_____ ЭКСПЕРИМЕНТАЛЬНЫЕ ____ СТАТЬИ

УДК 581.1

ФОТОСИНТЕЗ, ДЫХАНИЕ И ТЕПЛОВАЯ ДИССИПАЦИЯ ЭНЕРГИИ В ЛИСТЬЯХ ДВУХ ФЕНОТИПОВ *Plantago media* L. В ПРИРОДНЫХ УСЛОВИЯХ

© 2022 г. Т. К. Головко^{*a*}, И. Г. Захожий^{*a*}, М. А. Шелякин^{*a*}, *, Е. В. Силина^{*a*}, Г. Н. Табаленкова^{*a*}, Р. В. Малышев^{*a*}, И. В. Далькэ^{*a*}

^аИнститут биологии Коми научного центра Уральского отделения Российской академии наук, Сыктывкар, Россия

*e-mail: shelyakin@ib.komisc.ru Поступила в редакцию 18.01.2022 г. После доработки 14.02.2022 г. Принята к публикации 15.02.2022 г.

Способность поддерживать баланс между поглощенной и используемой в фотосинтезе световой энергией является ключевой составляющей адаптации растений к условиям среды. Исследовали суточные изменения фотосинтеза, дыхания, термальной диссипации энергии и активности антиоксидантной системы у Plantago media L. (подорожник средний), произрастающего на открытом склоне (С-растения) и в условиях естественного затенения в травостое (Т-растения). Скорость нетто-фотосинтеза (Pn) листьев была максимальной в ранние утренние часы и составляла 2.6 и 9.2 мкмоль CO₂/м² с у Т-и С-растений, соответственно. В дневное время величина Pn С-растений существенно снижалась (в 3 раза) одновременно с уменьшением устьичной проводимости на фоне повышения инсоляции и температуры воздуха. Изменения Pn листьев Т-растений были менее выражены и слабо зависели от проводимости устьиц. Листья Т-растений содержали больше растворимых сахаров, а листья С-растений накапливали больше крахмала. Величина коэффициента нефотохимического тушения флуоресценции хлорофилла а ФСІІ (NPQ) у листьев С-растений в дневные часы достигала 2.6 отн. ед. и была в 4-5 раз выше, чем у Т-растений. Величина соотношения цитохромного (ЦП) и альтернативного пути (АП) дыхания у листьев С-растений в утренние и вечерние часы составляла около 1, а днем снижалась синхронно с повышением NPO до 0.4. Соотношение ЦП/АП у листьев Т-растений оставалось постоянным в течение суток и равнялось 1.4, что свидетельствует о более высокой энергетической эффективности дыхания затененных растений, произрастающих в травостое. Листья С-растений отличались повышенным содержанием супероксидного анион-радикала и пероксида водорода, а также уровнем активности антиоксидантных ферментов (супероксиддисмутазы и гваяколовой пероксидазы), контролирующих накопление активных форм кислорода (АФК). Полученные данные свидетельствуют о значимости скоординированного изменения активности энергодиссипирующих процессов и антиоксидантной системы для поддержания энергетического и редокс-баланса фототрофных тканей при долговременной адаптации растений к условиям среды и, прежде всего, к избыточной инсоляции.

Ключевые слова: *Plantago media*, антиоксидантные ферменты, дыхание, дыхательные пути, диссипация энергии, нефотохимическое тушение, флуоресценция хлорофилла, фотосинтез **DOI:** 10.31857/S0015330322060082

Способность того или иного генотипа быть пластичным, то есть выражать различные фенотипические состояния, имеет особое значение для адаптации растений к условиям среды [1]. Многие виды растений формируют световые и теневые фенотипы, отличающиеся по анатомо-морфологическим признакам и функциональным свойствам. Это позволяет эффективно использовать световую энергию разной интенсивности и предотвращать развитие фотоокислительного стресса (ФОС) при избыточной инсоляции. В основе ФОС лежит нарушение баланса между поглощением и использованием лучистой энергии, что сопровождается повышенной генерацией активных форм кислорода и подавлением фотосинтеза [2]. АФК вызывают деструкцию компонентов фотосинтетического аппарата (ФСА) и ингибируют репарацию белков

Сокращения: АП – альтернативный, ЦП – цитохромный пути дыхания, С-растения – световые, Т-растения – теневые растения, Φ СА – фотосинтетический аппарат, Φ ОС – фотоокислительный стресс, NPQ – нефотохимическое тушение флуоресценции хлорофилла *а* Φ СІІ, Рп – нетто-фотосинтез, $V_{\rm cyt}$ – скорость цитохромного дыхания, $V_{\rm alt}$ – скорость альтернативного дыхания, SOD – супероксиддисмутаза, GPX – гваяколовые пероксидазы.

фотосистем [3]. Другими словами, фотоингибирование является следствием нарушения баланса между скоростью фотодеструкции и скоростью репарации повреждений ФСА, прежде всего ФСП.

Растения выработали различные способы защиты ФСА от фотоингибирования [4-7]. Большое значение отводят процессам тепловой диссипации части поглощенной световой энергии, активации циклического и псевдоциклического (вода-вода) транспорта электронов, усилению фотодыхания. В последнее время появляется все больше данных об участии митохондриального дыхания в поддержании энергетического и редокс-баланса фототрофных клеток [8, 9]. Показано, что вовлечение альтернативной оксидазы (АОХ), обеспечивающей ток электронов от НАД(Ф)Н и прямое восстановление O₂ до H₂O в митохондриальной ЭТЦ, предотвращает избыточную генерацию АФК и повышает устойчивость растений [10]. В условиях, способствующих развитию окислительного стресса, возрастает роль антиоксилантной системы (АОС). контролирующей про-/антиоксидантный гомеостаз и содержание АФК в клетке [11]. Однако функционирование клеточных механизмов как единого взаимодополняющего комплекса процессов, обеспечивающих поддержание редокс-баланса и защиту ФСА, далеко от полного понимания. Особенно это касается взаимодействия хлоропластных и митохондриальных энергодиссипирующих систем при адаптации растений к стрессу [12]. К этому следует добавить, что данные о влиянии света на вовлечение АОХ были получены преимущественно в кратковременных экспериментах с перенесением проростков или молодых растений с низкого на высокий свет [13, 14].

Целью работы было провести сравнительные исследования суточной динамики фотосинтеза, дыхания, тепловой диссипации энергии и про-/антиоксидантного статуса листьев *Plantago media* L. в местообитаниях с контрастным режимом инсоляции, чтобы выявить роль физиологических механизмов при долговременной адаптации к условиям произрастания.

МАТЕРИАЛ И МЕТОДЫ

Объект исследования и характеристика местообитаний растений. Plantago media L. (подорожник средний) — многолетнее травянистое летнезеленое стержнекорневое растение семейства Plantaginaceae с широким ареалом. На европейском северо-востоке России встречается в разреженных лесах, на пойменных лугах, в пределах трансформированных территорий, на песчаных почвах и выходах известняков. Следует отметить, что видам рода Plantago присуща высокая генетическая и морфофизиологическая пластичность. Ранее нами было показано значение экологических факторов в адаптивной дифференциации фенотипов и в проявлении генетического полиморфизма растений *Plantago media* L. в природных условиях [15]. Это послужило основанием для выбора *P. media* в качестве модельного объекта данного исследования.

