УДК 551.242.1

АНАЛИЗ СОВРЕМЕННЫХ ДЕФОРМАЦИЙ СЕВЕРО-ЗАПАДНОГО КАВКАЗА И ПРЕДКАВКАЗЬЯ ПО ДАННЫМ ГНСС

© 2023 г. Г. М. Стеблов^{1, 2,} *, А. О. Агибалов^{1, **}, Д. Е. Белобородов^{1, ***}, В. А. Зайцев^{3, ****}, В. П. Передерин^{1, *****}, Ф. В. Передерин^{1, *****}, А. А. Сенцов^{1, ******}, К. В. Фадеева^{3, *******}

¹Институт физики Земли имени О.Ю. Шмидта РАН, г. Москва, Россия ²Институт теории прогноза землетрясений и математической геофизики РАН, г. Москва, Россия ³Московский государственный университет имени М.В. Ломоносова, г. Москва, Россия

> *E-mail: steblov@ifz.ru **E-mail: agibalo@yandex.ru ***E-mail: denbeloborodov@gmail.com ****E-mail: v.zaitsev@mail.ru *****E-mail: vpp@ifz.ru *****E-mail: crash@ifz.ru ******E-mail: alekssencov@yandex.ru ******E-mail: karina-fadeeva-2000@mail.ru Поступила в редакцию 23.08.2022 г. После доработки 30.12.2022 г. Принята к публикации 13.01.2023 г.

По данным о горизонтальных перемещениях ГНСС охарактеризовано поле современной деформации Северо-Западного Кавказа и Предкавказья. Показано, что ее скорости достаточны для того, чтобы активизация крупных разломов этого региона сопровождалась сейсмическими событиями с моментной магнитудой до 7.0. В то же время поднятие горно-складчатого сооружения со скоростью до 12 мм/год, развитие его контрастного, глубоко расчлененного рельефа необъяснимо только влиянием внешних горизонтальных напряжений. Эти процессы во многом обусловлены внутренними изостатическим силами.

Ключевые слова: ГНСС, Северо-Западный Кавказ, современные деформации. **DOI:** 10.31857/S0002333723040117, **EDN:** ТМКИНМ

введение

Территория Северо-Западного Кавказа и Предкавказья относится к наиболее активным в сейсмотектоническом отношении регионам нашей страны, поэтому анализ современных движений и деформаций этой области – актуальная и интересная научно-практическая задача. Для ее решения информативны методы спутниковой геодезии, однако до недавнего времени были опубликованы данные о перемещениях только отдельных пунктов глобальных навигационных спутниковых систем (ГНСС). Анализ этих материалов не позволял сформировать целостное представление о современном поле деформации. В статье [Милюков и др., 2022] была приведена информация о расположении и скоростях горизонтальных движений 24-х пунктов ГНСС, использованная нами в качестве исходных данных. На основе ее анализа и обработки сделаны выводы о величине деформации, ориентировке осей сжатия и растяжения, взаимосвязи современных движений земной коры с сейсмичностью.

МАТЕРИАЛ И МЕТОДЫ ИССЛЕДОВАНИЯ

Для расчета величины площадной годовой относительной деформации (дилатации) (ϵ) в среде ArcGis выполнена триангуляция Делоне [Делоне, 1934] 24-х пунктов ГНСС. Построенным элементам покрытия (треугольникам Делоне, вершинами которых являются пункты ГНСС) присвоены значения $\epsilon = \frac{S_2 - S_1}{S_1}$, где S_1 – площадь треугольника без учета горизонтальных перемещений (m^2); S_2 – площадь треугольника с учетом смещения его вершин за 1 год (m^2). По формулам, приведенным в работе [Бабешко и др., 2016], определена ориентировка главных осей деформации для

всех элементов покрытия. Для каждого треугольника Делоне рассчитана его площадь и отношение R/r — радиусов описанной (R) и вписанной (r) окружностей. Эти параметры приведены в табл. 1, поскольку точность определения компонентов деформации зависит от конфигурации и размера элементов сети. Согласно работе [Маркович, 2019], оптимальные результаты достигаются в том случае, когда сеть состоит из близких по размеру равносторонних треугольников.

