.). Почва опытного участка типичная подзолистая, сформированная на покровных суглинках, средней степени окультуренности. Перед закладкой опытов в почву вносили минеральные удобрения из расчета  $\rm N_{30}P_{60}K_{60}$  (кг д.в./га). Посев яровой пшеницы и озимой ржи производили вручную в начале июня и в конце первой декады августа соответственно.

Период активной вегетации от начала всходов у яровой пшеницы до фазы выхода в трубку составлял 20—25 дней, у озимой ржи осенний этап вегетации длился 50—60 дней. Все измерения на яровой пшенице выполнены в июне—начале июля, на озимой ржи — во второй половине сентября—начале октября. Все исследования у растений яровой пшеницы выполнены на третьем листе в фенофазу третьего листа и начала кущения, у озимой ржи — на третьем листе второго бокового побега в фенофазу кущения.

Рост листа оценивали по накоплению биомассы. Пробы (30 образцов) взвешивали и высушивали до воздушно-сухого состояния при 70°С. Площадь листа измеряли с момента появления его кончика из влагалища предыдущего листа с помощью метода отпечатков на бумаге. Относительную скорость роста листа (ОСР, г/(г сухой массы ч)) определяли классическим способом как разность натуральных логарифмов массы листа в разные периоды времени [19].

Для характеристики дыхательной способности, скорости теплопродукции и содержания белка использовали листья, достигшие площади 20— 30% (молодые листья) и 70% от конечной (зрелые листья). Интенсивность темнового дыхания листа измеряли при 20°C манометрическим методом. Листья отбирали с 10-15 растений. Дыхание целого листа характеризовали по скорости поглощения О<sub>2</sub> высечками из средней выборки целых листьев. Для измерения дыхания в разных частях листа брали высечки из трех зон листовой пластинки. Зона деления включала участок около 5 и 3 мм от основания молодого и зрелого листа соответственно [2, с. 28]. Следующая за ней зона растяжения содержала образцы высечек листа длиной 3 мм. Для изучения дыхания зоны дифференцированных клеток отбирали высечки средней части листа длиной 5-10 мм. Высечки помещали в манометрические сосудики по 250-300 мг свежего материала. Интенсивность дыхания выражали в мл  $O_2/(\Gamma$  сухой массы ч).

Активность терминальных оксидаз определяли с помощью специфических ингибиторов: салицилгидроксамовой кислоты (СГК, "Lancaster", США) и  $\mathrm{NaN_3}$  ("ДиаэМ", Украина) для AOX и цитохромоксидазы соответственно. Концентрацию ингибитора и длительность инкубации подбирали экспериментально, используя метод "прямого титрования" с возрастающими концентрациями

ингибитора до насыщения скорости поглощения О<sub>2</sub> [20]. Образцы предварительно инкубировали 20 мин в растворах СГК (25 мМ, pH 6.5), NaN<sub>3</sub> (5 мМ, рН 4.5), а также в смеси ингибиторов. Затем их помещали в манометрические сосудики. куда наливали по 2.5 мл раствора ингибитора. Контрольные пробы высечек из листа инкубировали в воде. Показания манометров регистрировали каждые 15 мин в течение 1 ч. Активность АП (V<sub>alt</sub>) находили как разность между дыханием контрольных и инкубированных в растворе SHAM образцов. Остаточное (немитохондриальное) дыхание  $(V_{res})$  измеряли при совместном действии ингибиторов (СГК и  $NaN_3$ ). Активность ЦП ( $V_{cvt}$ ) рассчитывали как разность между дыханием, устойчивым к действию 25 мМ SHAM, и остаточным поглощением  $O_2$ .

Для оценки энергетической эффективности дыхания (ЭЭД) с учетом вовлечения АП применен коэффициент эффективности окисления глюкозы для образования  $AT\Phi - Y_{AT\Phi/_{\Gamma ЛЮКОЗа}}$  [21]. В расчетах использовали скорость дыхания при среднесуточной температуре в период проведения исследований, которая во второй и третьей декаде июня и первой декаде июля за три года составляла около 20°C, во второй и третьей декаде сентября - около 10°C (по данным Агрометеорологического бюллетеня по Республике Коми, станция Сыктывкар). При переводе количества поглощенного О2 (мл) в эквиваленты дыхательного субстрата (мг глюкозы) использовали коэффициент, равный 1.34. Количество глюкозы выражали в молях на единицу массы и времени. Для определения количества образованного из глюкозы АТФ при дыхании по цитохромному пути использовали коэффициент 29 (образование 29 моль  $AT\Phi$  на 1 моль глюкозы), при дыхании по альтернативному пути - коэффициент 11 (11 моль  $AT\Phi$  на 1 моль глюкозы) [21].

Скорость теплопродукции (q) разных частей листа измеряли при 20°C с помощью изотермического микрокалориметра Биотест 2 (Россия).

Экстракцию растворимого белка проводили при температуре 4°C в среде, содержащей (мМ): Трис-HCl – 100, рН 8.0,  $MgCl_2 \cdot 6H_2O - 10$ , ЭДТА – 4, ДТТ – 5. Гомогенат центрифугировали 20 мин при 15000 g и 4°C. Концентрацию белка определяли по методу Брэдфорда [22].

На рисунках и в таблицах представлены средние арифметические величины со стандартной ошибкой, полученные за трехлетний (для яровой пшеницы) и двухлетний (для озимой ржи) периоды исследований. Все параметры даны в расчете на сухую массу. Данные после проверки на нормальность распределения проанализированы с помощью ANOVA с использованием параметрического критерия Дункана и непараметрического

критерия Краскела-Уоллиса при уровне значимости p < 0.05 [23]. Для статистической обработки использовали программу Statistica 6.1 software ("StatSoft. Inc.", США). Стандартные ошибки производных величин оценивали как относительные погрешности функций нескольких переменных.