В статье представлены результаты полевых исследований на Южном Тимане в долине среднего течения р. Сойва (62°45' с.ш., 55°49' в.д.) в первой половине июля 2010-2014 гг. Ю. Тиман относится к Атлантико-Арктической области умеренного климатического пояса, характеризуется умеренно-континентальным климатом с продолжительной зимой, коротким и сравнительно теплым летом. Среднегодовая температура составляет -1.5° С, средняя температура самого теплого месяца июля +16°С. Продолжительность вегетационного периода около 130 дней. Сумма осадков за период активной вегетации составляет около 250 мм. Погодные условия в период проведения исследований (по данным открытого архива погоды www.rp5.ru) в целом соответствовали среднемноголетним значениям регионального климата.

Ценопопуляции *P. media* были локализованы на открытом, слабо заросшем осыпном склоне от водораздела к надпойменной террасе (С-растения) и у подошвы склона в густом травостое (Т-растения). Почвы в местообитаниях растений сформированы на щебнисто-мелкоземистой толще с близким подстиланием крупных обломков карбонатных пород. Гумусово-аккумулятивный горизонт почвы у подножья склона сплошной, на склоне — слаборазвитый, прерывистый.

Микроклиматические условия в местообитаниях изучали с помощью портативной метеостанции LI-1400 ("LI-COR", США). На уровне листьев регистрировали интенсивность фотосинтетически активной радиации (ФАР), температуру и влажность воздуха. В безоблачные дни приток солнечной радиации к растениям на открытом склоне был почти на порядок больше, чем получали растения в травостое (рис. 1а). Различия в световом режиме местообитаний отмечали во все годы проведения исследований, независимо от того, как складывались погодные условия вегетационного периода. Следует также отметить, что высокая инсоляция на склоне приводила к более сильному прогреванию воздуха и заметному снижению его влажности (рис. 1б, в).

Флуоресценция хлорофилла *а* **ФСІІ**. Оценку параметров ФСІІ проводили с помощью портативного флуориметра РАМ-2100 ("Walz", Германия) на средней части листовой пластинки в полевых условиях. Фоновый (F_0) и максимальный (F_m) уровни флуоресценции измеряли у листьев, предварительно выдержанных 30–40 мин в темноте. Величины стационарного (F_t), фонового (F'_0) и максимального (F'_m) уровня флуоресценции измеряли у листьев, адаптированных к действующему

Рис. 1. Суточная динамика плотности потока фотосинтетически активной радиации (а), температуры (б) и относительной влажности воздуха (в) в местообитаниях растений *Plantago media* на открытом склоне (*I*) и под пологом травостоя (*2*). Представлены среднемноголетние данные для наиболее теплых безоблачных дней июля (2010–2014 гг.).

свету. Определения проводили в 20–30-кратной биологической повторности. Расчет показателей, характеризующих функциональное состояние ФСІІ и их интерпретацию, осуществляли согласно [16]. Максимальный (F_v/F_m) и реальный (Φ_{PSII}) квантовый выход фотохимической активности ФСІІ и коэффициент нефотохимического тушения (NPQ) находили по формулам и выражали в отн. ед.:

$$F_{\rm v}/F_{\rm m} = (F_{\rm m} - F_0)/F_{\rm m}$$
, (1)

$$\Phi_{\rm PSII} = (F'_{\rm m} - F_{\rm t}) / F'_{\rm m},$$
 (2)

NPQ =
$$(F_{\rm m} - F_{\rm m}')/F_{\rm m}'$$
. (3)

Скорость транспорта электронов через ФСІІ (мкмоль/м² с) рассчитывали как:

$$ETR = \Phi_{PSII} \times PPFD \times 0.5 \times 0.84, \tag{4}$$

где PPFD – плотность потока квантов ФАР (мкмоль/ м² с), 0.84 — коэффициент поглощения листом падающего света, 0.5 — коэффициент, отражающий эквивалентное распределение энергии возбуждения между ФСІ и ФСІІ.

СО₂-газообмен и транспирация листьев. Измерения проводили с помощью портативной газометрической системы ADC LCPro+ ("ADC BioScientific", Англия) при естественной освещенности и температуре. Листья заключали в камеру-прищепку на 2-3 мин. По данным встроенного в камеру датчика в полуденные часы температура листа в камере превышала температуру воздуха на склоне и в травостое в среднем на 5 и 3°С, соответственно. Данные о скорости нетто-поглощения CO₂ (Pn) и транспирации (E) получали в автоматическом режиме по разнице между показаниями прибора с листом и без листа в камере.

Скорость нетто-поглощения CO₂ рассчитывали по формуле:

$$Pn = u_s \times \Delta c, \tag{5}$$

где u_s — скорость тока воздуха в листовой камере, моль/м² с, Δc — разница в концентрации CO₂ в камере без листа и с листом, мкмоль/моль.

Скорость транспирации листа (Е) находили по формуле:

$$\mathbf{E} = \left(\Delta e \times u_s\right) / p, \tag{6}$$

где Δe — разница между давлением водяного пара в камере с листом и без него, мбар; u_s — скорость тока воздуха в листовой камере, моль/м² с; p — атмосферное давление, мбар.

Скорость прохождения водяного пара через устьица (устьичную проводимость, gs) рассчитывали как величину, обратную устьичному сопротивлению (gs = 1/rs). Устьичное сопротивление, в свою очередь, находили по формуле:

$$rs = ((w - wm)/E) - rb,$$
(7)

ФИЗИОЛОГИЯ РАСТЕНИЙ том 69 № 6 2022

где w и wm — концентрация насыщенного водяного пара в камере с листом и без него, моль/моль; E — скорость транспирации листа, моль H_2O/m^2 с; rb — сопротивление пограничного слоя для водяного пара, m^2 с/моль H_2O .

Определения проводили в 4–5-кратной биологической повторности.

Скорость дыхания и дыхательных путей. Скорость дыхания листьев определяли по поглощению O₂ при 20°C полярографически с помощью Oxytherm system ("Hansatech Inst.", Англия). Высечки средней части свежесобранных листьев помещали в реакционный сосуд, содержащий буферный раствор HEPES ("Helicon", Россия) (50 мМ, рН 7.2). В процессе измерения образцы находились при постоянном перемешивании. Скорость отдельных дыхательных путей определяли с добавлением специфических ингибиторов, оптимальные концентрации которых были подобраны в предварительных экспериментах. В качестве ингибитора альтернативной оксидазы (АОХ) использовали 8 мМ раствор салицилгидроксамовой кислоты (СГК) ("Lancaster", Англия). Активность цитохромоксидазы подавляли 2 мМ раствором КСN ("Sigma", США). Скорость поглощения кислорода выражали как сумму отдельных компонент и выражали в нмоль О₂/г сухой массы мин:

$$V_{\rm t} = V_{\rm alt} + V_{\rm cvt} + V_{\rm res},\tag{8}$$

где V_t — общее дыхание; V_{alt} — альтернативное дыхание, подавляемое ингибитором альтернативной оксидазы СГК, V_{cyt} — цианидчувствительное (цитохромное) дыхание; V_{res} — остаточное дыхание, регистрируемое в присутствии ингибиторов альтернативного (АП) и цитохромного дыхательных путей (ЦП). Определения проводили в 5—8-кратной биологической повторности.

Энергетическую эффективность дыхания листьев оценивали по коэффициенту эффективности окисления глюкозы для образования АТФ ($Y_{AT\Phi/глюкоза}$) с учетом вклада ЦП и АП в дыхание, используя коэффициенты, приводимые в работе [17]. Предварительно количество поглощенного в дыхании O_2 выражали в эквивалентах дыхательного субстрата. Согласно балансовому уравнению поглощение 1 мг O_2 в дыхании эквивалентно окислению 0.937 мг глюкозы.

