УДК 550.34.01+550.348.433

ОБ RTL-АНОМАЛИИ СЕЙСМИЧЕСКОГО РЕЖИМА ПЕРЕД ЗЕМЛЕТРЯСЕНИЕМ В ТУРЦИИ 06.02.2023 г.

© 2023 г. В. Б. Смирнов^{1, 2, *}, А. А. Петрушов^{1, 2}, В. О. Михайлов^{1, 2}

¹Физический факультет МГУ имени М.В. Ломоносова, г. Москва, Россия ²Институт физики Земли им. О.Ю. Шмидта РАН, г. Москва, Россия *E-mail: vs60@mail.ru

Поступила в редакцию 10.05.2023 г. После доработки 24.05.2023 г. Принята к публикации 13.06.2023 г.

На основе данных регионального каталога землетрясений Турции и сводного каталога ANSS для территории Турции и части Ирана проведен апостериорный анализ RTL-аномалий сейсмического режима пред разрушительным Пазарджыкским землетрясением $M_w7.8~06.02.2023$ г. в Турции и для сравнения перед землетрясениями $M_w~7.1~23.10.2011$ г. (Восточная Турция), $M_w~7.3~12.11.2017$ г. (Иран), M6.7~24.01.2020 г. (Восточно-Анатолийский разлом). Перед Пазарджыкским землетрясением уверенно выделяется RTL-аномалия с хорошо выраженными стадиями сейсмического затишья и последующей активизации вблизи эпицентра будущего землетрясения. Пространственный размер этой аномалии в полтора раза меньше размера очага Пазарджыкского землетрясения и в полтора-два раза меньше, чем размеры RTL-аномалий перед другими региональными землетрясениями с магнитудами более 7. Он соответствует размеру аномалии перед землетрясением $M_w~6.7$, произошедшем на том же разломе. В качестве гипотезы о причине несоответствия размера аномалии перед Пазарджыкским землетрясения $M_w~6.7$, выдвинуто предположение о том, что обнаруженная RTL-аномалия отражает формирование только первого относительно небольшого сегмента очага Пазарджыкского землетрясения.

Ключевые слова: сейсмический режим, сейсмические аномалии, Пазарджыкское землетрясение. **DOI:** 10.31857/S0002333723060200, **EDN:** NFDEPI

введение

Пазарджыкское землетрясение (Pazarcik earthquake¹) 06.02.2023 г. с магнитудой M_w 7.8 явилось сильнейшим землетрясением в Восточно-Анатолийской зоне разломов (ВАЗР) за период инструментальных наблюдений. Исследования по физике процессов подготовки очагов землетрясений и мировая практика прогностических исследований свидетельствуют, что перед такими землетрясениями уверенно выявляются среднесрочные прогностические аномалии, по крайней мере при апостериорном анализе [Завьялов, 2006; Соболев, 1993; 2011; 2015; Соболев, Пономарев, 2003; Stefansson, 2011; Sobolev, 2011; Panza, 2022]. Целью настоящей работы было апостериорное исследование вопроса о наличии или отсутствии аномалии сейсмического режима перед Пазарджыкским землетрясением.

В качестве параметра сейсмического режима использовался комплексный параметр, впервые ввеленный в практику сейсмологических исследований в 1996 г. [Соболев и др., 1996] и получивший впоследствии достаточно широкое распространение [Салтыков, Кугаенко, 2000; Huang et al., 2001; 2002; 2004; 2006; 2008; 2019; Huang, Nagano, 2002; Салтыков, Кравченко, 2009: Shashidhar et al., 2010; Кравченко, 2010; Huang, Ding, 2012; Di Giovambattista, Tyupkin, 2000; 2004; Nagao et al., 2011; Салтыков и др., 2011; 2018; Gentili et al., 2017; Puangjaktha, Pailoplee, 2018; Proskura et al., 2019; Kali et al., 2021; Zhang, Huang 2022; Смирнов, Петрушов, 2023]. Этот параметр, получивший название RTL, характеризует нормализованную интенсивность процесса сейсмогененрации, отнесенную к каждой точке среды в каждый момент времени. Точки и моменты времени задаются исследователем, сейсмогенерация рассчитывается по данным сейсмического каталога за предшествующие моменты времени. Вклад каждого землетрясения учитывается с весом, увели-

¹ https://earthquake.usgs.gov/earthquakes/eventpage/us6000jllz/ executive_Здесь и далее ссылки на Интернет-ресурсы актуальны на июнь 2023 г. Русская транскрипция названия Раzarcik – согласно [Словарь ..., 1986].