### РЕЗУЛЬТАТЫ

#### Рост листа

С момента появления кончика листа из влагалища предыдущего листа масса и площадь листа пшеницы и ржи увеличивались в соответствии с классической S-образной кривой роста (рис. 1а, 1б). Лист пшеницы и ржи после 5 суток от появления характеризовался высокой относительной скоростью роста (ОСР), равной около 0.5 и 0.6 г/(г сут) соответственно (рис. 1в). В ходе онтогенеза ОСР листа снижалась особенно заметно в течение первых 10 дней. Спустя 20 дней от появления ОСР листа не превышала 0.03—0.04 г/(г сут). Масса и площадь листа пшеницы была несколько выше, чем ржи. Лист ржи и пшеницы достигал 70% от конечной площади на 10 и 14 день от своего появления соответственно.

#### Содержание и скорость накопления белка в листе

Содержание растворимого белка и скорость его накопления в расчете на единицу сухой массы были выше в листе пшеницы, чем ржи. Динамика увеличения содержания белка в листе в процессе его роста у обоих видов была схожей (рис. 2). Скорость накопления белка у молодого листа была выше, чем у зрелого. Молодой и зрелый лист пшеницы накапливал белок со скоростью около 13 и 8 мг/г сухой массы в сутки, ржи — 6 и 3 мг/г сухой массы в сутки соответственно.

# Дыхание и соотношение дыхательных путей в молодом и зрелом листе

Дыхательная способность растений ржи, измеренная при  $20^{\circ}$ С, была значительно ниже, чем растений пшеницы (рис. 3а). Возрастная динамика дыхательной активности листа пшеницы и ржи имела схожий характер. Скорость поглощения  $O_2$  в молодом листе, рассчитанная как на единицу сухой массы листа, так и на единицу количества растворимого белка, была выше, чем в зрелом (рис. 3а, 3б). Однако разница между значениями скорости поглощения  $O_2$ , полученными для молодого и зрелого листа пшеницы, была более заметной, чем у ржи. Молодые листья пшеницы и ржи поглощали  $O_2$  в 1.7 и 1.4 раза активнее, чем зрелые.

Изменения скорости поглощения  $O_2$  были связаны с модуляцией активности и ЦП ( $V_{cyt}$ ) и АП ( $V_{alt}$ ) (рис. 3в). Самая высокая величина ак-

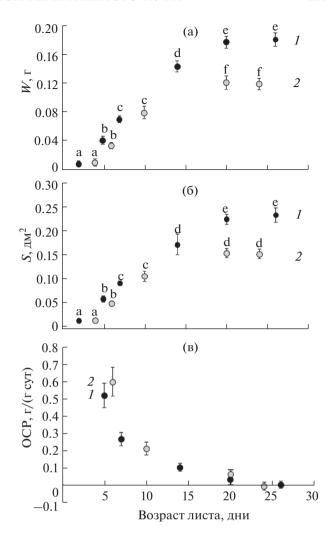
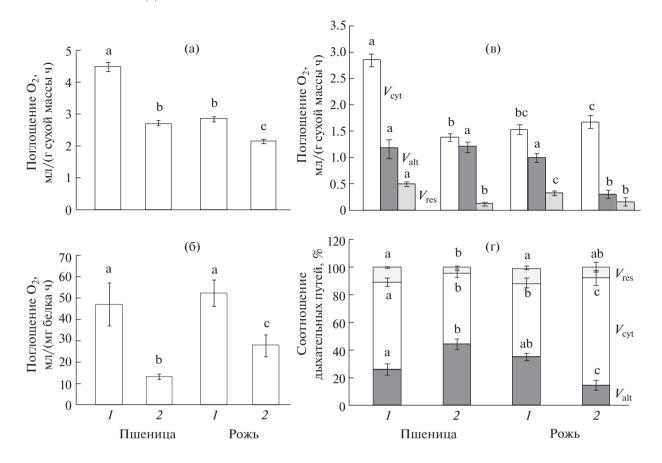



Рис. 1. Онтогенетические изменения биомассы (а), площади (б) и относительной скорости роста листа (в) яровой пшеницы (I) и озимой ржи (2). W — биомасса, S — площадь листа, OCP — относительная скорость роста. Представлены среднеарифметические величины и их стандартные ошибки, полученные в период проведения исследований из 2-3 независимых экспериментов. В каждом эксперименте n=30. Разными латинскими буквами обозначена достоверность изменений биомассы и площади в онтогенезе листа и между видами растений. Для величины OCP ошибки рассчитаны как относительные погрешности функций нескольких переменных. Согласно ANOVA, влияние фактора возраста листа на величину OCP значимо, фактора вида растения — незначимо при p < 0.05.

тивности ЦП ( $V_{\rm cyt}$ ) обнаружена в молодом листе пшеницы. В зрелом листе пшеницы снижение дыхания было в основном связано со снижением  $V_{\rm cyt}$ . Активность АП ( $V_{\rm alt}$ ) имела схожие значения у листьев пшеницы разного возраста. В листьях разного возраста ржи, в отличие от пшеницы, снижение дыхания зрелого листа было связано с уменьшением  $V_{\rm alt}$ , тогда как величина  $V_{\rm cyt}$  не зависела от возраста.



