ГЕНЕТИКА ЖИВОТНЫХ

УЛК 575.174.015.3

ГЕНЕТИЧЕСКАЯ СТРУКТУРА ПОПУЛЯЦИИ ГОЛШТИНИЗИРОВАННОГО ЧЕРНО-ПЕСТРОГО СКОТА ПО МИКРОСАТЕЛЛИТНЫМ ЛОКУСАМ

© 2021 г. О. С. Шаталина^{1, *}, И. В. Ткаченко¹, А. А. Ярышкин¹

 1 Уральский федеральный аграрный научно-исследовательский центр Уральского отделения Российской академии наук, Екатеринбург, 620142 Россия

*e-mail: shatalinao@list.ru
Поступила в редакцию 12.03.2020 г.
После доработки 01.05.2020 г.
Принята к публикации 25.08.2020 г.

Приведены результаты исследования генетической структуры популяции крупного рогатого скота по 12 микросателлитным локусам. Объект исследования — 702 особи крупного рогатого скота голштинизированной черно-пестрой породы. Установлено, что в среднем гетерозиготность животных по локусам составляет 78.3%. Среднее число аллелей на локус составляет 7.0 \pm 0.08. Наибольшее распространение в популяции получил аллель 248 пн локуса SPS115 — 0.644. Генотип 248/248 локуса SPS115 имеет наибольшую частоту встречаемости — 0.446. В популяции выявлено 169 редких генотипов с частотой встречаемости меньше 0.010.

Ключевые слова: крупный рогатый скот, популяция, микросателлитный локус, аллель, генотип.

DOI: 10.31857/S0016675821020090

Популяционная генетика представляет большой интерес для биологов, так как дает новые знания о генетической структуре популяций различных видов животных, селекционных процессах, дрейфе генов, степени инбридинга, оценке генетических расстояний между семействами, генетическом разнообразии. Межпородное скрещивание приводит к тому, что в популяцию животных привносятся новые гены. Закрепление ценных хозяйственно полезных признаков при помощи инбридинга способствует увеличению количества гомозиготных особей в популяции.

Генетическая структура популяции исследуется по генам и микросателлитным локусам. Изучается сцепленное наследование генов, локусов, изменчивость и ассоциации с хозяйственно полезными признаками. Так, Н.В. Ковалюк с соавт. [1] изучена генетическая изменчивость гена ВоLA-DRB3 крупного рогатого скота. С.Р. Хатами с соавт. [2] исследован полиморфизм генов пролактина и гормона роста и их взаимосвязь с хозяйственно полезными признаками. Также учеными изучены фрагменты ДНК, фланкированных микросателлитными локусами с целью выявления породных маркеров крупного рогатого скота, овец и других животных [3—6].

В последнее десятилетие широкое распространение получили исследования микросателлитных локусов. Т.Ю. Киселева с соавт. [7] выявили

неравновесие по сцеплению локусов крупного рогатого скота. Проведены исследования генетического разнообразия крупного рогатого скота различных пород по микросателлитным локусам [8—11]. Изучены количественные показатели аллелей. Выявлено, что число аллелей на локус варьирует от 7 до 18 [12—16]. Также исследования проведены на популяции лошадей, овец, лосей и оленей [17—20].

Цель настоящей работы — определение генетической структуры популяции голштинизированного черно-пестрого скота по микросателлитным локусам.

МАТЕРИАЛЫ И МЕТОДЫ

Исследование проведено в Уральском НИИСХ — филиале ФГБНУ УрФАНИЦ УрО РАН в 2019 г. Объектом исследования служил голштинизированный черно-пестрый скот (*Bos taurus*) (*n* = 702). ДНК выделяли из цельной крови с антикоагулянтом при помощи набора ДНК—Экстран 1 (ООО "НПФ Синтол", Россия) согласно методике изготовителя. ПЦР проводили на амплификаторе РСК-9700. Определены 12 микросателлитных локусов, рекомендованных Международным обществом генетики животных (ISAG): BM1824, BM2113, ETH3, ETH10, ETH225, INRA23, SPS115, TGLA53, TGLA122, TGLA126, TGLA227, BM1818,

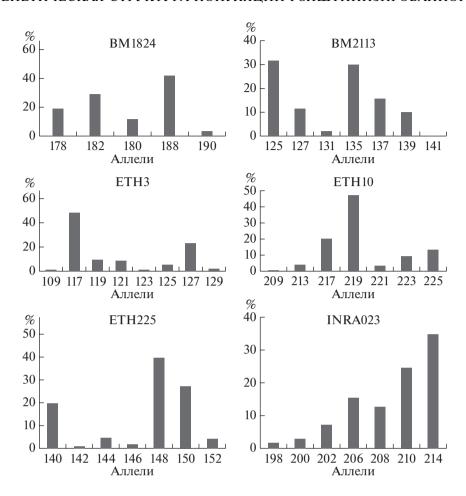
Таблица 1. Структура популяции крупного рогатого скота по гомозиготности микросателлитных локусов (n = 702)

Микросателлитные локусы	Особи, %	
	гетерозиготные	гомозиготные
BM1824	78.2	21.8
BM2113	87.2	12.8
ETH3	75.4	24.6
ETH10	75.8	24.2
ETH225	78.7	21.3
INRA023	80.5	19.5
SPS115	56.9	43.1
TGLA53	93.9	6.1
TGLA122	86.0	14.0
TGLA126	70.8	29.2
TGLA227	87.9	12.1
BM1818	69.0	31.0
Среднее	78.3	21.6

с использованием набора CorDIS Cattle (ООО "Гордиз", Россия). Микросателлитный профиль животных установлен при использовании генетического анализатора Genetic Analyzer AB 3130 и программ Data Collection v.3.1 и GeneMapper v.4.0. В ходе изучения генетической структуры популяции крупного рогатого скота выявлены: количество гомозиготных и гетерозиготных животных по локусам, а также аллели и генотипы по каждому локусу. Информативными считали аллели, имеющие частоту встречаемости выше 5%. Статистический анализ проведен при помощи программ IBM SPSS Statistics 23 и Microsoft Excel.