чивающимся с увеличением размера очага землетрясения и уменьшающимся с увеличением расстояния от гипоцентра землетрясения до точки расчета и времени, прошедшего от момента землетрясения до момента, на который производится расчет. Для изменения RTL во времени известен образ предвестниковой аномалии, включающей в себя две стадии: уменьшение RTL, ассоциируемое с сейсмическим затишьем, и последующее его увеличение, ассоциируемое с форшоковой активизацией [Соболев, 2015; Соболев, Пономарев, 2003]. Аномалии RTL наблюдаются, как правило, в диапазоне на несколько единиц меньших, чем магнитуда основного землетрясения. Характерные длительности RTL-аномалий составляют от нескольких месяцев до нескольких лет, по-видимому, в зависимости от величины землетрясения. Пространственные размеры аномалий RTL обычно превосходят размеры очага основного землетрясения, а его эпицентр часто оказывается на краю аномалии. С физической точки зрения аномалии RTL отражают изменение режима сейсмогенного разрушения в локализованной пространственной области, называемой иногда метастабильной очаговой областью будущего землетрясения. Образ предвестниковой аномалии RTL (затишье с последующей активизацией) связывают с концепцией лавинно-неустойчивого трещинообразования ЛНТ [Соболев, 2019; Смирнов, Пономарев, 2020].

ОБЪЕКТЫ АНАЛИЗА И ИСХОДНЫЕ ДАННЫЕ

Кроме главного для этой работы Пазарджыкского землетрясения 2023 г. мы для сравнения изучили вопрос о наличии RTL-аномалий перед двумя землетрясениями M7+: в Восточной Турции (M_w 7.1 23.10.2011 г.) и в Иране (M_w 7.3 12.11.2017 г.), связанными, как и Пазарджыкское землетрясение, со взаимодействием Африканской, Аравийской литосферных плит и Анатолийского блока. Также мы рассмотрели предшествующее сильное землетрясение M_w 6.7 24.01.2020 г., произошедшее на сегменте ВАЗР. Северное окончание очага Пазарджыкское землетрясения 2023 г. примыкает к южной части очага этого землетрясения 2020 г. [Михайлов и др., 2023]. Эпицентры землетрясений показаны на рис. 1.

В качестве исходных данных для анализа сейсмического режима перед землетрясениями 2020 и 2023 гг. мы использовали региональный каталог Турции (Kandilli Observatory and Earthquake Research Institute)². В каталоге представлено более 160 тысяч записей о землетрясениях с 1960 г. по настоящее время в области, ограниченной координатами 26–45 градусов по долготе и 35–42 градусов по широте с магнитудой $M \ge 2.5$. Магнитуды различных землетрясений представлены различными шкалами: ML, Md, MS, mb, M_w . В качестве "единой" для всех землетрясений в каталоге обозначена магнитуда xM, представляющая собой максимальное значение из магнитуд различных шкал для данного землетрясения. Мы оценили отклонение магнитуд различных шкал от xM и обнаружили, что в среднем оно не превосходит 0.2. Исходя из этого мы не стали проводить унификацию магнитудных шкал и приняли, как и авторы каталога, за магнитуду события величину xM.

На рис. 2а представлен график повторяемости землетрясений регионального каталога. Видно, что он имеет прямолинейную форму, что подтверждает допустимость использования величины *хМ* в качестве магнитудной характеристики. На рис. 26 представлены изменения представительной магнитуды во времени, оцененные по авторской методике, основанной на алгоритме Писаренко [Смирнов, 2009; Смирнов, Пономарев, 2020]. Опираясь на оценки представительности, мы выбрали для дальнейшей работы данные за интервал времени 01.01.1990-05.02.2023 гг. с селекцией по магнитуде $M \ge 3.5$. Такая селекция обеспечивает однородность каталога по представительной магнитуде и достаточна для отыскания RTL-аномалий перед землетрясениями M7.8 и М6.7. Афтершоки из рабочего каталога были удалены для главных событий с магнитудой 5 и более. Для удаления афтершоков использовалась процедура Молчана–Дмитриевой [Смирнов, 2009; Смирнов, Пономарев, 2020].

Для анализа сейсмического режима перед землетрясениями 2011 и 2017 гг. мы использовали каталог ANSS Геологической службы США (USGS)³. Иранское землетрясение 2017 г. не попадает в региональный каталог Турции, а землетрясение 2011 г. на востоке Турции попадает на край регионального каталога. Выборка на сайте USGS производилась в координатах 26–49 градусов по долготе и 31–43 градусов по широте для землетрясений с магнитудой $M \ge 2.5$ за интервал времени с 1963 г. по настоящее время. Объем выборки составил более 25 тысяч событий.

На рис. 2а видно, что в диапазоне землетрясений $M \ge 4$ график повторяемости каталога ANSS совпадает с графиком повторяемости региональ-

² http://www.koeri.boun.edu.tr/sismo/2/earthquake-catalog/

³ https://earthquake.usgs.gov/earthquakes/search/

Рис. 1. Эпицентры исследованных землетрясений. Около значков подписаны год и магнитуда землетрясения. Основа – карта активных разломов ГИН РАН (http://neotec.ginras.ru/index/database/database_map.html).