**Рис. 2.** Содержание растворимого белка и скорость его накопления (г белка/(г сухой массы сут)) в онтогенезе листа яровой пшеницы (а) и озимой ржи (б). Представлены среднеарифметические величины и их стандартные ошибки, полученные в период проведения исследований из двух-трех независимых экспериментов. В каждом эксперименте n=3. Разными латинскими буквами обозначена достоверность изменений параметра в онтогенезе листа (ANOVA, тест Дункана, p < 0.05).


Анализ изменения соотношения дыхательных путей (рис. 3г) показал, что дыхание молодого листа пшеницы осуществлялось в основном по ЦП по сравнению со зрелым (рис. 3а). Доля АП и ЦП в дыхании молодого листа пшеницы составляла около 25 и 63% от общего дыхания соответственно. В дыхании зрелого листа пшеницы вклад АП возрастал до 40%, доля ЦП несколько уменьшалась — до 55% от общего дыхания. Доля АП в дыхании молодого листа ржи составляла в среднем 35%, а зрелого листа, в отличие от пшеницы, снижалась и составляла около 15%, при этом доля дыхания по ЦП возрастала до 75% от общего дыхания. В присутствии смеси ингибиторов остаточное поглощение кислорода (V<sub>res</sub>) листа обоих видов не превышало 10% от общего дыхания.

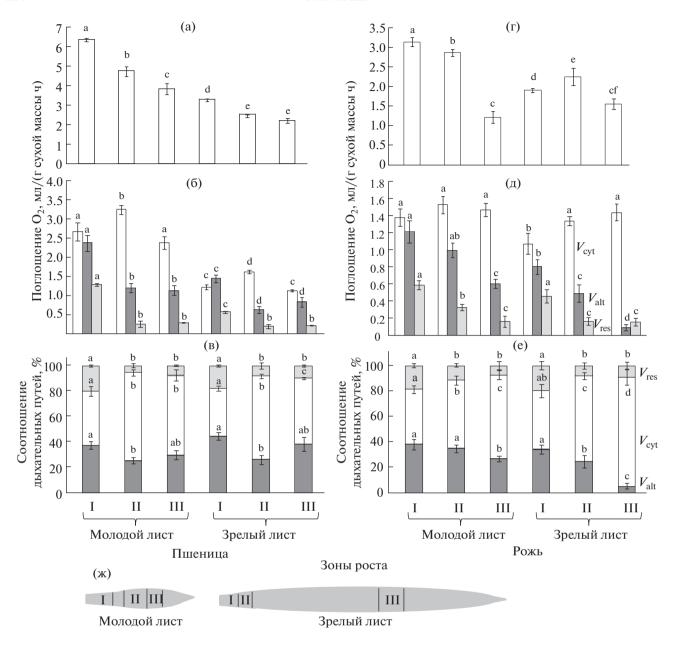
# Дыхание и соотношение дыхательных путей в разных частях листовой пластинки

Наиболее интенсивно дышала базальная меристематически активная часть, менее интенсивно — дифференцированная часть молодого и зре-

лого листа обоих видов (рис. 4а, 4г). Изменения дыхания вдоль листа разного возраста пшеницы были в основном связаны с активностью нефосфорилирующих путей (рис. 4б). В зоне деления величины  $V_{alt}$  и  $V_{res}$  были вдвое выше, чем в зонах растяжения и дифференцированных клеток. Активность ЦП в разных участках листа пшеницы изменялась, но не так заметно, как активность АП. Изменение дыхания вдоль листа ржи были также связаны с модуляцией  $V_{alt}$  и  $V_{res}$ , которые снижались с возрастанием уровня дифференцировки ткани при относительно стабильных значениях  $V_{\rm cyt}$ , за исключением зоны дифференцированных клеток зрелого листа (рис. 4д). В этой зоне отмечали усиление дыхания по ЦП и резкое снижение активности АП.

В меристематически активной зоне листа разного возраста обоих видов вклад АП и ЦП в дыхании был равнозначным и составлял в среднем 40%, при этом возрастала доля остаточного дыхания — до 20% от общего дыхания (рис. 4в, 4е). В дифференцированной части листа дыхание протекало в основном по ЦП, а в зрелом листе ржи




доля ЦП достигала 85% от общего дыхания. Вклад АП в этой зоне зрелого листа ржи не превышал 5%, у других листьев варьировал в пределах 25—40% от обшего лыхания.

#### Скорость теплопродукции в разных частях молодого и зрелого листа

Базальная меристематически активная часть зрелого и особенно молодого листа пшеницы характеризовалась более высокой скоростью теплопродукции (q) по сравнению с другими частями (рис. 5). Величина q постепенно снижалась вдоль листа пшеницы по мере увеличения степени дифференцировки тканей. У молодого листа ржи величина q имела сравнительно высокие показатели в зоне деления и растяжения, снижаясь вдвое в зоне дифференцированных клеток. Зрелый лист ржи характеризовался самыми низкими показателями скорости теплопродукции, снижающимися вдоль листовой пластинки.