С помощью стандартных инструментов программы ArcGis покрытие преобразовано во множество равноудаленных точек, каждой из которых присвоена ориентировка оси максимального укорочения. По ним рассчитано выборочное среднее круговое направление этой оси [Каждан. Гуськов, 1990]. Оно сопоставлено с результатами реконструкции главных нормальных осей напряжений по фокальным механизмам очагов землетрясений, проанализированных с использованием программы FaultKin P. Алльмендингера [Allmendinger et al., 2012]. В нашей работе мы рассматриваем решения фокальных механизмов очагов наиболее известных землетрясений, опубликованных в международной базе данных [International..., 2022], поскольку по данным о перемещениях 24-х пунктов ГНСС возможно сделать выводы только о наиболее общих закономерностях поля деформаций, абстрагируясь от его особенностей, проявленных на локальном масштабном уровне.

Известно, что скорость деформации (G, год⁻¹) и протяженность наиболее крупной сейсмогенерирующей структуры (L, км) — один из факторов, определяющих максимальную моментную магнитуду ожидаемого землетрясения (Mmax). Ее оценка выполнена по эмпирической формуле Mmax = 6.1 + 1.88lgL + 0.63lgG [Руководство..., 2022]. Рассчитанная Mmax сопоставлена с наибольшей моментной магнитудой по данным сводного сейсмического каталога, предоставленного авторам проф. Е.А. Рогожиным в 2021 г. и визуализированного в работе [Милюков и др., 2022].

Кроме того, нами предложена компьютерная геодинамическая модель, созданная на базе специализированного программного обеспечения. Методика ее создания сводится к построению грид-поверхности по высотам рельефа [Цифровая..., 2022], на которую нанесена сетка вертикальных непересекающихся активных разломов [Хаин, 1972]. Предполагается, что модель состоит из упругого однородного материала, основные физико-механические свойства которого заданы как начальные условия. Значения коэффициентов Пуассона и внутреннего трения составляют 0.25 и 0.6, соответственно. Кроме того, заданы ориентировки внешних главных нормальных

осей напряжений, под действием которых происходят динамические подвижки блоков до полной релаксации напряжений. Основной результат моделирования – схема амплитуд относительных вертикальных смещений, сопоставленная с рельефом и полем скоростей современных вертикальных движений [Карта..., 1971]. Отметим, что расчет этих амплитуд основан на использовании закона Кулона-Мора и системы дифференциальных уравнений, подробное рассмотрение которых выходит за рамки статьи. Они приведены в работе [Руководство..., 2012], а методика моделирования более подробно описана в работе [Агибалов и др., 2017]. При моделировании нами рассмотрена только центральная и южная части изучаемого региона, поскольку здесь расположено горно-складчатое сооружение Северо-Западного Кавказа (северная часть отличается менее контрастным рельефом, меньшей сейсмичностью и небольшими скоростями современных вертикальных движений), а также из-за технических ограничений, связанных со сложностями расчетов при большом количестве разрывных нарушений.

РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ

На схеме величины деформации, составленной по данным о горизонтальных движениях ГНСС (рис. 1), преобладают области отрицательных значений є, занимающие 65% площади. Уменьшение площади элементов покрытия с течением времени объяснимо общим сжатием территории Северо-Западного Кавказа, в то время как увеличение площади (при $\varepsilon > 0$), вероятно, связано со сдвиговыми деформациями [Трихунков, 2009], поскольку обстановка горизонтального растяжения не характерна для этого региона в целом. Отметим большой размах значений годовых деформаций ε , варьирующих от -46×10^{-9} до 143 × 10⁻⁹ (см. табл. 1), связанный со сложным характером современных горизонтальных движений. При этом медианное значение $|\varepsilon| = 6.3 \times 10^{-9}$. Высокие (по модулю) значения є относятся преимущественно к сильно вытянутым треугольникам Делоне, для которых $R/r \ge 31$ (3 квартиль для отношения R/r). Несмотря на то, что такие треугольники недостаточно представительны, при расчетах максимальной моментной магнитуды землетрясения (Mmax) принято значение G = $= 143 \times 10^{-9}$ год⁻¹, поскольку сильные сейсмические события также достаточно редки. При заданной величине G и протяженности самого крупного разлома, показанного на тектонической карте [Хаин, 1972], равной 580 км, Мтах составляет 7.0. В целом рассчитанная Мтах близка к наибольшему значению моментной магнитуды за инструментальный период, равному 6.9.