Рис. 2. График повторяемости (а) и изменение представительной магнитуды (б) исходных сейсмических каталогов: *I* – региональный каталог Турции, *2* – каталог ANSS на территории Турции и Ирана.

каталога, были удалены для главных событий с магнитудой 5 и более. РЕЗУЛЬТАТЫ Описание алгоритма расчета параметра RTL

приведено в литературе [Соболев и др., 1996; Соболев, Пономарев, 2003]. Детали реализации алгоритма описаны в работе [Смирнов, Петрушов, 2023]. Алгоритм имеет несколько параметров, смысл которых следует из базовых определений RTL:

$$RTL = R \cdot T \cdot L, \tag{1}$$

$$R(x, y, z, t) = \sum_{i} \exp\left(-\frac{r_i}{r_0}\right) - R_s, \qquad (2)$$

$$T(x, y, z, t) = \sum_{i} \exp\left(-\frac{t_i}{t_0}\right) - T_s,$$
(3)

$$L(x, y, z, t) = \sum_{i} \left(\frac{l_i}{l_0}\right)^p - L_s.$$
(4)

Здесь: r_i — расстояние от *i*-го землетрясения до точки (x, y, z), в которой производится расчет; t_i – интервал времени от момента *i*-го землетрясения до заданного для расчета времени $t; l_i - размер$ очага *i*-го землетрясения. Величины *p*, *r*₀ и *t*₀ являются существенными параметрами алгоритма. Для ускорения работы алгоритма вводится ограничение области расчета радиусом R_0 , обычно в 2-3 раза превосходящим значение r_0 , и аналогичное ограничение интервала времени величиной T_0 . Эти параметры также следует контролировать при сопоставлении результатов расчета RTL. В табл. 1 приведена сводка параметров алгоритма, использованных при расчете карт RTL по заданной пространственной сетке и с заданным шагом по времени, для четырех рассмотренных землетрясений. Значение параметра р было фиксированным и равным 1, что обеспечивает устойчивость оценки сейсмического энерговыделения

Таблица 1. Параметры алгоритма RTL для выделения аномалий

Землетрясение (год, магнитуда)	<i>r</i> ₀ , км	<i>R</i> ₀ , км	<i>t</i> ₀ , сут	<i>T</i> ₀ , сут
2011 г., М _w 7.1	70	170	365	720
2017 г., <i>М</i> _w 7.3	70	170	365	720
2020 г., <i>М_w</i> 6.7	70	170	90	180
2023 г., <i>М</i> _w 7.8, вариант 1	70	170	365	720
2023 г., <i>М</i> _w 7.8, вариант 2	70	170	90	180

ного каталога. Излом графика повторяемости на значениях магнитуды около 4 связан, по нашему мнению, не с потерей информации об относительно слабых событиях, а с неоднородностью магнитудной шкалы. В каталоге ANSS, в отличие от регионального каталога Турции, для каждого землетрясения приведено единственное значение магнитуды и отдельно указан тип этой магнитуды. При этом диапазон магнитуд достаточно велик – от 2.5 до 7.8. Такой диапазон магнитуд не удается, как правило, перекрыть магнитудной шкалой одного типа. Обычно для относительно слабых землетрясений используются магнитуды по длительности или другие локальные магнитуды, а для более сильных землетрясений – магнитуды, опирающиеся на измерения амплитуды тех или иных волн (mb, MS) или моментные магнитуды M_w. Проверка показала, что именно так обстоит дело в случае каталога ANSS. В диапазоне *М* ≤ 4 магнитуды по длительности Md составляют 55%, локальные магнитуды *ML* – 36%, что в совокупности дает 91%. Остальные 9% приходятся на магнитуды *mb*, магнитуд *MS* и M_w нет. В диапазоне M > 4 ситуация противоположная: магнитуды *mb* составляют 80%, $M_w - 13\%$, MS - 1%, что дает в совокупности 94%, а на Md и ML приходятся оставшиеся 6%. Излом графика повторяемости приходится как раз на граничное значение магнитуды $M \approx 4$, при переходе через которое в каталоге меняется преобладающий тип магнитудной шкалы. Смена шкалы и обуславливает, по нашему мнению, излом графика повторяемости.

Методика оценки представительной магнитуды основана на отыскании величины магнитуды, при которой график повторяемости перестает быть прямолинейным. Естественно, что автоматическое применение такой процедуры в скользящих временных окнах обоснованно определяет излом графика повторяемости как нарушение его линейности. На рис. 26 видно, что значения M_c определенной таким образом представительной магнитуды выходят на значения 4.1–4.2, соответствующие излому графика повторяемости, около 1985 г. Бо́льшие значения М_с в более ранние годы отражают реальное изменение (уменьшение со временем) представительной магнитуды. Исходя из этого, мы приняли для селекции рабочего каталога ANSS для территории Турции и Ирана значение магнитуды 3.5 – такое же, как для регионального каталога Турции, в интервале времени 01.01.1985-05.02.2023 гг. Афтершоки из рабочего каталога ANSS, также как и для регионального