Отбор проб растительного материала для биохимического анализа. Для определения содержания углеводов, продуктов перекисного окисления липидов и активности антиоксидантных ферментов отбирали по одному функционально зрелому листу из средней части розетки 15–20 растений, образцы фиксировали в жидком азоте и хранили при температуре –78°C.

Определение содержания растворимых углеводов и крахмала. Растворимые сахара экстрагировали

70% этиловым спиртом. Экстракты упаривали до водного остатка и очищали от сопутствующих примесей методом твердофазной экстракции на концентрирующих патронах Диапак-амин ("Био-ХимМак", Россия). Хроматографический анализ углеводов проводили на колонке 250 × 4 мм Диасфер-130-АМИН, зернение 6 мкм ("БиоХим-Мак", Россия), используя в качестве детектора рефрактометр. Элюент: ацетонитрил/вода в соотношении 70/30 по объему, скорость элюирования -2.0 см³/мин. При построении градуировочной зависимости в качестве стандарта применяли коммерческий препарат глюкозы ("Sigma", США). Содержание крахмала определяли спектрофотометрическим методом после реакции водного раствора полисахарида с йодом в присутствии йодистого калия.

Измерение показателей про-/антиоксидантного статуса листьев. Активность перекисного окисления липидов оценивали по содержанию продуктов, реагирующих с тиобарбитуровой кислотой (ТБК-РП) [18]. Количество ТБК-РП рассчитывали с учетом коэффициента экстинкции после вычитания неспецифического поглощения при 600 нм. Содержание H_2O_2 определяли с использованием ксиленолового оранжевого [19]. Проверку на специфичность проводили по ингибированию образования H_2O_2 при добавлении каталазы ("Sigma", США). Содержание супероксидного

анион-радикала (O_2^-) оценивали по его способности восстанавливать нитросиний тетразолий (HCT) [20]. Для проверки специфичности гене-

рации O₂⁻⁻ в пробы добавляли коммерческий препарат супероксиддисмутазы ("Sigma", США), ин-

гибирующий генерацию O_2^- на 80-90%.

Активность супероксиддисмутазы (SOD) определяли по способности фермента подавлять фотохимическое восстановление HCT [21]. Активность гваяколпероксидазы (GPX) определяли по методу, основанному на реакции окисления гваякола до окрашенного соединения тетрагваякола [22]. Содержание растворимого белка анализировали по Bradford [23], используя в качестве стандарта БСА. Процедуры выделения белка проводили при температуре 4°С.

Анатомо-морфологические показатели определяли на поперечных срезах из средней части пластинки функционально зрелых свежесобранных листьев (10 листьев, по одному с растения). Срезы заключали в глицерин и просматривали под микроскопом Axiovert 200 M ("Carl Zeiss", Германия). Морфометрические показатели тканей и клеток оценивали при анализе изображений с помощью программы Carl Zeiss Vision ("Carl Zeiss", Германия). Удельную поверхностную плотность листовой пластинки (УППЛ) определяли у листьев, отобранных с 30 растений в каждом местообитании.

Показатель	С-растения	Т-растения
Число рядов клеток столбчатого мезофилла, шт.	$2.5\pm0.1^{\mathrm{a}}$	$2.1 \pm 0.1^{\mathrm{b}}$
Высота клеток столбчатого мезофилла, мкм	$53.9 \pm 1.6^{\mathrm{a}}$	$45.2\pm2.0^{\mathrm{b}}$
Ширина клеток столбчатого мезофилла, мкм	29.2 ± 1.1^{a}	34.1 ± 1.3^{b}
Толщина столбчатого мезофилла, мкм	112 ± 5^{a}	83 ± 3^{b}
Толщина листа, мкм	$258\pm3^{\mathrm{a}}$	$238 \pm 3^{\mathrm{b}}$
УППЛ, г/дм ²	$0.81\pm0.02^{\mathrm{a}}$	$0.51\pm0.02^{\mathrm{b}}$

Таблица 1. Характеристика листьев *Plantago media* в местообитаниях с высокой (С-растения) и низкой освещенностью (Т-растения)

Примечание. Разные надстрочные символы обозначают статистическую значимость различий между С- и Т-растениями (ANOVA, критерий Дункана, *P* ≤ 0.05).

Статистическая обработка данных. Статистическую обработку данных осуществляли с использованием программы Statistica 10 ("StatSoft Inc.", США). Значимость различий между средними величинами измеряемых показателей оценивали с применением однофакторного дисперсионного анализа ANOVA (критерий Дункана). Нормальность распределения данных оценивали с помощью критерия Шапиро-Уилкса. Расчеты осуществляли при заданном уровне значимости $P \le 0.05$. В таблицах и на рисунках приведены средние арифметические значения и их стандартные ошибки.

РЕЗУЛЬТАТЫ

Анатомо-морфологическая характеристика листьев

Во время проведения исследований (первая декада июля) растения *Р. media* имели хорошо сформированную розетку с 5–8 листьями и находились в фазе цветения. Растения, произрастающие на открытом, хорошо освещенном склоне имели более толстые листовые пластинки. Толщина столбчатого мезофилла листьев С-растений составляла в среднем 112 мкм, что на четверть больше по сравнению с Т-растениями (табл. 1). Листья растений, обитающих в густом травостое, были тоньше и характеризовались более низкой величиной показателя удельной поверхностной плотности (УППЛ).

Содержание растворимых углеводов и крахмала

В составе растворимых углеводов листьев *P. media* были идентифицированы моносахара (глюкоза, фруктоза) и дисахара (сахароза и мальтоза). Моносахара составляли 90–95% фонда растворимых углеводов (табл. 2). В составе моносахаров доминировала глюкоза, на ее долю приходилось около 95%. Содержание глюкозы в листьях Т-растений было выше, чем в листьях С-растений. При этом количество глюкозы в листьях растений из обоих местообитаний увеличивалось к вечеру. Концентрация крахмала в листьях С-растений значимо не изменялась в течение суток и составляла в среднем 30 мг/г сухой массы. Содержание крахмала в листьях Т-растений в первую половину дня было ниже в 2 раза, чем в листьях С-растений. К вечеру оно повышалось более чем в 3.5 раза и достигало 5% от сухой массы листьев, но в течение ночи быстро снижалось. По сравнению с листьями Т-растений, соотношение крахмал/глюкоза в листьях С-растений было существенно выше, особенно в утренние и ночные часы.

Про-/антиоксидантный статус листьев

Листья С-растений содержали в среднем на 15-30% больше O_2^- и H_2O_2 (рис. 2). Различия в содержании АФК были заметны уже в утренние часы и сохранялись вплоть до наступления ночи. Максимум накопления АФК отмечали в полуденные часы. Содержание продуктов перекисного окисления липидов изменялось в течение суток в сходной манере. Листья С-растений накапливали в среднем на 10% больше ТБК-РП, чем листья Т-растений.

Уровень активности SOD и GPX был достоверно (в среднем на 15–20%) выше у С-растений, чем Т-растений (рис. 3). Максимум активности антиоксидантных ферментов у С-растений отмечали в дневные часы. В листьях Т-растений суточная динамика активности SOD и GPX была выражена слабо.