ФИЗИКА ЗЕМЛИ № 4 2023

АНАЛИЗ СОВРЕМЕННЫХ ДЕФОРМАЦИЙ

Таблица 1. Величины современной деформации Северо-Западного Кавказа и Предкавказья

N⁰	Элемент покрытия	$\epsilon, \times 10^{-9}$	R/r	<i>S</i> , км ²	$R/r \leq 31$	AZ, °
1	23S2-23MO-ZECK	-1.7	9	11 166	✓	174
2	23MO-ZECK-CHER	-13.0	9	5495	1	20
3	AROP-23TU-23S2	143.1	197	1461		54
4	23GE-AROP-23S2	-45.5	2238	406		82
5	23TU-23S2-МКОР	8.1	9	7433	1	41
6	2382-МКОР-23МО	9.2	11	6766	1	45
7	23MO-KOCH-CHER	5.9	23	4724	1	61
8	AROP-23TU-KDAR	-7.7	9	5882	1	162
9	KDAR-23TU-MKOP	-23.4	8	8136	1	10
10	23GE-AROP-23KR	-14.8	17	1967	1	166
11	23KR-KDAR-AROP	-23.2	43	815		102
12	23MO-STVR-KOCH	3.8	27	2730	1	16
13	KOCH-CHER-STVR	-26.7	41	1362		59
14	23GE-23TE-23KR	23.4	9	8558	1	98
15	23KR-KDAR-23TI	-13.3	71	1092	1	98
16	KDAR-MKOP-23TI	-4.1	9	10997	1	73
17	23TI-MKOP-23MO	8.3	16	7734	✓	173
18	23MO-23TI-STVR	7.1	9	18437	✓	85
19	STVR-23TI-SLSK	10.2	8	20731	✓	53
20	23TE-23KR-AZOV	-0.8	11	29207	✓	8
21	23KR-23TI-AZOV	-30.1	15	17895	✓	8
22	23TE-MARP-AZOV	-5.3	10	31 824	\checkmark	63
23	AZOV-61RO-RSTD	75.6	18	332	\checkmark	88
24	AZOV-RSTD-23TI	-5.8	22	5286	\checkmark	141
25	23TI-RSTD-SLSK	-2.5	8	19773	\checkmark	189
26	MARP-PKRV-AZOV	21.6	20	5655	\checkmark	178
27	AZOV-PKRV-61RO	27.0	13	1156	✓	137
28	RSTD-SMKR-SLSK	-6.3	11	10941	1	66
29	SLSK-SMKR-VLGD	-5.3	8	12981	✓	163
30	SLSK-VLGD-STVR	-8.1	45	12418		34
31	VLGD-STVR-CHER	4.8	1772	2823		71
32	61RO-RSTD-KLOM	39.6	23	988	1	18
33	KLOM-RSTD-	5.0	11	3013	1	161
34	61KS-MARP-PKRV	17.6	241	3127		21
35	61KS-61RO-PKRV	0.0	11	4804	✓	92
36	61RO-61KS-KLOM	31.7	17	1766	✓	77
37	KLOM-61KS-SMKR	-20.3	33	975		139
38	SMKR-61KS-VLGD	12.9	43	4802		99

Примечания: є — величина современной годовой деформации; *R/r* — отношение радиуса описанной около треугольника Делоне окружности (*R*) к радиусу вписанной окружности (*r*); *S* — площадь треугольника Делоне; AZ — азимут простирания оси укорочения.