ФИЗИКА ЗЕМЛИ № 6 2023

Рис. 3. Карты RTL (кригинг-интерполяция на сетке с шагом 0.16 градуса, линейная аппроксимация вариограммы в области радиусом 2 градуса). Год и магнитуда землетрясения подписаны вверху карт. Красный цвет соответствует отрицательным значениям RTL. Зелеными звездами показаны эпицентры землетрясений. Черные линии – система активных разломов по базе данных ГИН РАН (http://neotec.ginras.ru/database.html) [Zelenin et al., 2022] (показаны все разломы вне зависимости от их атрибутов). На рис. (в) и (г) точками показаны более слабые землетрясения (около них подписаны даты и магнитуды), произошедшие в окрестности очагов основных изучаемых землетрясений (пояснения в тексте).

(более подробно см. в работе [Смирнов, Петрушов, 2023]). Шаг пространственной сетки составлял 30 км, шаг по времени — 10 сут.

На рис. 3 представлены карты параметра RTL для выбранных землетрясений. Карты относятся к моментам времени с наибольшими по величине и пространственным размерам аномалиями. На рис. 4 представлены графики изменения параметра RTL во времени в точках, расположенных в центрах аномалий, приведенных на рис. 3.

Результаты, относящиеся к Пазарджыкскому землетрясению M_w 7.8, представлены на рис. 3г и рис. 4г. При расчете RTL со стандартными параметрами (вариант 1 в табл. 1) на рис. 4г (кривые *1* и 2) видно, что землетрясение произошло с некоторой задержкой после завершения цикла затишье — активизация (уменьшение-увеличение RTL). Достаточно детальные данные регионального каталога позволили выявить форшоковую

активизацию. При расчете RTL с меньшим временным окном (вариант 2 в табл. 1, кривые 3 и 4 на рис. 4) видно увеличение RTL в область положительных значений на временах, соответствующих трем землетрясениям с магнитудами в диапазоне 4.9—5.2, произошедшим вблизи гипоцентра и в пределах очаговой области Пазарджыкского землетрясения в течение 10 месяцев перед ним (эпицентры этих землетрясений показаны на рис. 3г, их времена указаны в подписи к рис. 4).

Перед землетрясением M_w 6.7 24.01.2020 г. (рис. 3в и 4в) данные регионального каталога также позволили выявить увеличение RTL, обусловленное предшествующим землетрясением меньшей магнитуды M_w 5.2 04.04.2019 г. На рис. 4в виден пик, отвечающий активизации сейсмичности при этом землетрясении.

Рис. 4. Графики изменения RTL во времени в центрах аномалий, показанных на рис. 3. Годы и магнитуды землетрясений подписаны на рисунках. На рисунках (а) и (б) красным цветом выделены аномалии RTL перед землетрясениями. На рисунке (в): 1 и 2 - два варианта выделения аномалии, 3 - пик, соответствующий времени землетрясения $M_w 5.2 \ 04.04.2019$ г., произошедшего вблизи очага основного землетрясения. На рисунке (г): 1 и 2 - RTL и аномалия при расчете по варианту 1 (см. табл. 1), 3 и 4 - по варианту 2; 5, 6, 7 - пики, соответствующие временам землетрясений $M_w 5.2 \ 09.04.2022$ г., $M_w 5.0 \ 11.10.2022$ г., $M_w 4.9 \ 18.12.2022$ г., произошедших вблизи очага основного землетрясения.

ОБСУЖДЕНИЕ РЕЗУЛЬТАТОВ

Апостериорно перед Пазарджыкским землетрясением уверенно выделяется аномалия RTL, отвечающая известному бухтообразному образу предвестника: затишье (уменьшение RTL) с последующей активизацией (увеличение RTL) рис. 3г и рис. 4г. Стадия активизации завершилась выраженными форшоками, уверенно выделяемыми по пикам кривой RTL (кривая 4 на рис. 4г). По расположению в пространстве аномалия RTL накрывает северную часть очага Пазарджыкского землетрясения (см. ниже). Для сопоставления параметров RTL-аномалии перед Пазарджыкским землетрясением с аномалиями перед другими землетрясениями M7+, произошедшими в схожих тектонических условиях, и соседним землетрясением M_w 6.7, произошедшем на том же разломе, мы свели в табл. 2 оценки пространственных размеров и длительностей аномалий RTL, обнаруженных перед всеми этими землетрясениями. Оценки размеров и длительностей производились визуально по картам и графикам, приведенным на рис. 3 и рис. 4. В качестве размеров аномалий принимались максимальные размеры пятен (рис. 3) вблизи эпи-

ФИЗИКА ЗЕМЛИ № 6 2023

центров соответствующих землетрясений. Напомним, что представленные на рис. 3 карты соответствуют моментам времени максимальной аномалии RTL. В качестве длительности аномалии принималось время от начала уменьшения величины RTL до момента землетрясения (эти интервалы показаны на рис. 4 цветом).