СО2-газообмен и транспирация листьев

Результаты полевых определений СО₂-газообмена листьев *P. media* позволили сопоставить растения из разных местообитаний по активности процессов ассимиляции и транспирации (табл. 3). Наибольшую скорость нетто-фотосинтеза (Pn) листьев С-растений регистрировали в ранние

Время суток, ч	Моносахариды, мг/г	Дисахариды, мг/г	Глюкоза, мг/г	Крахмал, мг/г	Крахмал/Глюкоза
	·	C-pac	гения		·
6:00	$85.7 \pm 2.0^{b*}$	7.0 ± 2.3^{a}	$83.5\pm4.5^{\mathrm{b}*}$	$27.5 \pm 2.6^{a*}$	0.33
14:00	$95.1 \pm 3.8^{c*}$	$9.2\pm0.3^{\mathrm{a}}$	$93.5 \pm 4.9^{c*}$	$35.2 \pm 5.2^{a*}$	0.38
18:00	$104.7 \pm 2.8^{a*}$	$8.4 \pm 0.6^{\mathrm{a}}$	$103.8 \pm 3.7^{a*}$	$24.1 \pm 6.0^{a*}$	0.23
23:00	$104.0 \pm 1.2^{a*}$	$6.5\pm0.4^{a*}$	$103.7 \pm 2.2^{a*}$	$26.5\pm5.7^{\rm a}$	0.26
	I	T-pac	гения	I	1
6:00	119.9 ± 4.3^{a}	$7.1 \pm 0.7^{\mathrm{a}}$	116.6 ± 9.6^{a}	14.1 ± 0.6^{a}	0.12
14:00	111.5 ± 2.3^{a}	$7.8\pm0.8^{\mathrm{a}}$	$108.8\pm3.6^{\rm a}$	12.8 ± 3.2^{a}	0.12
18:00	$172.6 \pm 9.5^{\circ}$	10.4 ± 0.6^{b}	$166.9 \pm 21.7^{\circ}$	$50.8\pm7.6^{\rm c}$	0.31
23:00	138.7 ± 1.2^{b}	7.9 ± 0.1^{a}	133.8 ± 1.0^{b}	21.3 ± 3.1^{b}	0.16

Таблица 2. Суточная динамика содержания растворимых углеводов и крахмала в листьях *Plantago media* из местообитаний с высокой (С-растения) и низкой освещенностью (Т-растения)

Примечание. Разные надстрочные символы обозначают статистическую значимость различий в течение дня, звездочкой отмечены значимые различия между С- и Т-растениями (ANOVA, критерий Дункана, *P* ≤ 0.05).

Таблица 3. Суточная динамика нетто-поглощения CO_2 (Pn), транспирации (E), устьичной проводимости (g_s) и эффективности использования воды (WUE) у листьев *Plantago media* из местообитаний с высокой (С-растения) и низкой освещенностью (Т-растения)

Время суток, ч	Рп, мкмоль CO ₂ /м ² с	Е, ммоль H_2O/m^2 с	g_s , моль $H_2O/m^2 c$	WUE, ммоль CO ₂ /моль H ₂ O
		С-растения		
4-6	$9.23 \pm 0.36^{c*}$	$4.34 \pm 0.23^{b*}$	$0.30 \pm 0.01^{c*}$	$2.92 \pm 0.20^{a*}$
10-12	$3.11 \pm 0.34^{a*}$	$6.55 \pm 0.27^{c*}$	$0.15 \pm 0.01^{b*}$	$0.70\pm0.10^{\mathrm{b}}$
15-17	$2.60 \pm 0.30^{a*}$	$1.02 \pm 0.04^{a*}$	$0.07 \pm 0.003^{a*}$	$2.53\pm0.30^{\rm a}$
20-22	$-1.45 \pm 0.21^{b*}$	$0.60 \pm 0.07^{a*}$	$0.09 \pm 0.01^{a*}$	_
Т-растения				
4-6	$2.62\pm0.27^{\mathrm{a}}$	$1.67\pm0.08^{\mathrm{b}}$	0.21 ± 0.02^{c}	$1.57\pm0.3^{\mathrm{a}}$
10-12	$2.22\pm0.22^{\mathrm{a}}$	$2.55\pm0.18^{\circ}$	$0.08\pm0.01^{\mathrm{b}}$	$0.93\pm0.5^{\mathrm{a}}$
15-17	1.13 ± 0.35^{c}	$0.37 \pm 0.02^{\mathrm{a}}$	$0.03\pm0.002^{\mathrm{a}}$	$3.39 \pm 1.3^{\mathrm{b}}$
20-22	$-1.2\pm0.19^{\mathrm{b}}$	$0.45\pm0.06^{\rm a}$	0.07 ± 0.004^{ab}	_

Примечание. Разные надстрочные символы обозначают статистическую значимость различий в течение дня, звездочкой отмечены значимые различия между С- и Т-растениями (ANOVA, критерий Дункана, *P* ≤ 0.05).

утренние часы при умеренной освещенности и температуре. К полудню, несмотря на повышение плотности светового потока, скорость Рп снижалась в 3 раза. Низкий уровень Рп наблюдался и после полудня. В вечерние часы скорость Рп падала вслед за уменьшением естественной освещенности. С наступлением сумерек (после 20 ч) отмечали полное прекращение видимого поглощения CO₂. Скорость Pn листьев Т-растений в утренние часы была в 3–4 раза ниже, чем у С-растений, оставалась стабильной в первой половине дня, затем снижалась по мере уменьшения освещенности. Переход листьев Т-растений от поглощения к выделению CO₂ отмечали на 1-1.5 ч раньше вследствие более быстрого падения освещенности под пологом травостоя, чем на открытом склоне.

В дневные часы листья С-растений транспирировали в 2.5 раза интенсивней, чем листья Трастений, к ночи, когда величина Е падала, различия сглаживались. В обоих местообитаниях максимум Е отмечали в околополуденные часы (табл. 3) на фоне возрастания освещенности, температуры и снижения относительной влажности воздуха (рис. 1). Устьичная проводимость (g_s) для водяных паров в ранние утренние часы составляла 0.2 и 0.3 моля H₂O/м² с у Т- и С-растений, соответственно, и снижалась существенно в течение всего светового дня. С прекращением видимого поглощения СО2 отмечали тенденцию к повышению этого показателя. Листья С-и Т-растений отличались по эффективности использования воды при фотосинтезе (WUE). В ранние утренние часы величина WUE, характеризующая соотношение скорости Pn и E, у листьев С-растений была выше на 45%, чем у листьев Т-растений, что обусловлено больше разницей в фотосинтетической активности, чем в интенсивности транспирации. К полудню, со снижением скорости Pn и увеличением E, величина WUE у C-растений уменьшалась в 4 раза, у листьев Т-растений, сохраняющих более стабильный фотосин-

Рис. 2. Суточная динамика содержания продуктов перекисного окисления липидов (а), супероксид-анион радикала (б) и H_2O_2 (в) в листьях *Plantago media*. *1* – С-растения, *2* – Т-растения. Латинские буквы обозначают статистически значимые изменения величины показателя в течение суток, звездочкой отмечены достоверные различия между С- и Т- растениями в разное время суток (ANOVA, критерий Дункана, n = 3, $P \le 0.05$).

Рис. 3. Суточная динамика активности супероксиддисмутазы (а) и гваяколовой пероксидазы (б) в листьях *Plantago media*. 1 - C-растения, 2 - T-растения. Латинские буквы обозначают статистически значимые изменения величины показателя в течение суток, звездочкой отмечены достоверные различия между С- и T-растениями в разное время суток (ANOVA, критерий Дункана, n = 3, $P \le 0.05$).

тез, в 1.7 раза. Во второй половине дня отмечали повышение WUE у обоих типов растений в 3.6 раза, что было больше связано со снижением скорости транспирации, чем с изменением Pn.