#### ОБСУЖДЕНИЕ

Развитие листа начинается с формирования листового примордия из апикальной меристемы побега, вслед за которым образуется ось листа и листовая пластинка. В среднем в течение первых 10 дней лист растет за счет деления и роста клеток, затем путем их растяжения без увеличения количества. Активный рост листа сопровождается накоплением хлорофилла, увеличением числа и размеров хлоропластов в клетке, усилением активности фотосинтетических ферментов. Наибольшая фотосинтетическая активность листа в расчете на единицу поверхности наблюдается при достижении им площади 40-60% от максимальной, затем интенсивность фотосинтеза снижается [3, с. 32]. К этому времени лист функционирует как донор ассимилятов. Одной из причин снижения фотосинтетической активности по мере созревания листа является превалирование процессов роста клеток над увеличением числа хлоропластов, хотя интенсивность фотосинтеза единичного

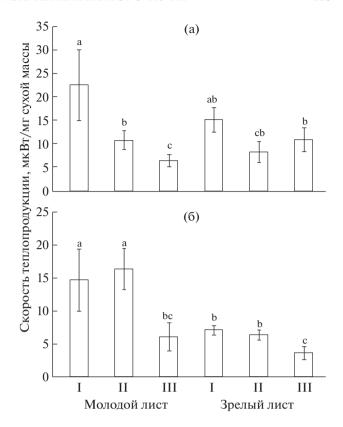


**Рис. 4.** Дыхание (а, г), активности цитохромного ( $V_{\rm cyt}$ ), альтернативного ( $V_{\rm alt}$ ) и остаточного дыхания ( $V_{\rm res}$ ) (б, д) и соотношение дыхательных путей (в, е) в разных зонах роста молодого и зрелого листа яровой пшеницы и озимой ржи. ж — зоны роста листа: I — деления, II — растяжения, III — дифференцированных клеток. Представлены среднеарифметические величины и их стандартные ошибки, полученные в период проведения исследований из двух-трех независимых экспериментов. В каждом эксперименте n=6-8. Разными латинскими буквами обозначена достоверность изменений параметра в онтогенезе листа (ANOVA, тест Дункана, p < 0.05).

хлоропласта и активность ферментов сохраняются на уровне достигнутых в период активного роста величин вплоть до завершения роста листа.

Известные нам количественные расчеты образования АТФ в процессе дыхания и, в целом, бюджета дыхательного АТФ были произведены без учета вовлечения АП [7, 24]. При этом не раз отмечалось, что дыхательные затраты, связанные с превращением ассимилированного при фотосинтезе углерода в структурную биомассу и ее

поддержанием, зависят от вовлечения "холостых" дыхательных путей, снижающих энергетическую эффективность дыхания (ЭЭД) [8, 9, 21]. Поиск способов оценки ЭЭД привел к разработке различных показателей, имеющих определенные ограничения [6, с. 92–99; 9]. На разных уровнях организации — от клеточного до организменного целесообразно применение коэффициента эффективности окисления глюкозы для образования  $AT\Phi - Y_{AT\Phi/глюкоза}$ , позволяющего учесть в


расчетах бюджета  $AT\Phi$  вовлечение нефосфорилирующих путей [21].

Лист пшеницы и ржи характеризовался наиболее высокой ОСР в период формирования площади, составляющей до 40% от конечной. Затем ОСР листа снижалась. Зрелый лист пшеницы имел более высокую биомассу, площадь и дыхательную способность, измеренную при 20°С, чем ржи (рис. 1, 3). Это свидетельствовало об общем торможении метаболизма озимой ржи в период подготовки к перезимовке.

В нормальных условиях активному росту соответствует интенсивное дыхание [6, с. 97]. Зрелый лист обоих видов дышал менее интенсивно, чем молодой (рис. 3а). Повышенная скорость дыхания молодых листьев связана, в первую очередь, с интенсификацией оборота белка [7, 24]. В листе самые активные процессы белкового синтеза протекают в хлоропластах, которые содержат более 50% белков клетки [7]. Содержание растворимого белка в молодом листе обоих видов было меньше, чем в зрелом. Однако скорость накопления, или точнее, оборота (синтеза и деградации) белка в период активного роста листа пшеницы и ржи выше, чем у завершившего рост листа (рис. 2). Полученные данные для листа пшеницы согласуются с теоретически рассчитанной величиной скорости оборота белка в биомассе с 10% его содержанием, которая в среднем составляет около  $0.015 \, \Gamma/(\Gamma \, \text{сут}) \, [21]$ . Для листьев ржи скорость оборота белка ниже теоретической, что также указывает на более низкий уровень метаболизма растений в условиях пониженных температур. В целом. дыхание в пересчете на единицу белка в молодых листьях пшеницы и ржи было в 3.5 и 1.9 раз выше, чем в зрелых соответственно (рис. 36).

В зрелом листе, активно функционирующем как донор ассимилятов, интенсивные процессы новообразования прекращаются, хотя содержание белка остается какое-то время постоянным вследствие процессов ресинтеза для замещения деградирующих структур. Так, в развивающемся и зрелом листе Arabidopsis thaliana процессы синтеза и деградации белка составляли 42 и 16% от общего бюджета АТФ соответственно [7]. При этом самая высокая цена энергетических расходов приходилась на синтез и поддержание протеома хлоропластов – ферментов цикла Кальвина и реакционных центров. Основную часть бюджета АТФ зрелого листа составляют процессы экспорта ассимилятов, включающие синтез транспортных форм сахаров и загрузку флоэмы. Известно, что дыхание, связанное с реализацией донорной функции листа, достигает 50% от общего дыхания [6, c. 124].

Поддержание относительно высокой дыхательной цены синтеза белка листа разного возраста ржи на уровне значений, полученных для



**Рис.** 5. Скорость теплопродукции (q) в разных зонах роста молодого и зрелого листа яровой пшеницы (a) и озимой ржи (б). I — зона деления, II — зона растяжения, III — зона дифференцированных клеток. Разными латинскими буквами обозначена достоверность изменений параметра в онтогенезе листа (ANOVA, тест Краскела-Уоллиса, p < 0.05). Представлены среднеарифметические величины и их стандартные ошибки, полученные в период проведения исследований из 2—3 независимых экспериментов. В каждом эксперименте n = 6—8.