Для землетрясения 2020 г. нельзя однозначно оценить длительность аномалии RTL, поскольку не ясно, началась ли аномалия до землетрясения M_w 5.2 04.04.2019 г. (кривая *1* на рис. 4в, длительность аномалии 1.5 года) или после него (кривая *2* на рис. 4в, длительность аномалии 0.5 года). В таблице приведены оба значения. Разброс оценок размера аномалии определяется размером одного или обоих пятен на рис. 3в.

Из табл. 2 следует, что размер аномалии перед Пазарджыкским землетрясением 2023 г. значительно меньше, чем перед землетрясениями M7+2011 и 2017 гг. при том, что магнитуда Пазарджыкского землетрясения заметно больше магнитуд землетрясений 2011 и 2017 гг. Размер аномалии перед Пазарджыкским землетрясением соизмерим с размером аномалии перед более слабым землетрясением 2020 г. с магнитудой M_w 6.7.

Представления о физике процессов подготовки землетрясений связывают размер RTL-аномалии (как и размеры других аномалий, относящихся к физическим предвестникам) с размером метастабильной зоны, который определяет размер будущего землетрясения [Сидорин, 1992; Соболев, 2011; Sobolev, 2011]. При этом, как правило, размер RTL-аномалии бывает больше размера очага будущего землетрясения. Для Пазарджыкского землетрясения это не так: размер RTL-аномалии 170 км меньше размера очага землетрясения, составляющего суммарно почти 300 км, и не соответствует размерам аналогичных землетрясений М7+. Для прояснения возможной причины такого несоответствия обратимся к рассмотрению структуры очага Пазарджыкского землетрясения.

Согласно данным Геологической службы США, Пазарджыкское землетрясение имеет сложную трехсегментную структуру очага и трехэтапную историю его вспарывания (рис. 5). Землетрясение началось со вспарывания в течение первых 10–15 с относительно небольшого сегмента длиной около 40 км. Этот сегмент примыкает под углом к двум основным сегментам Восточно-Анатолийского разлома длиной примерно по 130 км каждый. Их вспарывание началось на 15–20 с после того, как волна вспарывания

Таблица 2. Размеры и длительности аномалий RTL

Землетрясение (год, магнитуда)	Размер аномалии, км	Длительность аномалии, год	
2011 г., <i>М</i> _w 7.1	390	2.5	
2017 г., <i>M</i> _w 7.3	270	2.5	
2020 г., <i>М</i> _w 6.7	150-210	1.5 или 0.5	
2023 г., <i>M</i> _w 7.8	170	1.9–2.3	

первого небольшого сегмента дошла до этих больших сегментов.

Высказываются предположения, что сегменты Восточно-Анатолийского разлома, составившие основной очаг Пазарджыкского землетрясения, находились в критическом напряженном состоянии. и разрушение первого маленького сегмента (рис. 5б) явилось триггером большого 260-километрового очага (рис. 5в, 5г) [Смирнов и др., 2023⁴; Тихоцкий и др., 2023; Ребецкий, 2023]. Если принять это предположение, то с точки зрения процесса подготовки очага землетрясения можно говорить о подготовке землетрясения с очагом около 40 км, отвечающим первому сегменту очага Пазарджыкского землетрясения. Оценить магнитуду такого землетрясения можно по данным о скорости \dot{M}_0 нарастания сейсмического момента в процессе вспарывания очага. Интегрируя \dot{M}_0 по времени, получим нарастание сейсмического момента в процессе вспарывания, а переходя от сейсмического момента к магнитуде - нарастание магнитуды. Соответствующий результат приведен на рис. 6.

На рис. 6 видно, что если бы вспарывание очага ограничилось только первым сегментом, то такое землетрясение имело бы магнитуду M_w 6.7. Землетрясению именно такой магнитуды соответствует размер обнаруженной нами RTL-аномалии сейсмического режима. RTL-аномалии отражают развитие трещиноватости, приводящее к образованию в литосфере метастабильной зоны, которая затем разрушается разрывом основного очага. При этом RTL не контролирует непосредственно величину поля напряжений и их близость к критическим значениям. Если верно, что основные сегменты Восточно-Анатолийского разлома, составившие основной очаг землетрясения M_w 7.8 06.02.2023 г., находились в критиче-

⁴ https://phys.msu.ru/rus/news/archive_news/detail.php?ID=33909

Рис. 5. Трехсегментный очаг Пазарджыкского землетрясения (по данным Геологической службы США https://earthquake.usgs.gov/earthquakes/eventpage/us6000jllz/executive): (a) – нормированная скорость нарастания сейсмического момента во времени; затенением показаны последовательные стадии, относящиеся к вспарыванию трех сегментов очага. Стрелками показаны модели плоскостей вспарывания: (б), (в), (г) – первый, второй, третий сегмент, соответственно; цвет на плоскостях – величина подвижки, изолинии – время прохождения фронта вспарывания в секундах; (д) – карта с нанесенными сегментами, звезда – инструментальный эпицентр землетрясения.