Рис. 1. Схема современной годовой деформации (ε) Северо-Западного Кавказа и Предкавказья, составленная по данным ГНСС: 1 – пункты ГНСС и их названия; слева внизу – схема основных геологических структур по работе [Милюков и др., 2022]: І – орогенное сооружение Большого Кавказа; ІІ – Западно-Кубанский передовой прогиб; ІІІ–VI – Скифская плита (ІІІ – Ставропольский свод, IV – платформенное крыло Азово-Кубанской впадины); V – Азовский выступ; VI – Манычский прогиб; VII – кряж Карпинского; VIII – Восточно-Европейская платформа.

Установлено, что выборочное среднее круговое направление азимута простирания оси максимального укорочения элементов покрытия составляет 30°, что согласуется с представлениями о северо-восточном сжатии территории, ориентированном вкрест простирания горно-складчатого сооружения [Фадеева, Зайцев, 2022], и решениями фокальных механизмов очагов землетрясений [International..., 2022]. Последние разделены на 2 кинематические группы: первой, наиболее пред-

Таблица 2. Ориентировки главных нормальных осей напряжений, реконструированные по решениям фокальных механизмов очагов землетрясений Северо-Западного Кавказа и Предкавказья, по работе [International..., 2022]

N⁰	с.ш., °	в.д., °	P-az, °	P-pl, °	T-az, °	T-pl, °	Кин. группа
1	47.160	37.610	321	15	54	12	2
2	47.060	37.590	325	10	58	14	1
3	46.320	37.190	270	24	0	1	1
4	45.003	37.768	61	16	222	73	1
5	45.080	38.730	347	9	246	5	1
6	44.770	37.210	49	45	224	45	1
7	44.850	37.800	57	42	224	47	1
8	44.700	37.279	334	2	69	62	1
9	44.491	37.254	240	59	344	8	1
10	44.240	39.640	187	5	278	25	1
11	44.060	39.480	330	11	135	79	1
12	43.650	38.040	208	33	26	57	2
13	43.390	39.520	211	28	350	55	2
14	43.250	41.570	208	14	63	73	1
15	43.280	41.650	186	10	307	71	2
16	43.203	41.569	193	22	315	52	1
17	43.252	41.662	190	22	306	46	2

Примечания: P-az – азимут падения оса и сжатия; P-pl – угол падения оси сжатия; T-az – азимут падения оси растяжения; T-pl – угол падения оси растяжения; кин. группа – кинематическая группа.

ставительной (12 элементов) соответствует обстановка северо-западного сжатия, второй (5 элементов) — субмеридионального и север-северозападного сжатия (табл. 2). По элементам первой выборки в программе FaultKin реконструирована ось сжатия, полого (под углом 9°) погружающаяся по азимуту 214° (рис. 2).

Обстановка горизонтального северо-западного сжатия задана в качестве одного из начальных условий при компьютерном моделировании. Установлено, что коэффициент корреляции Пирсона (K_{Π}) между высотами рельефа и рассчитанными в ходе моделирования относительными амплитудами вертикальных перемещений составляет 0.30 (количество точечных элементов *N* = 1668) (рис. 3, III). На наш взгляд, полученное значение K_{Π} небольшое, поскольку рельеф территории обусловлен, прежде всего, тектоническими факторами [Астахов, Нечипорова, 2014]. Этот факт позволяет поставить вопрос о том, что воздымание Кавказа связано не только с внешним горизонтальным сжатием. объяснимым взаимодействием Евразийской и Африкано-Аравийской литосферных плит, но и внутренними (изостатическими) силами, роль которых не учтена при моделировании. Отметим также отсутствие четко выраженной положительной аномалии є в пределах горно-складчатого сооружения, отличающегося повышенной сейсмичностью и скоростью