листа пшеницы, скорее всего, обусловлено накоплением белков, выполняющих антифризную функцию. Показано, что холодовое закаливание проростков озимой пшеницы сопровождалось усиленным синтезом дегидринов — белков, участвующих в развитии морозоустойчивости растений [25, с. 13].

С возрастом листа пшеницы доля АП в дыхании увеличивалась от 25 до 40% (рис. 3г). Увеличение активности *in vivo* и доли АП от 25 до 32% от общего дыхания с возрастом листа *Arabidopsis thaliana* было также обнаружено с помощью метода изотопного фракционирования [12]. Следовательно, по мере снижения ОСР интенсивность дыхания падала за счет уменьшения активности цитохромного пути на фоне вовлечения АП. Это согласуется с представлением о том, что цитохромное дыхание является компонентой дыхания роста, тогда как альтернативное дыхание — скорее компонентой дыхания поддержания, чем роста [12,

Таблица 1. Показатели энергетической эффективности дыхания (ЭЭД) в листьях разного возраста растений

| Показатель                                                          | Яровая пшеница      |                     | Озимая рожь         |                      |
|---------------------------------------------------------------------|---------------------|---------------------|---------------------|----------------------|
|                                                                     | молодой лист        | зрелый лист         | молодой лист        | зрелый лист          |
| Дыхание, мг глюкозы/(г ч)                                           | $6.02 \pm 0.19^{a}$ | $3.65 \pm 0.11^{b}$ | $3.84 \pm 0.05^{b}$ | $2.88 \pm 0.10^{bc}$ |
| Дыхание, мкмоль глюкозы/(г ч)                                       | $33.5 \pm 1.0^{a}$  | $20.3 \pm 0.6^{b}$  | $21.3 \pm 0.3^{b}$  | $16.0 \pm 0.6^{c}$   |
| Дыхание с учетом АП, мкмоль АТ $\Phi$ /(г ч)                        | $723 \pm 15$        | $395 \pm 4$         | $211 \pm 2$         | $187 \pm 4$          |
| Дыхание целого листа с учетом АП, мкмоль АТ $\Phi/(\Gamma  \Psi)^*$ | $29.8 \pm 1.0$      | $69.8 \pm 0.6$      | $7.2 \pm 0.2$       | $22.8 \pm 0.6$       |
| ЭЭД ( $Y_{AT\Phi/глюкоза}$ ), моль $AT\Phi/$ моль глюкозы           | $21.6 \pm 3.2$      | $19.5 \pm 2.1$      | $19.8 \pm 2.1$      | $23.4 \pm 3.6$       |

Примечание. В расчетах использовали скорость дыхания при среднесуточной температуре в период проведения исследований ("Материалы и методы"). \* — в пересчете на целую массу листа, остальные параметры рассчитаны на единицу сухой массы листа. Представлены среднеарифметические величины и их стандартные ошибки, полученные в период проведения исследований из двух-трех независимых экспериментов (n = 6-8). Разные надстрочные символы обозначают достоверность изменений параметра в онтогенезе листа (ANOVA, тест Дункана, p < 0.05). Для величин дыхания в эквивалентах АТФ и  $Y_{\text{АТФ/глюкоза}}$  ошибки рассчитаны как относительные погрешности функций нескольких переменных. Согласно ANOVA, въизивие фактора возраста листа на величину дыхания в эквивалентах АТФ значимо, на величину  $Y_{\text{АТФ/глюкоза}}$  — незначимо при p < 0.05.

26]. Полагают, что вовлечение АП усиливает потребление углерода для процессов дыхания поддержания, снижая риски возникновения окислительного стресса [12].

Количество окисляемой в процессе дыхания глюкозы и образуемого АТФ с учетом АП зависело от возраста листа (табл. 1). Полученные данные скорости образования АТФ находятся в диапазоне величин, рассчитанных с помощью коэффициента, связывающего скорость дыхательного поглощения кислорода с синтезом  $AT\Phi$  (10<sub>2</sub> –  $4.5 \, AT\Phi$ ) [7, 24]. Однако такие расчеты не позволяют учесть вклада АП. В нашем эксперименте количество окисляемой в процессе дыхания глюкозы и образуемого АТФ с учетом вклада АП в единице сухой массы молодого листа пшеницы были вдвое выше, чем зрелого. Напротив, в пересчете на массу целого листа энергетический выход дыхания зрелого листа был вдвое выше, чем молодого. Однако коэффициент эффективности окисления глюкозы для образования АТФ  $(Y_{AT\Phi/rлюкоза})$ , отражающий ЭЭД, не изменялся с возрастом и составлял около 20 моль АТФ/моль глюкозы. Эта величина на треть меньше теоретически рассчитанной, составляющей 29 моль  $AT\Phi$ /моль глюкозы [21].

Доля АП в дыхании молодых листьев ржи составляла около 35% от общего дыхания (рис. 3г). Однако в отличие от пшеницы вклад АП в дыхание зрелого листа был на 20% ниже по сравнению с молодым. Поэтому абсолютные величины скорости образования АТФ с учетом АП в зрелых листьях озимой ржи, были немногим ниже (в 1.2 раза), чем в молодых (табл. 1). Это повлияло на количество образованного АТФ на уровне целого листа, которое в зрелом листе было в 3 раза выше, чем в молодом. В результате энергетический выход ды-

хания  $(Y_{AT\Phi/rлюкоза})$  в зрелом листе ржи имел небольшую тенденцию к увеличению.