Рис. 6. Нарастание магнитуды при вспарывании очага Пазарджыкского землетрясения: 1 -скорость \dot{M}_0 нарастания сейсмического момента (по данным USGS); 2 - нарастание сейсмического момента к моменту времени t: $M(t) = \int_0^t \dot{M}_0(\tau) d\tau$; 3 - нарастание магнитуды $Mw(t) = \frac{2}{3}(\lg M_0(t) - 9.05)$. Пунктирные линии показывают окончание вспарывания первого сегмента очага и соответствующую ему магнитуду M_w 6.7.

ФИЗИКА ЗЕМЛИ № 6 2023

ском напряженном состоянии, а разрушение первого маленького сегмента спровоцировало вспарывание большого 260-километрового очага, то выявленная нами небольшая RTL-аномалия сейсмического режима, вероятно, отразила подготовку только этого "зародышевого" очага размером около 40 км с магнитудой M_w 6.7.

В заключение отметим, что предложенная нами гипотеза о природе относительно небольшой аномалии RTL перед землетрясением M_w 7.8 06.02.2023 г. демонстрирует опасность построения алгоритмов прогноза землетрясений только по сейсмическим данным (тем более, по какомуто одному параметру сейсмичности). При стандартном анализе, выполняемом для прогноза землетрясений с магнитудой $M_w > 7.5$, выявленная нами апостериорно небольшая (для таких землетрясений) аномалия RTL, вероятнее всего, не была бы замечена, а алгоритм прогноза допустил бы ошибку "пропуск цели". Для прогноза землетрясений, имеющих сложный очаг и нестандартную динамику его вспарывания (подобных Пазарджыкскому землетрясению), необходимы геофизические данные, отражающие не только аномалии развития разрушения, но и аномалии напряженно-деформированного состояния, например, информация о размере и локализации областей аномальных деформаций в разломной зоне.

выводы

1. Апостериорный анализ позволил уверенно выделить аномалию RTL перед Пазарджыкским землетрясением M_w 7.8 06.02.2023 г. Вид аномалии соответствует "образу" RTL-предвестника: хорошо выражены стадии затишья и последующей активизации сейсмичности вблизи эпицентра будущего землетрясения. При детальном рассмотрении видно проявление форшоков.

2. Пространственный размер RTL-аномалии перед Пазарджыкским землетрясением M_w 7.8 в полтора раза меньше размера очага землетрясения и в полтора-два раза меньше размера аномалий перед другими региональными землетрясениями с магнитудами более 7. Он соответствует размеру аномалии перед землетрясением M_w 6.7, произошедшем на том же разломе.

3. В качестве гипотезы о причине несоответствия размера аномалии перед Пазарджыкским землетрясением M_w 7.8 размерам, характерным для землетрясений M7+, выдвинуто предположение о том, что обнаруженная RTL-аномалия отражает формирование только первого относительно небольшого сегмента очага Пазарджыкского землетрясения. Размер этого сегмента и накопленный при его вспарывании сейсмический момент отвечают землетрясению с магнитудой M_w 6.7. С такой магнитудой согласуется размер обнаруженной RTL-аномалии.

ФИНАНСИРОВАНИЕ РАБОТЫ

Работа выполнена при финансовой поддержке РНФ, грант № 23-27-00067 "Стадийность проявления аномалий сейсмического режима перед сильными землетрясениями".

СПИСОК ЛИТЕРАТУРЫ

Завьялов А.Д. Среднесрочный прогноз землетрясений: основы, методика, реализация. М.: Наука. 2006. 254 с.

Кравченко Н.М. Сопоставление сейсмических затиший, обнаруженных методами RTL- и Z-тест. Проблемы комплексного геофизического мониторинга Дальнего Востока России. Труды Второй региональной научнотехнической конференции. Петропавловск-Камчатский. 11–17 октября 2009 г. Петропавловск-Камчатский: ГС РАН 2010. С. 211–215.

Михайлов В.О., Бабаянц И.П., Волкова М.С., Тимошкина Е.П., Смирнов В.Б., Тихоцкий С.А. Реконструкция косейсмческих и постсейсмических процессов для землетрясения в Турции 06.02.2023 по данным радарной спутниковой интерферометрии // Физика Земли. 2023. № 6. С. 77–88.

Ребецкий Ю.Л. Тектонофизическое районирование сейсмогенных разломов восточной Анатолии и Караманмарашские землетрясения 06.02.2023 г. // Физика Земли. 2023. № 6. С. 37–65.

Салтыков В.А., Кравченко Н.М. Комплексный анализ сейсмичности Камчатки 2005–2007 гг. на основе регионального каталога // Вулканология и сейсмология. 2009. №4. С. 53–63.