ФИЗИКА ЗЕМЛИ № 4 2023

вертикальных движений до 12 мм/год, в то время как Предкавказье испытывает поднятие со скоростью ~2-4 мм/год (рис. 4). Для всей изученной территории рассчитана численная корреляция между высотами рельефа и скоростью вертикальных движений ($K_{\Pi} = 0.74$, N = 52300) (рис. 3, I), высотами и плотностью эпицентров землетрясений с моментными магнитудами от 0.5 до 6.9 $(K_{\Pi} = 0.66, N = 103053)$ (рис. 3, II). В то же время нет соответствия между полем современной деформации, охарактеризованным исходя из данных о горизонтальных движениях пунктов ГНСС, и высотами, значениями є и плотности эпицентров землетрясений (в обоих случаях К_П близок к нулю). Эти данные также свидетельствуют в пользу предположения о том, что интенсивное поднятие Северо-Западного Кавказа, сопровождающееся развитием положительных форм рельефа и сейсмичностью, не объяснимо только действием внешних сжимающих напряжений. По-видимому, на упомянутые процессы существенно влияют внутренние (изостатические) силы, связанные с наличием разуплотненных пород на глубинах от 9-10 до 45-50 км. Такие породы были выделены под осевой частью Большого Кавказа по пониженным скоростям поперечных волн методом микросейсмического зондирования [Горбатиков и др., 2015; Рогожин и др., 2014], а также по аномалиям поля тектонической раз-

Рис. 2. Схема активных разломов Северо-Западного Кавказа, по работе [Хаин, 1972]. Справа вверху – реконструкция главных нормальных осей напряжений по решениям фокальных механизмов очагов землетрясений первой кинематической группы (нижняя полусфера). На стереограмме: *1* – область сжатия; *2* – область растяжения; *3* – главные нормальные оси напряжений (*P* – сжатия, *T* – растяжения); *4* – эпицентры землетрясений, для очагов которых известны решения фокальных механизмов, и их номера (соответствуют приведенным в табл. 2), *5* – разломы, по работе [Хаин, 1972], *6* – граница области, для которой выполнено компьютерное моделирование.

Рис. 3. Диаграммы рассеяния, построенные по высотам рельефа (*H*, км), скоростям современных вертикальных движений (*V*, мм/год), относительным амплитудам вертикальных перемещений по разломам, рассчитанным методом компьютерного моделирования (*Z*, км).

Рис. 4. Схема скоростей современных вертикальных движений, по работе [Карта..., 1971]: *1* – изолинии скорости современных вертикальных движений, мм/год; *2*–*4* – эпицентры землетрясений с магнитудой (*2* – 0.5–3.0; *3* – 3.1–6.0, *4* – 6.0–6.9.

дробленности литосферы [Нечаев, 2010]. Процессы разуплотнения, инициирующие активное воздымание, объяснимы инфильтрацией в литосферу

больших объемов мантийных флюидов [Артюш-ков, 2012а; 2012б]. Кроме того, на поднятие Кав-каза влияет напор масс верхнемантийного веще-

ства, вызванный погружением земной коры Предкавказья и Закавказья, более тяжелых по сравнению с центральной частью горно-складчатого сооружения [Осика и др., 2011].

ЗАКЛЮЧЕНИЕ

В результате проведенных исследований сделаны следующие выводы. По данным анализа горизонтальных движений пунктов ГНСС территория Северо-Западного Кавказа и Предкавказья испытывает деформации сжатия и сдвига при ориентировке оси максимального сжатия в северо-восточном направлении. Их скорость составляет порядка 10⁻⁸...10⁻⁷ год⁻¹. Согласно эмпирической зависимости, это значение достаточно для того, чтобы при активизации крупных разрывных нарушений протяженностью 500-600 км, закартированных в изучаемом районе, происходили сейсмические события с моментной магнитудой ло 7.0. Такие землетрясения известны на Северо-Западном Кавказе. В то же время характер поля современной деформации не позволяет объяснить рост горно-складчатого сооружения со скоростью до 12 мм/год, развитие его контрастного, глубоко расчлененного рельефа. Этот факт свидетельствует о воздымании орогенного сооружения в том числе из-за воздействия внутренних (изостатических) сил, возникающих в связи с разуплотнением пород в интервале глубин 10-50 км.