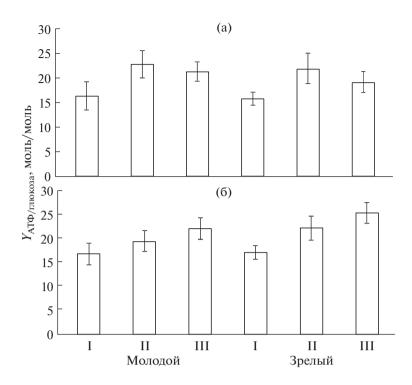
Можно полагать, что усиление дыхания цитохромного типа в зрелых листьях ржи и снижение вклада АП было обусловлено необходимостью сохранения максимальной ЭЭД для реализации энергозависимых процессов адаптации к пониженным температурам. Подобная направленность изменения дыхания и соотношения дыхательных путей обнаружена нами в контролируемом эксперименте у холодостойкого сорта ячменя, выращиваемого при более низкой (но в пределах температурного оптимума роста) температуре [27]. Полученные данные согласуются с современными представлениями о том, что регуляция энергетического метаболизма клетки направлена на снижение вовлечения энергетически малоэффективного АП [13]. Однако вопрос участия АОХ в процессе адаптации растений к пониженным температурам до сих пор является предметом дискуссий. Существует ряд работ, свидетельствующих о вовлечении АП при низкотемпературном воздействии. В частности, индукция АП на первых этапах холодового закаливания проростков озимой пшеницы предотвращала развитие окислительного стресса, а при кратковременном влиянии отрицательных температур — способствовала термогенерации [25, с. 18-24].

В целом, величины  $Y_{\text{АТФ/глюкоза}}$  листа разного возраста пшеницы и ржи были примерно на одном уровне значений, что можно расценивать как признак соответствия уровня метаболизма и его адаптации условиям среды.

У злаков образование язычка (складка верхнего эпидермиса листа и внутреннего эпидермиса влагалища) начинается только после выхода кончика листа из влагалища предыдущего листа. По-

сле образования язычка на границе пластинки и влагалища листовая пластинка растет за счет интеркалярной (вставочной) меристемы, располагающейся в ее основании. Рост листовой пластинки продолжается до тех пор, пока верхушка влагалища с язычком не выйдут из трубки влагалища предыдущего листа. В результате роста за счет интеркалярной (вставочной) меристемы от основания листа к верхушке создается градиент клеток и тканей с возрастанием уровня дифференцировки. С возрастом листа зона деления укорачивается (рис. 4ж). Переход клеток к росту растяжением и дифференцировке сопровождается хлоропластогенезом и увеличением количества других компонентов [3]. А.Т. Мокроносов отмечал, что изучение фотосинтетической функции разновозрастных участков листа однодольных растений является одним из приемов, позволяющих получить более полные представления о возрастной физиологии фотосинтеза.

Мы изучили изменение соотношения дыхательных путей в трех частях молодого и зрелого листа растений. Дыхание разных частей и градиент дыхания вдоль листа изменялись с возрастом (рис. 4). Менее интенсивно дышала дифференцированная, функционально активная часть молодого и зрелого листа обоих видов. В этой зоне дыхание в основном протекало по ЦП и составляло в молодом листе пшеницы и листьях разного возраста ржи 65-75%, в зрелом листе пшеницы — до 55% от общего дыхания. Это отражает потребность клеток в энергии и интермедиатах для процессов биосинтеза и поддержания. Известно, что зона дифференцированных клеток листа однодольных характеризуется наиболее высокими показателями активности фотосинтетического аппарата – числом хлоропластов на единицу площади, содержанием белка фракции I (основной компонент белковой смеси, представляющей сумму водорастворимых белков) на единицу количества хлоропластов, удельной активностью РБФ-карбоксилазы и ее содержанием в хлоропласте, максимальной интенсивностью фотосинтеза [2, с. 28–30].


Зона деления листьев разного возраста пшеницы и молодого листа ржи отличалась наиболее интенсивным дыханием, которое в основном было связано с АП (45%) и немитохондриальным поглощением О<sub>2</sub> (20%) (рис. 4). Дыхание в зоне деления зрелого листа ржи было несколько ниже, чем в зоне растяжения, но также характеризовалось увеличением доли АП и остаточного дыхания. Вовлечение нефосфорилирующих путей в зоне деления коррелировало с более высокой скоростью теплопродукции (рис. 5). Это косвенно может свидетельствовать о том, что АП как способ теплового рассеивания энергии участвует в регуляции баланса между углеводным метаболизмом и скоростью электронного транспорта [8].

На наш взгляд, активация альтернативного дыхания в меристематической ткани, обладающей повышенной аттрагирующей способностью [3, с. 42], направлена на обеспечение синтезов *de novo* за счет поддержания высокой скорости электронного транспорта в обход фосфат-акцепторного контроля. Это позволяет ЦТК функционировать и снабжать клетку метаболитами [8, 10]. Усиление тока электронов по АП и вклада остаточного дыхания можно также связать с их ролью в предотвращении окислительного стресса. Устойчивое к действию ингибиторов митохондриальных оксидаз остаточное дыхание включает реакции окисления молекулярным кислородом органических соединений с помощью различных оксидаз и других ферментов класса оксидоредуктаз в пероксисомах и на эндоплазматическом ретикулуме, участвуя в защите клетки от избытка кислорода и AФК [20, 28].