Салтыков В.А., Кугаенко Ю.А. Сейсмические затишья перед двумя сильными землетрясениями 1996 г. на Камчатке // Вулканология и сейсмология. 2000. № 1. С. 57–65.

Салтыков В.А., Кугаенко Ю.А., Кравченко Н.М., Воропаев П.В. Пространственно-временные особенности сейсмической подготовки и афтершокового процесса Ближне-Алеутского землетрясения 17.07.2017 г. M_w 7.8. Вулканизм и связанные с ним процессы. Материалы XXI региональной научной конференции, посвященной Дню вулканолога. 2018. Петропавловск-Камчатский: ИВиС ДВО РАН. 2018. С. 137–140.

Салтыков В.А., Кугаенко Ю.А., Кравченко Н.М., Коновалова А.А. Параметрическое представление динамики сейсмичности Камчатки// Вулканология и сейсмология. 2013. №1. С. 65-84.

Сидорин А. Я. Предвестники землетрясений. М.: Наука. 1992. 191 с. Словарь географических названий зарубежных стран. 3-е изд. / Аненберг Л.И. и др. (отв. сост.). Комков А.М. (ред.). М.: Недра. 1986. 459 с.

Смирнов В. Б. Прогностические аномалии сейсмического режима. І. Методические основы подготовки исходных данных // Геофизические исследования. 2009. Т. 10. № 2. С. 7–22.

Смирнов В.Б., Петрушов А.А. Стадийность проявления аномалий сейсмического режима перед землетрясениями Камчатки, Японии и Исландии // Физика Земли. 2023. № 5. С. 62–78.

Смирнов В.Б., Петрушов А.А., Михайлов В.О. Аномалии сейсмического режима перед землетрясениями в Восточной Турции. Ломоносовские чтения МГУ 4–12 апреля 2023 г. Секция физики. Тезисы. М.: Физический факультет МГУ. 2023. С. 207–209.

Смирнов В.Б., Пономарев А.В. Физика переходных режимов сейсмичности. М.: РАН. 2020. 412 с.

Соболев Г.А. Концепция предсказуемости землетрясений на основе динамики сейсмичности при триггерном воздействии. М.: ИФЗ РАН. 2011. 56 с.

Соболев Г.А. Модель лавинно-неустойчивого трещинообразования – ЛНТ // Физика Земли. 2019. № 1. С. 166–179.

Соболев Г.А. Физические основы прогноза землетрясений. М.: Наука. 1993. 314 с.

Соболев Г.А., Пономарев А.В. Физика землетрясений и предвестники. М.: Наука. 2003. 270 с.

Соболев Г.А., Тюпкин Ю.С., Смирнов В.Б., Завьялов А.Д. Способ среднесрочного прогноза землетрясений // Докл. РАН. 1996. Т. 347. № 3. С. 405–407.

Соболев Г.А. Методология, результаты и проблемы прогноза землетрясений // Вестник РАН. 2015. Т. 85. № 3. С. 203–208.

Тихоцкий С.А., Татевосян Р.Э., Ребецкий Ю.Л., Овсюченко А.Н., Ларьков А.С. Караманмарашские землетрясения 2023 г. в Турции: сейсмическое движение по сопряженным разломам // Докл. РАН. 2023. Т. 511. № 2. С. 228–235.

Di Giovambattista R. Tyupkin Yu. S. Seismicity patterns before the $M = 5.8\ 2002$, Palermo (Italy) earthquake: seismic quiescence and accelerating seismicity // Tectonophysics. 2004. V. 384. P. 243–255.

Di Giovambattista R., Tyupkin Y.S. Spatial and temporal distribution of seismicity before the Umbria-Marche September 26, 1997 earthquakes // J. Seismology. 2000. V. 4. P. 589–598.

Gentili S., Di Giovambattista R., Peresan A. Seismic quiescence preceding the 2016 central Italy earthquakes // Physics of the Earth and Planetary Interiors. 2017. V. 272. P. 27–33.

Huang Q. Search for reliable precursors: A case study of the seismic quiescence of the 2000 western Tottori prefecture earthquake // J. Geophys. Res. 2006. V. 111. P. B04301. https://doi.org/10.1029/2005JB003982

Huang Q. Seismicity changes prior to the Ms8. 0 Wenchuan earthquake in Sichuan, China // Geophysical Research Letters. 2008. V. 35. P. L23308. https://doi.org/10.1029/2008GL036270

ФИЗИКА ЗЕМЛИ № 6 2023

Huang Q. Seismicity pattern changes prior to large earthquakes-An approach of the RTL algorithm // Terrestrial atmospheric and oceanic sciences. 2004. V. 15. P. 469–492.

Huang Q. Seismicity Pattern Changes Prior to the 2008 Ms7. 3 Yutian Earthquake // Entropy. 2019. V. 21(2). P. 118. https://doi.org/10.3390/e21020118

Huang Q., Ding X. Spatiotemporal variations of seismic quiescence prior to the 2011 M 9.0 Tohoku earthquake revealed by an improved Region–Time–Length algorithm // BSSA. 2012. V. 102. P. 1878–1883.