ФИНАНСИРОВАНИЕ РАБОТЫ

Исследование выполнено в рамках Государственных заданий ИФЗ им. О.Ю. Шмидта РАН и Института теории прогноза землетрясений и математической геофизики РАН.

СПИСОК ЛИТЕРАТУРЫ

Агибалов А.О., Зайцев В.А., Сенцов А.А., Девяткина А.С. Оценка влияния современных движений земной коры и активизированного в новейшее время докембрийского структурного плана на рельеф Приладожья (юго-восток Балтийского щита) // Геодинамика и тектонофизика. 2017. Т. 8. № 4. С. 791–807.

Артюшков Е.В. Вертикальные движения земной коры на континентах как отражение глубинных процессов в коре и мантии Земли: геологические следствия // Вестник Российской академии наук. 2012а. Т. 82. № 12. С. 1075–1091.

Артюшков Е.В. Новейшие поднятия земной коры как следствие инфильтрации в литосферу мантийных флюидов // Геология и геофизика. 2012б. Т. 53. № 6. С. 738–760.

Астахов В.В., Нечипорова Т.П. Современное состояние и перспективы геоморфологического картографирования территории Северного Кавказа // Изв. ВУЗов. Северо-Кавказский регион. Серия: Естественные науки. 2014. № 4. С. 104–108.

Бабешко В.А., Калинчук В.В., Шестопалов В.Л., Шереметьев В.М. Технологии геодинамического мониторинга района транспортного перехода через Керченский пролив // Наука Юга России. 2016. Т. 12. № 1. С. 22–31.

Горбатиков А.В., Рогожин Е.А., Степанова М.Ю., Хазарова Ю.В., Андреева Н.В., Передерин Ф.В., Заалишвили В.Б., Мельков Д.А., Дзеранов Б.В., Дзебоев Б.А., Габараева А.Ф. Особенности глубинного строения и современной тектоники большого Кавказа в осетинском секторе по комплексу геофизических данных // Физика Земли. 2015. № 1. С. 28–39.

Делоне Б.Н. О пустоте сферы // Изв. АН СССР. ОМЕН. 1934. № 4. С. 793-800.

Каждан А.Б., Гуськов О.И. Математические методы в геологии. М.: Недра. 1990. 251 с.

Карта современных вертикальных движений земной коры Восточной Европы / Ю.А. Мещеряков (гл. ред.). М.: ГУГК. 1971. М-6 1 : 10000000.

Маркович К.И. Влияние конфигурации конечных элементов на точность определения компонентов деформации // Вестник СГУГиТ. 2019. Т. 24. № 3. С. 37–51.

Милюков В.К., Миронов А.П., Овсюченко А.Н., Горбатиков А.В., Стеблов Г.М., Корженков А.М., Дробышев В.Н., Хубаев Х.М., Агибалов А.О., Сенцов А.А., Dogan U., Ergintav S. Современные тектонические движения Западного Кавказа и Предкавказья по ГНСС наблюдениям // Геотектоника. 2022. № 1. С. 51–67.

Нечаев Ю.В. Линеаменты и тектоническая раздробленность. Дистанционное изучение внутреннего строения литосферы / акад. А.О. Глико (ред.). М.: ИФЗ РАН. 2010. 215 с.

Осика Д.Г. Пономарева Н.Л., Отинова А.Ю., Магомедов Ю.М. К сейсмотектонике Кавказа. Труды Института геологии Дагестанского научного центра РАН. 2011. №. 57. С. 95–98.

Рогожин Е.А., Овсюченко А.Н, Лутиков А.И., Собисевич А.Л., Собисевич Л.Е., Горбатиков А.В. Эндогенные опасности Большого Кавказа. М.: ИФЗ РАН. 2014. 256 с.