А.Т. Мокроносов [2, с. 29, 3, с. 46–47] отмечал интересную, на наш взгляд, особенность фотосинтетического метаболизма углерода ювенильного листа и меристематически активной зоны листа, которая связана с преобладанием гетеротрофной фиксации СО<sub>2</sub> (до 85%) при участии ФЕП-карбоксилазы. Причиной такого сдвига метаболизма является неполное развитие фотосинтетического аппарата и низкая активность РБФ-карбоксилазы в условиях интенсивной пролиферации клеток. Этот процесс сопровождается активным импортом ассимилятов, генерацией ФЕП и активацией дыхательных систем. Согласно современным исследованиям, существует метаболическая связь между активностью ФЕП-карбоксилазы и АОХ. В частности, коэкспрессия генов (SrPEPC и SrAOX) и активности ферментов обнаружена в процессе термогенеза цветков Symplocarpus renifolius [29]. Увеличение синтеза белка и активности ФЕПкарбоксилазы и АОХ выявлено в процессе экссудации карбоксилатов (цитрата, малата) кластерными корнями Hakea prostrata при дефиците фосфора [30]. Биохимическая основа этой связи состоит в поддержании высокой скорости ЦТК в обход фосфат-акцептороного контроля [30]. Возможно, этот механизм имел место и в меристематически активной зоне листа пшеницы и ржи. Этот вопрос требует специальных исследований.

В целом, коэффициент  $Y_{\text{АТФ/глюкоза}}$  в зоне деления был ниже, чем в других участках листа, но это не могло оказать существенного влияния на изменение ЭЭД целого листа разного возраста обоих видов, что связано с низкой долей базальной меристематически активной части (2–5%) в сухой массе листа (рис. 6).

Таким образом, выявлены возрастные закономерности изменения дыхания и соотношения дыхательных путей листа двух видов, имеющих разные сезонные условия периода активной вегета-



**Рис. 6.** Изменение коэффициента  $Y_{AT\Phi/_{\GammaЛЮKO3a}}$  (моль  $AT\Phi/_{моль}$  глюкозы), отражающего энергетическую эффективность дыхания, в разных зонах роста молодого и зрелого листа яровой пшеницы (а) и озимой ржи (б). I—зона деления, II—зона растяжения, III—зона дифференцированных клеток. Для величины  $Y_{AT\Phi/_{\GammaЛЮKO3a}}$  ошибки рассчитаны как относительные погрешности функций нескольких переменных. Согласно ANOVA, влияние фактора зоны роста на величину  $Y_{AT\Phi/_{\GammaЛЮKO3a}}$  значимо при p < 0.05.

ции. Дыхательная способность листа яровой пшеницы была выше, чем озимой ржи, что обусловлено снижением уровня метаболизма ржи в осенний период. Более интенсивное дыхание молодого листа по сравнению со зрелым у обоих видов протекало в основном по цитохромному пути, что связано с энергетическими нуждами на синтез de novo. В зрелом листе вовлечение AП изменялось в зависимости от фенологической стратегии листа и целого растения. Увеличение доли АП с 25 до 40% от общего дыхания с возрастом листа яровой пшеницы происходило на фоне снижения относительной скорости роста и накопления белка. Ослабление дыхания альтернативного типа в зрелом листе ржи (до 15%) было направлено на поддержание ЭЭД при адаптации растений к пониженным температурам. Обнаружено изменение направления градиента дыхания вдоль листа. Меристематически активная часть листа характеризовалась наиболее высокой интенсивностью дыхания, долей АП (до 45% от общего дыхания) и скоростью теплопродукции, что указывает на участие альтернативного дыхания в диссипации энергии и регуляции энергетического баланса. В целом, вовлечение АП снижало величину коэффициента  $Y_{AT\Phi/_{\GammaЛЮКОЗа}}$ , но не оказывало в период вегетативного роста растений существенного влияния на энергетический баланс на

уровне ассимилирующего органа. Способность листа к изменению соотношения дыхательных путей и подчиненность выполняемых им функций в общей системе внутренних связей организма способствует эффективной реализации программы роста и развития.

Автор благодарна Т.К. Головко за ценные замечания и советы при подготовке статьи к публикации, Р.В. Малышеву за определения скорости теплопродукции листа.

Работа выполнена в рамках бюджетной темы НИР "Физиология и стресс-устойчивость фотосинтеза растений и пойкилогидрических фотоавтотрофов в условиях Севера", номер ГР АААА-A17-117033010038-7.

## СПИСОК ЛИТЕРАТУРЫ

- 1. Мокроносов А.Т. Мезоструктура и функциональная активность фотосинтетического аппарата // Мезоструктура и функциональная активность фотосинтетического аппарата / Под ред. Мокроносова А.Т., Борзенковой Р.А., Цельникер Ю.Л., Некрасовой Г.Ф. Свердловск: Уральск. ун-т. 1978. С. 5–31.
- 2. *Мокороносов А.Т.* Онтогенетический аспект фотосинтеза. М.: Наука, 1981. 196 с.