Huang Q., Nagao T. Seismic quiescence before the 2000 M = 7.3 Tottori earthquake // Geophysical research letters. 2002. V. 29. No 12. P. 1578.

https://doi.org/10.1029/2001GL013835

Huang Q., Öncel A.O., Sobolev G.A. Precursory seismicity changes associated with the $M_w = 7.4$ 1999 August 17 Izmit (Turkey) earthquake // Geophys. J. Int. 2002. V. 151. P. 235–242.

Huang Q., Sobolev G.A., Nagao T. Characteristics of the seismic quiescence and activation patterns before the M = 7.2 Kobe earthquake, January 17, 1995 // Tectonophysics. 2001. V. 337. P. 99-116.

Kali R., Zaytsev A., Burnaev E. Recurrent Convolutional Neural Networks help to predict location of Earthquakes // IEEE Geoscience and Remote Sensing Letters PP. 2021. V. 99. P. 1–5.

Nagao T., Takeuchi A., Nakamura K. A new algorithm for the detection of seismic quiescence: Introduction of the RTM algorithm, a modified RTL algorithm // Earth Planets and Space. 2011. V. 63. P. 315–324. https://doi.org/10.5047/eps.2010.12.007

Panza G.F., Kossobokov V.G., Laor E., De Vivo B. Earthquakes and sustainable infrastructure. Elsevier. 2022. 648 p.

Proskura P., Zaytsev A., Braslavsky I., Egorov E., Burnaev E. Usage of Multiple RTL Features for Earthquakes Prediction. Computational Science and Its Applications – ICCSA 2019. ICCSA 2019. Lecture Notes in Computer Science. V. 11619. Springer. Cham.

https://doi.org/10.1007/978-3-030-24289-3_41

Puangjaktha P. Pailoplee S. Application of the region– time–length algorithm to study of earthquake precursors in the Thailand–Laos–Myanmar borders // J. Earth System Science. 2018. V. 127. P. 1-12.

Shashidhar D., Kumar N., Mallika K., Gupta H. Characteristics of seismicity patterns prior to the $M \sim 5$ earthquakes in the Koyna Region, Western India - application of the RTL algorithm // Episodes. 2010. V. 33(2). P. 83–89.

Sobolev G.A. Seismicity dynamics and earthquake predictability // Nat. Hazards Earth Syst. Sci. 2011. V. 11. P. 1–14.

Stefansson R. Advances in earthquake prediction. Springer. 2011. 245 p.

Zelenin E.A, Bachmanov D.M., Garipova S.T., Trifonov V.G., Kozhurin A.I. The Active Faults of Eurasia Database (AFEAD): the ontology and design behind the continentalscale dataset // Earth System Science Data. 2022. V. 14. P. 4489–4503.

Zhang Y., Huang Q. Seismicity Changes before Major Earthquakes in Sichuan, China, Revealed by a Combination of the RTL Algorithm and ETAS Model // Seismological Research Letters. 2022 V. 94 (2A). P. 844–851. https://doi.org/10.1785/0220220282

СМИРНОВ и др.

The RTL Anomaly of Seismicity before the February 6, 2023 Earthquake in Turkey

V. B. Smirnov^{a, b,} *, A. A. Petrushov^{a, b} and , and V. O. Mikhailov^{a, b}

^aFaculty of Physics, Moscow State University, Moscow, 119991 Russia ^bSchmidt Institute of Physics of the Earth, Russian Academy of Sciences, Moscow, 123995 Russia *e-mail: vs60@mail.ru

Abstract—Based on the data from the regional Turkey earthquake catalog and the ANSS Comprehensive Earthquake Catalog for Turkey and a part of Iran, a posteriori analysis of RTL anomalies of seismicity before the damaging $M_w 7.8$ Pazarcik earthquake in Turkey of February 6, 2023 and, for comparison, before the $M_w 7.1$ earthquake of October 23, 2011 (Eastern Turkey), the $M_w 7.3$ earthquake of November 12, 2017 (Iran), and the M 6.7 earthquake of January 24, 2020 (the East Anatolian Fault), was made. Distinctly observable before the Pazarcik earthquake is an RTL anomaly with well-marked stages of a seismic quiescence and subsequent activation near the epicentre of the future earthquake. Spatially, the anomaly is one-and-a-half times smaller than the source of the Pazarcik earthquake, and one-and-a-half - two times smaller than RTL anomalies before the $M_w 6.7$ earthquake that occurred on the same fault. As a hypothesis to explain why the size of the anomaly before the $M_w 7.8$ Pazarcik earthquake does not match the sizes of the anomalies characteristic of M7+ earthquakes, it was assumed that the detected RTL anomaly reflects the formation only of the first, relatively small segment of the source of the Pazarcik earthquake.

Keywords: seismic regime, seismic anomalies, Pazarcik earthquake