Показатели флуоресценции хлорофилла

Результаты полевых измерений максимальной фотохимической эффективности ФСІІ листьев С- и Т-растений *P. media* показали, что в ранние утренние часы величина F_v/F_m составляла около 0.8 отн. ед. (рис. 4). Днем значения F_v/F_m были на 10–25% ниже и составляли 0.62 и 0.71 отн. ед. у С-и Т-растений, соответственно. С наступлением сумерек величина F_v/F_m возрастала до 0.8 отн. ед.

В дневной период, на фоне высокой освещенности и температуры воздуха значительная часть световой энергии, поглощенной листьями С-растений, рассеивалась в виде теплового излучения. Показатель нефотохимического тушения флуоресценции (NPQ) был равен 2.3–2.6 отн. ед. При этом величина реального квантового выхода (Φ_{PSII}) не превышала 0.22 отн. ед. У листьев Т-растений, получающих в 5–10 раз меньше света, величина Φ_{PSII} была в 3 раза больше, а NPQ в 5 раз меньше, чем у С-растений. Скорость транспорта электронов (ETR) через ФСП С-растений в дневные часы при высокой освещенности была в 3 раза выше по сравнению с Т-растениями и составляла 80-100 мкмоль/м² с.

Дыхание и вовлечение энергетически мало эффективного альтернативного пути

Листья Т-растений дышали интенсивней, чем листья С-растений, особенно в первой половине

ФИЗИОЛОГИЯ РАСТЕНИЙ том 69 № 6 2022

Рис. 4. Суточная динамика изменений максимального (а) и реального (б) квантового выхода ФСП, коэффициента нефотохимического тушения (в) и скорости транспорта электронов (г) в ФСП листьев *Plantago media.* 1 - C-растения, 2 - T-растения. Разные латинские буквы обозначают статистическую значимость различий изменения показателей в течение суток, звездочкой отмечены статистически значимые различия показателей между С- и T-растениями в разное время суток (ANOVA, критерий Дункана, n = 30-50, $P \le 0.05$).

дня (табл. 4). К концу дня различия в скорости поглощения O₂ в листьях растений, произрастающих в разных условиях, заметно сглаживались, но оставались статистически значимыми. Снижение

дыхательной активности листьев было сильнее выражено у Т-растений. В ночные часы они поглощали O_2 с интенсивностью вдвое более низкой, чем в утреннее время.

Таблица 4. Суточная динамика общего (V_t), цитохромного (V_{cyt}), альтернативного (V_{alt}) и остаточного дыхания (V_{res}) листьев *Plantago media* из местообитаний с высокой (С-растения) и низкой освещенностью (Т-растения), нмоль O_2/r сухой массы мин

	Время суток, ч			
Параметр	6	10	14	22
	С-растения			
V _t	1399 ± 126 ^b *	$1483 \pm 95^{b*}$	$1116 \pm 33^{a*}$	$1035 \pm 36^{a*}$
V _{cyt}	$606 \pm 111^{b*}$	$364 \pm 71^{a*}$	$276 \pm 27^{a*}$	$421 \pm 41^{ab*}$
V _{alt}	$582 \pm 51^{ab*}$	$865 \pm 49^{\circ}$	$704 \pm 32^{b*}$	$445\pm79^{\mathrm{a}}$
V _{res}	$211 \pm 42^{bc*}$	$254 \pm 9^{c*}$	$135 \pm 8^{a*}$	169 ± 22^{ab}
$V_{\rm cyt}/V_{\rm alt}$	$1.1\pm0.3^{\mathrm{b}}$	$0.4 \pm 0.1^{a*}$	$0.4 \pm 0.1^{a*}$	$1.1\pm0.3^{\mathrm{b}}$
	Т-растения			
V _t	2413 ± 190^{b}	2533 ± 148^{b}	1534 ± 62^{a}	1275 ± 49^{a}
V _{cyt}	1137 ± 192^{b}	1159 ± 123^{b}	689 ± 44^{a}	594 ± 36^{a}
V _{alt}	$857\pm78^{\mathrm{b}}$	887 ± 96^{b}	536 ± 13^{a}	471 ± 30^{a}
V _{res}	$419 \pm 47^{\mathrm{bc}}$	$486 \pm 57^{\circ}$	309 ± 17^{ab}	$209\pm20^{\mathrm{a}}$
$V_{\rm cyt}/V_{\rm alt}$	$1.4 \pm 0.4^{\mathrm{a}}$	1.4 ± 0.3^{a}	1.3 ± 0.1^{a}	1.3 ± 0.1^{a}

Примечание. Разные надстрочные символы обозначают статистическую значимость различий изменения показателей в течение суток, звездочкой отмечены статистически значимые различия показателей между С- и Т-растениями (ANOVA, критерий Дункана, $P \le 0.05$).

Рис. 5. Суточная динамика относительного вклада цитохромного (1), альтернативного (2) и остаточного (3) дыхания в общее поглощение O_2 листьев С-растений (а) и T-растений *Plantago media* (б). Разные латинские буквы обозначают статистически значимые изменения величины показателя в течение суток, звездочкой отмечены достоверные различия между С- и T-растениями в разное время суток (ANOVA, критерий Дункана, n = 4-6, $P \le 0.05$).

Скорость дыхания по цитохромному пути ($V_{\rm cvt}$) в листьях С-растений в дневные часы была в среднем в 1.5 раза меньше, чем утром и вечером, а вклад цитохромного пути (ЦП) в общее дыхание не превышал 25% (рис. 5). Динамика изменения скорости дыхания по альтернативному пути (V_{alt}) имела противоположный характер. Величина V_{alt} возрастала в дневные часы, вклад альтернативного пути (АП) в общее дыхание достигал 60%. У листьев Т-растений динамика изменения V_{сvt} была сходна с таковой для V_t . Вклад ЦП в общее погло-щение O_2 варьировал около 45%. Величина V_{alt} изменялась в сходной манере, а вклад АП в общее дыхание составлял в среднем 35%. Независимо от условий произрастания растений, на долю остаточного дыхания (V_{res}) приходилось в среднем 15-17% общего поглощения О2.

Несмотря на существенные изменения скорости дыхания, соотношение $V_{\rm cyt}/V_{\rm alt}$ в листьях Т-растений в течение суток оставалось практиче-

ски постоянным и составляло 1.3 (табл. 4). Подавление скорости цитохромного дыхания и увеличение альтернативного в дневные часы приводило к тому, что у листьев С-растений величина соотношения $V_{\rm cyt}/V_{\rm alt}$ днем снижалась до 0.4 и была в 2.5 раза меньше, чем утром и вечером.

ОБСУЖДЕНИЕ

Нами исследованы микроклиматические условия в природных местообитаниях (рис. 1) и функциональные показатели, характеризующие энергопластический обмен растений *P. media*, длительно адаптированных к разному уровню инсоляции. Под прямыми солнечными лучами на открытом склоне юго-восточной экспозиции воздух прогревался сильнее, а относительная влажность воздуха была заметно ниже, чем в пологе травостоя, где обитали T-растения.

Листья С-растений получали на порядок больше света, чем Т-растений, и отличались по суточной динамике и активности фотосинтеза (табл. 3). Максимальные величины нетто-поглощения СО₂ у листьев С-растений отмечали в утреннее время при умеренной освещенности, температуре и сравнительно высокой относительной влажности воздуха. Значительное подавление Pn в дневные часы при высокой плотности светового потока и повышенной температуре было обусловлено снижением устьичной проводимости, что подтверждается наличием статистически значимой положительной связи между этими показателями (r = 0.68, P < 0.01). Очевидно, что листья С-растений не могли полностью реализовать в фотосинтезе доступную им световую энергию из-за необходимости экономить воду. В этих условиях закрытие устьиц, необходимое для предотвращения потери воды при транспирации, ограничивает диффузию СО2 в клетки мезофилла. Временное повышение транспирации в околополуденные часы (10-12 ч) мы связываем с повышением освещенности и температуры листьев. Анализ совокупности данных суточных измерений показывает, что зависимость Е от g была слабой, но статистически значимой (*r* = 0.32, *P* < 0.05).