Руководство по безопасности при использовании атомной энергии "Оценка исходной сейсмичности района и площадки размещения объекта использования атомной энергии при инженерных изысканиях и исследованиях" РБ-019-18.

URL: https://docs.secnrs.ru/documents/rbs/PБ-019-18/PБ-019-18.pdf. Дата обращения: 07.07.2022.

Руководство пользователя "Analysis Package Reservoir Modelling System". URL: www.geodisaster.ru/in-dex.php?page=uchebnye-posobiya-2. Дата обращения 01.12.2022.

Спиридонов А.И. Геоморфологическое картографирование. М.: Недра. 1975. 184 с.

Трихунков Я.И. Морфоструктура и опасные геоморфологические процессы Северо-Западного Кавказа. Дис. ... канд. геогр. наук. М. 2009. 213 с.

Фадеева К.В., Зайцев В.А. Связь новейшего и современного полей напряжений Большого Кавказа и Предкавказья // Динамическая геология. 2022. № 1. С. 121–150.

Хаин В.Е. Тектоническая карта Кавказа. М.: ГУГК. 1972. М-6 1 : 5500000.

ФИЗИКА ЗЕМЛИ № 4 2023

Цифровая модель рельефа. URL: https://topex.ucsd.edu/cgibin/get_data.cgi. Дата обращения 07.07.2022.

Яковлев Ф.Л., Горбатов Е.С. Выявление основных процессов формирования альпийского Большого Кавказа по параметрам сбалансированной модели его структуры (факторный анализ). Тектонофизика и актуальные вопросы наук о Земле. Материалы Четвертой тектонофизической конференции. М.: ИФЗ РАН. 2016. Т. 1. С. 304-313.

Allmendinger R.W., Cardozo N.C., Fisher D. Structural geology algorithms: Vectors & Tensors. Cambridge: Cambridge University Press. 2012. 302 p.

International Seismological Centre Bulletin: Focal mechanism search. URL: http://www.isc.ac.uk/iscbulle-tin/search/fmechanisms / Дата обращения 01.08.2022.

Analysis of Contemporary Deformations of the North-Western Caucasu s and Ciscaucasia Based on GNSS Data

G. M. Steblov^{*a*, *b*, *, A. O. Agibalov^{*a*, **, D. E. Beloborodov^{*a*, ***, V. A. Zaitsev^{*c*, ****,} V. P. Perederin^{*a*, *****, F. V. Perederin^{*a*, *****, A. A. Sentsov^{*a*, ******, and K. V. Fadeeva^{*c*, *******}}}}}}}

^aSchmidt Institute of Physics of the Earth, Russian Academy of Sciences, Moscow, 123995 Russia ^bInstitute of Earthquake Prediction Theory and Mathematical Geophysics, Russian Academy of Sciences, Moscow, 117997 Russia ^cMoscow State University, Moscow, 119991 Russia ^{*}e-mail: steblov@ifz.ru ^{**}e-mail: agibalo@yandex.ru ^{***}e-mail: denbeloborodov@gmail.com ^{*****}e-mail: v.zaitsev@mail.ru ^{******}e-mail: vp@ifz.ru ^{******}e-mail: crash@ifz.ru ^{*******}e-mail: alekssencov@yandex.ru ^{********}e-mail: alekssencov@yandex.ru

The field of the contemporary deformation of the North-Western Caucasus and Ciscaucasia is described based on GNSS horizontal movement data. It is shown that the deformation velocity is sufficient for the activation of large-scale faults of the region to be followed by seismic events with a moment magnitude of up to 7.0. Yet, the orogenic uplift at a rate of up to 12 mm/yr and the development of its varied, deep-broken relief cannot be explained only by the effect of external horizontal stresses. These processes are conditioned, to a great extent, on internal isostatic forces.

Keywords: GNSS, North-Western Caucasus, contemporary deformations