- 3. *Мокроносов А.Т.* Фотосинтетическая функция и целостность растительного организма. 42-е Тимирязевское чтение. М.: Наука, 1983. 64 с.
- Семихатова О.А. Энергетические аспекты интеграции физиологических процессов в растениях // Физиология растений. 1980. Т. 27. С. 1005—1017.
- 5. *Гармаш Е.В.* Митохондриальное дыхание фотосинтезирующей клетки // Физиология растений. 2016. Т. 63. С. 17–30.
- 6. Головко Т.К. Дыхание растений (физиологические аспекты). СПб.: Наука, 1999. 204 с.
- 7. Li L., Nelson C.J., Trösch J., Castleden I., Huang S., Millar A.H. Protein degradation rate in Arabidopsis thaliana leaf growth and development // The Plant Cell. 2017. V. 29. P. 207–228.
- 8. *Millenaar F.F., Lambers H.* The alternative oxidase: *In vivo* regulation and function. Plant Biol. 2003. V. 5. C. 2–15.
- 9. *Семихатова О.А.* Энергетика дыхания в норме и при экологическом стрессе. 48-е Тимирязевское чтение. М.: Наука, 1990. 72 с.
- 10. *Рахманкулова З.Ф.* Уровни регуляции энергетического обмена в растениях // Вестник Башкирского университета. 2009. Т. 14. № 3(I). С. 1141—1154.
- 11. *Noguchi K*. Effects of light intensity and carbohydrate status on leaf and root respiration // Plant Respiration: From Cell to Ecosystem. Ch. 5 / Eds. Lambers H., Ribas-Carbo M. Dordrecht: Springer, 2005. P. 63–83.
- 12. Florez-Sarasa I.D., Bouma T.J., Medrano H., Azcon-Bieto J., Ribas-Carbo M. Contribution of the cyto-chrome and alternative pathways to growth respiration and maintenance respiration in Arabidopsis thaliana // Physiol. Plant. 2007. V. 129. № 1. P. 143–151.
- 13. Priault P., Vidal G., De Paepe R., Ribas-Carbo M. Leaf age-related changes in respiratory pathways are dependent on complex I activity in Nicotiana sylvestris // Physiol. Plant. 2007. 129. № 1. P. 152–162.
- 14. Иванова Т.И., Кирпичникова О.В., Шерстнева О.А., Юдина О.С. Годичный цикл дыхания листьев вечнозеленых растений // Физиология растений. 1998. Т. 45. С. 906—913.
- 15. Головко Т.К., Пыстина Н.В. Альтернативный путь дыхания в листьях Rhodiola rosea L. и Ajuga reptans L.: возможная физиологическая роль // Физиология растений. 2001. Т. 48. С. 846—853.
- Шугаев А.Г., Выскребенцева Э.И., Шугаева Н.А. Сезонные изменения активности митохондриальных оксидаз в высечках из взрослых листьев сахарной свеклы, определяемые с помощью традиционных методов ингибиторного анализа // Физиология растений. 1998. Т. 45. С. 670—678.
- 17. *Тарчевский И.А.* Метаболизм растений при стрессе (избранные труды). Казань: Фэн, 2001. 448 с.
- Kikuzawa K. Leaf phenology as an optimal strategy for carbon gain in plants // Can. J. Bot. 1995. V. 73. P. 158–163.

- 19. *Radford P.J.* Growth analysis formulae their use and abuse // Crop Science. 1967. V. 7. P. 171–175.
- Møller I.M., Berczi A., Plas van der L.H.W., Lambers H. Measurement of the activity and capacity of the alternative pathway in intact plant tissue: identification of problems and possible solution // Physiol. Plant. 1988. V. 72. P. 642–649.
- 21. *Amthor J.S.* The McCree-de Wit-Penning de Vries-Thornley respiration paradigms: 30 years later // Ann. Bot. 2000, V. 86, P. 1–20.
- 22. *Bradford M.M.* A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding // Anal. Biochem. 1976. 72. P. 248–254.
- 23. *Москалев А.А., Новаковский А.Б.* Статистические методы в экологии с использованием R, Statistica, Excel и SPSS: учебное пособие. Сыктывкар: изд-во СыктГУ, 2014. 197 с.
- 24. Edwards J.M., Roberts T.H., Atwell B.J. Quantifying ATP turnover in anoxic coleoptiles of rice (*Oryza sativa*) demonstrates preferential allocation of energy to protein synthesis // J. Exp. Bot. 2012. V. 63. P. 4389–4402.
- 25. *Грабельных О.И.* Митохондриальные энергорассеивающие системы растений при действии низких температур. Автореф. дисс. докт. биол. наук. Иркутск: ФГБУН СИФИБР СО РАН, 2014. 47 с.
- 26. Гармаш Е.В., Малышев Р.В., Шелякин М.А., Голов-ко Т.К. Активность дыхательных путей и фонд неструктурных углеводов в листе зеленеющих проростков яровой пшеницы // Физиология растений. 2014. Т. 56. С. 382—387.
- 27. Гармаш Е.В., Головко Т.К. Влияние скорости роста ячменя, выращиваемого при разных температуре и обеспеченности минеральным питанием, на активность альтернативного пути дыхания растений // Физиология и биохимия культурных растений. 2011. Т. 43. С. 113—121.
- 28. Шугаева Н.А., Выскребенцева Э.И., Орехова С.О., Шугаев А.Г. Влияние водного дефицита на дыхание проводящих пучков листового черешка сахарной свеклы // Физиология растений. 2007. Т. 54. С. 373—380.
- 29. Sayed M.A., Umekawa Y., Kikukatsu I. Metabolic interplay between cytosolic phosphoenolpyruvate carboxylase and mitochondrial alternative oxidase in thermogenic skunk cabbage, Symplocarpus renifolius // Plant Signaling & Behavior. 2016. V. 11. № 11: e1247138. http://dx.doi.org/10.1080/15592324.2016.1247138.
- 30. Shane M.W., Cramer M.D., Funayama-Noguchi S., Cawthray G.R., Millar A.H., Day D.A., Lambers H. Developmental physiology of cluster-root carboxylate synthesis and exudation in Harsh Hakea. Expression of phosphoenolpyruvate carboxylase and the alternative oxidase // Plant Physiol. 2004. V. 135. P. 549–560.