Листья Т-растений активно фотосинтезировали в первой половине дня, однако скорость Pn у них была существенно ниже, чем у С-растений, видимо из-за слабого поступления ФАР. Анализ показал, что зависимость Pn от g_s у листьев Т-растений была довольно слабой (r = 0.29, P < 0.01). В то же время имела место корреляция между E и g_s (r = 0.46, P < 0.05).

В целом, полевые исследования показали, что устьичная проводимость листьев *P. media* снижалась в течение светлого периода суток и была в 1.5–2 раза выше у С-растений, чем у Т-растений. Изменения скорости видимого фотосинтеза и

транспирации в той или иной мере коррелировали с g_s. Полученные нами значения g_s, Е и Рп и диапазон их изменения под воздействием внешних факторов согласуются с имеющимися в литературе данными для видов рода *Plantago* [24, 25]. Показано, что скорость Pn растений P. major снижалась с 8 до 1.5 мкмоль CO₂/м² с при уменьшении водного потенциала почвы от -0.05 до -0.2 МРа [24]. При нормальном водоснабжении максимум Pn наблюдался при температуре около 20°С. Повышение температуры до 35°С приводило к существенному подавлению фотосинтеза, от 8 до 2 мкмоль CO_2/M^2 с. В опытах с растениями *P. depressa*, вырашиваемыми в контролируемых условиях, величины g_s, E и Pn листьев изменялись в зависимости от водоснабжения в пределах 0.13-0.19 моль H₂O/м² с, 2.7–4.1 ммоль H_2O/m^2 с и 4.1–7.4 мкмоль CO_2/m^2 с, соответственно [25].

Снижение потенциальной и реальной фотохимической эффективности Φ CII C-растений на фоне подавления ассимиляции CO₂ свидетельствует о стрессорном эффекте сочетанного воздействия высокого уровня освещенности и супероптимальной температуры на Φ CA [4, 26]. Изменения этих показателей у затененных растений были выражены гораздо слабее. Эффекты избыточной инсоляции на фотохимическую эффективность Φ CA (рис. 4) и ассимиляцию CO₂ (табл. 3) были обратимыми и не вызывали хронического фотоингибирования листьев C-растений, что может быть обусловлено наличием эффективной системы защиты и репарации белковых структур Φ CII [27, 28].

Одним из основных механизмов защиты ФСА растений от перевосстановления ЭТЦ и генерации избыточного количества АФК считают нефотохимическое тушение энергии возбуждения [29, 30]. Согласно полученным нами данным, величина NPQ листьев С-растений была в 4–5 раз больше, чем Т-растений. В развитии NPQ выделяют несколько компонент, наиболее значима компонента, отражающая участие виолаксантинового цикла (ВКЦ) [31]. Индикатором состояния ВКЦ служит уровень деэпоксидации пигментов цикла (DEPS). Ранее нами было показано, что величина DEPS у листьев С-растений *Р. media* в полуденное время достигала 70%, тогда как у Т-растений была в 1.5 раза меньше [32]. Это указывает на роль теплового рассеивания поглощенной световой энергии в предотвращении развития ФОС и деструкции ФСА С-растений в условиях высокого притока ФАР и теплового излучения. Использование энергии ФАР в процессе фотосинтетической фиксации СО₂ сопряжено с линейным транспортом электронов в ЭТЦ хлоропластов, поддерживающим генерацию НАДФН и АТФ. Значительное уменьшение скорости нетто-ассимиляции CO₂ в

листьях С-растений *Р. media* в дневные часы (табл. 3) сокращает потребление АТФ и восстановителя в цикле Кальвина-Бенсона, что по принципу обратной связи может влиять и на эффективность использования поглощенной световой энергии в первичных процессах фотосинтеза. Данные на рис. 4б свидетельствуют о низкой фотохимической эффективности ФСІІ в дневные часы.

Сопоставление интенсивности нетто-поглощения CO_2 (табл. 3) и скорости транспорта электронов через ФСІІ (рис. 4г) показывает, что трехкратное увеличение ЕТК у С-растений к 12 ч (в сравнении с ранним утром) сопровождается снижением Рп за этот же период на 65%. Полученные данные позволяют предположить, что соотношение линейного (сопряженного с фиксацией CO_2) транспорта электронов и тока электронов на альтернативные акцепторы у С-растений сдвигалось в пользу альтернативных путей (циклический транспорт электронов в ФСІІ, псевдоциклический транспорт электронов, фотодыхание). Для Т-растений отмечена сходная, хотя и значительно менее выраженная тенденция.

Сопоставление параметров газообмена, показателей флуоресценции хлорофилла и углеводного статуса листьев наводит на мысль о возможном биохимическом ограничении фотосинтеза. Как известно, сигналом для подавления фотосинтеза может служить увеличение соотношения крахмал/глюкоза [33]. По нашим данным (табл. 2) величина этого соотношения у С-растений была в 2–3 раза больше, чем у Т-растений. Вполне вероятно, что повышенное накопление крахмала в листьях С-растений является следствием снижения их экспортной функции под воздействием внешних условий (высокая инсоляция в сочетании с повышением температуры и дефицитом влаги).

Мы выявили, что листья Т-растений характеризовались более высокой дыхательной активностью и величиной соотношения $V_{\rm cvt}/V_{\rm alt}$, особенно в дневные часы. Вклад АП в дыхание листьев Т-растений не превышал 35%, что типично для растений в нормальных условиях, тогда как у С-растений достигал 65% (рис. 5). Вовлечение энергетически мало эффективного АП способствует снижению восстановленности пула убихинона при насыщении ЦП, регулирует баланс между углеводным метаболизмом и электронным транспортом, на сильном свету способствует разгрузке ЭТЦ хлоропластов, окисляя восстановительные эквиваленты, поступающие из хлоропластов прямо в митохондрии в условиях ограниченной ассимиляции СО₂ [9, 10, 12, 34, 35]. Можно полагать, что вовлечение АП дыхания на фоне дневной депрессии нетто-поглощения CO₂ в листьях С-растений P. media оптимизирует состояние энергетических пулов хлоропластов (АТ Φ , НАДФН) и углеродный баланс фотосинтезирую-

Рис. 6. Энергетическая эффективность дыхания (Y, моль ATФ/моль глюкозы) в листьях C-растений (*1*) и T-растений (*2*) *Plantago media*. Разные латинские буквы обозначают статистическую значимость различий изменения показателя в течение суток, звездочкой отмечены достоверные различия между C- и T-растениями в разное время суток (ANOVA, критерий Дункана, n = 4-6, $P \le 0.05$).

щих клеток, уменьшает опасность избыточной генерации АФК.

Однако вовлечение АП снижает энергетическую эффективность дыхания (ЭЭД), поскольку ток электронов через АОХ минует два участка сопряжения с генерацией мембранного потенциала и синтеза АТФ [10]. Согласно расчетам, представленным в работе Amthor [17], выход AT Φ при полном окислении моля глюкозы (УАТФ/глюкоза) в дыхании по основному (цитохромному) пути составляет 29 молей (ранее считалось 36 молей), а при дыхании по АП –11 молей. Мы использовали эту информацию для оценки ЭЭД листьев P. media. Величина коэффициента Y_{АТФ/глюкоза} с учетом вовлечения АП в дыхание для листьев Т-растений составила около 18 и не изменялась в течение суток (рис. 6). Величина Ү_{АТФ/плюкоза} для листьев С-растений в ранние утренние часы и поздно вечером близка к таковой для Т-растений, а в дневные часы была на 25% ниже. Полученные нами абсолютные величины следует рассматривать как приблизительные, хотя бы уже потому, что общее поглощение О2 измеряли при стандартной температуре 20°С, и оно включало остаточную компоненту, не связанную с митохондриальным дыханием. Тем не менее, полученные величины отражают закономерные различия в ЭЭД С- и Т-растений. Очевидно, что снижение ЭЭД листьев не является критичным для жизнеспособности С-растений P. media, адаптированных к действию избыточной освещенности. Это согласуется с мнением О.А. Семихатовой [36] о том, что целью эволюционных изменений биоэнергетики живых организмов является достижение максимальной энергетической эффективности, а временные ее снижения необходимы для сохранения гомеостаза при воздействии неблагоприятных факторов среды.

Важно отметить, что снижению ЭЭД листьев С-растений в дневные часы (рис. 6) соответствовало повышение показателя NPQ (рис. 4), что свидетельствует о синхронном изменении активности процессов тепловой диссипации энергии в хлоропластах и митохондриях. Вопрос о сопряженности фотосинтеза и дыхания неоднократно поднимался в работах О. А. Семихатовой [36, 37]. Говоря о тесном взаимодействии фотосинтеза и дыхания, она, в первую очередь, обращала внимание на тот факт, что оба процесса способны поставлять необходимые растительным клеткам $AT\Phi$, $HAД(\Phi)H$ и метаболиты. С позиций современных знаний можно расширить смысл этого утверждения, дополнив его функцией дыхания как процесса, участвующего в защите ФСА и создающего более благоприятные условия для функционирования фотосинтеза.

Хлоропластные и митохондриальные ЭТЦ являются основным источником АФК в фототрофных клетках. По сравнению с Т-растениями ли-

стья С-растений содержали больше O_2^- и H_2O_2 . В условиях высокой освещенности и ограничения ассимиляции CO_2 происходит снижение регенерации НАД(Ф)Н в цикле Кальвина-Бенсона, что приводит к перевосстановлению фотосинтетической ЭТЦ и повышению утечки электронов на O_2

с образованием O_2^- в реакции Меллера. Супероксидный анион-радикал дисмутирует в H_2O_2 самопроизвольно или с участием SOD [11]. В высоких

концентрациях О⁻ и H₂O₂ способны ингибиро-вать ферменты цикла Кальвина-Бенсона в хлоропластах и цикла Кребса в митохондриях, а также являются источниками мощного окислителя гидроксильного радикала (НО[•]) [11, 38]. Основной мишенью НО в клетке являются полиненасыщенные жирные кислоты, поэтому неудивительно, что листья С-растений отличались более высокой активностью процессов липопероксидации по сравнению с листьями Т-растений. С другой стороны, АФК и продукты ПОЛ являются важными компонентами клеточной сигнализации и могут модулировать транскрипционные ответы на уровне клетки и ткани для формирования защитных механизмов и повышения устойчивости растений [38, 39]. Клетки растений вооружены антиоксидантной системой для поддержания уровня АФК, позволяющего эффективно осуществлять ретроградную передачу сигналов. В наших исследованиях активность антиоксидантных ферментов (SOD и

GPX), контролирующих накопление O_2^- и H_2O_2 , совпадала с суточной динамикой накопления AФK и была выше в листьях C-растений.

Итак, нами выявлено, что долговременная адаптация *P. media* к разным эколого-ценотическим условиям приволит к формированию фенотипов с определенными физиолого-биохимическими свойствами, обеспечивающими поддержание энергетического и окислительно-восстановительного баланса клеток фотосинтезирующих тканей и органов. Фотосинтетический аппарат растений хорошо интегрирован во внутриклеточные процессы, адекватно реагирует на изменения факторов внешней среды и надежно защищен от ФОС. Синхронная активация механизмов диссипации энергии в хлоропластах и митохондриях уменьшает эффективность использования энергии, предотвращает избыточную генерацию активных кислородных радикалов в ЭТЦ и тормозит развитие ФОС. Наши результаты показывают, что временное снижение энергетической эффективности дыхания не критично для растений и вносит вклад в повышение функциональной пластичности и устойчивости.

Работа выполнена в рамках темы госбюджетных НИОКТР "Фотосинтез, дыхание и биоэнергетика растений и фототрофных организмов (физиологобиохимические, молекулярно-генетические и экологические аспекты)" (№ 122040600021-4).

Авторы заявляют об отсутствии конфликта интересов. Настоящая статья не содержит какихлибо исследований с участием людей и животных в качестве объектов исследований.

СПИСОК ЛИТЕРАТУРЫ

- 1. *Sultan S.E.* Phenotypic plasticity for plant development, function and life history // Trends Plant Sci. 2000. V. 5. P. 537.
 - https://doi.org/10.1016/S1360-1385(00)01797-0
- Foyer C.H., Lelandais M., Kunert K.J. Photooxidative stress in plants // Physiol. Plant. 1994. V. 92. P. 696. https://doi.org/10.1111/j.1399-3054.1994.tb03042.x
- 3. *Takahashi S., Murata N.* How do environmental stresses accelerate photoinhibition? // Trends Plant Sci. 2008. V. 13. P. 178. https://doi.org/10.1016/j.tplants.2008.01.005
- Li Z., Wakao S., Fischer B.B., Niyogi K.K. Sensing and responding to excess light // Annu. Rev. Plant Biol. 2009. V. 60. P. 239. https://doi.org/10.1146/annurev.arplant.58.032806.103844
- 5. *Raven J.A*. The cost of photoinhibition // Physiol.
- S. Raven J.A. The cost of photoinhibition // Physiol. Plant. 2011. V. 142. P. 87. https://doi.org/10.1111/j.1399-3054.2011.01465.x
- Ruban A.V. Nonphotochemical chlorophyll fluorescence quenching: mechanism and effectiveness in protecting plants from photodamage // Plant Physiol. 2016. V. 170. P. 1903. https://doi.org/10.1104/pp.15.01935
- Lysenko V., Guo Y., Chugueva O. Cyclic electron transport around photosystem II: Mechanisms and methods of study // Am. J. Plant Physiol. 2017. V. 12. P. 1. https://doi.org/10.3923/ajpp.2017.1.9

ФИЗИОЛОГИЯ РАСТЕНИЙ том 69 № 6 2022

- Shameer S., Ratcliffe R.G., Sweetlove L.J. Leaf energy balance requires mitochondrial respiration and export of chloroplast NADPH in the light // Plant Physiol. 2019. V. 180. P. 1947. https://doi.org/10.1104/pp.19.00624
- Chadee A., Alber N.A., Dahal K., Vanlerberghe G.C. The complementary roles of chloroplast cyclic electron transport and mitochondrial alternative oxidase to ensure photosynthetic performance // Front. Plant Sci. 2021. V. 12. P. 2069. https://doi.org/10.3389/fpls.2021.748204
- Millenaar F.F., Lambers H. The alternative oxidase: in vivo regulation and function // Plant Biol. 2003. V. 5. P. 2. https://doi.org/10.1055/s-2003-37974
- Sharma P., Jha A.B., Dubey R.S., Pessarakli M. Reactive oxygen species, oxidative damage, and antioxidative defense mechanism in plants under stressful conditions // J. Bot. 2012. V. 2012. P. 1. https://doi.org/10.1155/2012/217037
- Vanlerberghe G.C., Dahal K., Alber N.A., Chadee A. Photosynthesis, respiration and growth: A carbon and energy balancing act for alternative oxidase // Mitochondrion. 2020. V. 52. P. 197. https://doi.org/10.1016/i.mito.2020.04.001
- Yoshida K., Terashima I., Noguchi K. Up-regulation of mitochondrial alternative oxidase concomitant with chloroplast overreduction by excess light // Plant Cell Physiol. 2007. V. 48. P. 606. https://doi.org/10.1093/pcp/pcm033
- Zhang D.W., Xu F, Zhang Z.W., Chen Y.E., Du J.B., Jia S.D., Yuan S., Lin H.Y. Effects of light on cyanide-resistant respiration and alternative oxidase function in *Arabidopsis* seedlings // Plant Cell Environ. 2010. V. 33. P. 2121.

https://doi.org/10.1111/j.1365-3040.2010.02211.x

- Zakhozhiy I.G., Shadrin D.M., Pylina Ya.I., Chadin I.F., Golovko T.K. Genetic differentiation of two phenotypes of *Plantago media* L. in South Timan // Ecol. Genet. 2020. V. 18. P. 148. https://doi.org/10.17816/ecogen15605
- Goltsev V.N., Kalaji H.M., Paunov M., Baba W., Horalzek T., Mojski J., Kociel H., Allakverdiev S.I. Variable chlorophyll fluorescence and its use for assessing physiological condition of plant photosynthetic apparatus // Russ. J. Plant Physiol. 2016. V. 63. P. 869.
- Amthor J.S. The McCree-de Wit-Penning de Vries-Thornley respiration paradigms: 30 years later // Ann. Bot. 2000. V. 86. P. 1. https://doi.org/10.1006/anbo.2000.117516
- Heath R.L., Packer L. Photoperoxidation in isolated chloroplasts: I. Kinetics and stoichiometry of fatty acid peroxidation // Arch. Biochem. Biophys. 1968. V. 125. P. 189.

https://doi.org/10.1016/0003-9861(68)90654-1

- Bellincampi D., Dipierro N., Salvi G., Cervone F., De Lorenzo G. Extracellular H₂O₂ induced by oligogalacturonides is not involved in the inhibition of the auxin-regulated rolB gene expression in tobacco leaf explants // Plant Physiol. 2000. V. 122. P. 1379. https://doi.org/10.1104/pp.122.4.1379
- 20. Chaitanya K.S.K., Naithani S.C. Role of superoxide, lipid peroxidation and superoxide dismutase in mem-

brane perturbation during loss of viability in seeds of *Shorea robusta* Gaertn.f. // New Phytol. 1994. V. 126. P. 623.

https://doi.org/10.1111/j.1469-8137.1994.tb02957.x

- Beauchamp C., Fridovich I. Superoxide dismutase: Improved assays and an assay applicable to acrylamide gels // Anal. Biochem. 1971. V. 44. P. 276. https://doi.org/10.1016/0003-2697(71)90370-8
- Maehly A.C., Chance B. The assay of catalases and peroxidases // Methods Biochem. Anal. 1954. V. 1. P. 357. https://doi.org/10.1002/9780470110171.ch14
- 23. *Bradford M.M.* A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding // Anal. Biochem. 1976. V. 72. P. 248. https://doi.org/10.1016/0003-2697(76)90527-3
- Mudrik V., Kosobrukhov A., Knyazeva I., Pigulevskaya T. Changes in the photosynthetic characteristics of *Plantago major* plants caused by soil drought stress // Plant Growth Regul. 2003. V. 40. P.1. https://doi.org/10.1023/A:1023009025426
- Li Z., Bai W., Zhang L., Li L. Increased water supply promotes photosynthesis, C/N ratio, and plantamajoside accumulation in the medicinal plant *Plantago depressa* Willd. // Photosynthetica. 2016. V. 4 P. 551. https://doi.org/10.1007/s11099-016-0222-x
- Murata N., Takahashi S., Nishiyama Y., Allakhverdiev S.I. Photoinhibition of photosystem II under environmental stress // Biochim. Biophys. Acta. Bioenerg. 2007. V. 1767. P. 414.
 https://doi.org/10.1016/j.jbhabio.2006.11.019

https://doi.org/10.1016/j.bbabio.2006.11.019

- Murata N., Allakhverdiev S.I., Nishiyama Y. The mechanism of photoinhibition in vivo: re-evaluation of the roles of catalase, α-tocopherol, non-photochemical quenching, and electron transport // Biochim. Biophys. Acta. 2012. V. 1817. P. 1127. https://doi.org/10.1016/j.bbabio.2012.02.020
- Murchie E.H., Harbinson J. Non-photochemical fluorescence quenching across scales: from chloroplasts to plants to communities // Non-Photochemical Quenching and Energy Dissipation in Plants, Algae and Cyanobacteria / Eds. Demmig-Adams B., Garab G., Adams III W., Govindjee. Dordrecht: Springer Netherlands. 2014. P. 553.

https://doi.org/10.1007/978-94-017-9032-1_25

- 29. *Ruban A.V., Johnson M.P., Duffy C.D.P.* The photoprotective molecular switch in the photosystem II antenna // Biochim. Biophys. Acta. 2012. V. 1. P. 167. https://doi.org/10.1016/j.bbabio.2011.04.007
- Murchie E.H., Ruban A.V. Dynamic non-photochemical quenching in plants: from molecular mechanism to productivity // Plant J. 2020. V. 101. P. 885. https://doi.org/10.1111/tpj.14601
- Johnson M.P., Davison P.A., Ruban A.V., Horton P. The xanthophyll cycle pool size controls the kinetics of nonphotochemical quenching in *Arabidopsis thaliana* // FEBS Lett. 2008. V. 582. P. 262. https://doi.org/10.1016/i.febslet.2007.12.016
- Golovko T., Dymova O., Zakhozhiy I., Dalke I., Tabalenkova G. Photoprotection by carotenoids of *Plantago media* photosynthetic apparatus in natural conditions // Acta Biochim. Pol. 2012. V. 59. P. 145.
- Nebauer S.G., Renau-Morata B., Guardiola J.L., Molina R. Photosynthesis down-regulation precedes carbohydrate accumulation under sink limitation in *Citrus //* Tree Physiol. 2011. V. 31. P. 169. https://doi.org/10.1093/treephys/tpq103
- Pu X., Lv X., Tan T., Fu F., Qin G., Lin H. Roles of mitochondrial energy dissipation systems in plant development and acclimation to stress // Ann. Bot. 2015. V. 116. P. 583. https://doi.org/10.1093/aob/mcv063
- 35. *Selinski J., Scheibe R., Day D.A., Whelan J.* Alternative oxidase is positive for plant performance // Trends Plant Sci. 2018. V. 23. P. 588. https://doi.org/10.1016/i.tplants.2018.03.012
- Семихатова О.А. Энергетика дыхания растений в норме и при экологическом стрессе. Л.: Наука, 1990. 72 с.
- Семихатова О.А., Заленский О.В. Сопряженность процессов фотосинтеза и дыхания // Физиология фотосинтеза. 1982. С.130.
- Foyer C.H. Reactive oxygen species, oxidative signaling and the regulation of photosynthesis // Environ. Exp. Bot. 2018. V. 154. P. 134. https://doi.org/10.1016/j.envexpbot.2018.05.003
- 39. *Noctor G., Foyer C.H.* Intracellular redox compartmentation and ROS-related communication in regulation and signaling // Plant Physiol. 2016. V. 171. P. 1581. https://doi.org/10.1104/pp.16.00346