РЕЗУЛЬТАТЫ

Исследована гомозиготность крупного рогатого скота голштинизированной черно-пестрой породы по 12 микросателлитным локусам. Результаты отражены в табл. 1.


Выявлено, что количество гетерозиготных особей значительно превышает количество гомозиготных по всем 12 локусам. По локусу TGLA53 обнаружено наименьшее количество гомозиготных особей — 6.1%. Наибольший процент гомозиготных животных выявлен в локусе SPS115 — 43.1%. Также установлены высокие показатели гомозиготности в локусах ВМ1818 и TGLA126 — 31 и 29.2% соответственно. В среднем по популяции гетерозиготность составила 78.3%, гомозиготность — 21.6%. Аналогичные данные получены Т.Н. Карымсаковым с соавт. [13].

В микросателлитных локусах распространен множественный аллелизм. На рис. 1, 2 представлен

полиморфизм аллелей по 12 микросателлитным локусам. В локусах BM1824, SPS115, TGLA126, BM1818 выявлено наименьшее число аллелей – пять. В локусе TGLA53 установлено наибольшее число аллелей - 12, что свидетельствует о высоком генетическом разнообразии [21, 22]. В среднем число аллелей на локус составляет 7.0 ± 0.08 . Аналогичные данные получены Н.И. Стрекозовым с соавт., Н.С. Фураевой с соавт. на крупном рогатом скоте сычевской, бурой швицкой и ярославской пород, число аллелей на локус составило 7.4 [11, 23]. Исследования, проведенные учеными на герефордской и симментальской породах, выявили более низкое число аллелей на локус — 3.3 в герефордской породе и 5.3 в симментальской породе [24, 25]. В популяции голштинизированного крупного рогатого скота наибольшую распространенность в общем количестве локусов получил аллель 248 пн локуса SPS115 (0.644), наименьшую — аллель 141 пн локуса ВМ2113 (0.001).

По локусу ВМ 1824 наиболее часто присутствует аллель 188 пн, его частота встречаемости составляет 0.405. Редким аллелем данного локуса является аллель 190 - 0.026. В локусе установлено четыре информативных аллеля -178, 180, 182, 188 пн и один низкоинформативный аллель — 190 пн. По локусу ВМ2113 распространены аллели 135 и 125 пн (0.298 и 0.314 соответственно). Редким аллелем в данном локусе является 141 пн -0.001, возможно данный аллель появился вследствие мутационного процесса. В локусе присутствуют пять информативных аллелей -125, 127, 135, 137, 139 пн и два низкоинформативных аллеля — 131 и 141 пн. В ярославской породе у животных имеется большее разнообразие по данному локусу – 10 аллелей, в черно-пестрой голштинизированной породе семь аллелей [23]. В локусе ЕТНЗ получил распространение аллель 117 пн -0.480. Редко встречаются аллели 123 и 109 пн, по 0.013 каждый. По локусу выявлены пять информативных аллелей — 117, 119, 127, 121, 125 пн и три аллеля с низкой информативностью - 129, 123 и 109 пн. В ярославской породе данный локус представлен меньшим генетическим разнообразием – шесть аллелей, в то время как в черно-пестрой голштинизированной породе восемь аллелей [23]. По локусу ЕТН10 часто встречается аллель 219 пн -0.472, наиболее редким в данном локусе является аллель 209 - 0.008. В локусе ЕТН10 присутствуют четыре информативных аллеля -219, 223, 225 и 217 пн и три низкоинформативных — 221, 213, 209 пн.

Локус TGLA53 представлен большим числом аллелей — 12, в ярославской породе животные по данному локусу имеют 10 аллелей [23]. Наибольшее распространение получили аллели 168, 160 и 162 пн (0.161, 0.183 и 0.200 соответственно). Редкими аллелями в данном локусе являются 182 и 172 пн — 0.005 и 0.008 соответственно. По данному локусу выявлено семь информативных аллелей —

Рис. 1. Частоты встречаемости (%) аллелей локусов ВМ1824, ВМ2113, ЕТН3, ЕТН10, ЕТН225, INRA023.

154, 158, 160, 162, 168, 176 и 186 пн и пять аллелей с низкой информативностью -166, 172, 182, 184 и 170 пн. В локусе TGLA122 животных черно-пестрой голштинизированной породы наблюдается большое генетическое разнообразие - 10 аллелей, в симментальской породе в данном локусе выявлено шесть аллелей [25]. При этом наибольшее распространение имеют аллели 149 и 143 пн — 0.215 и 0.235 соответственно, хотя их концентрация в популяции ниже, чем у других распространенных аллелей локусов. Редкими аллелями локуса являются 181 и 139 пн -0.008 и 0.019. В локусе TGLA122 установлено семь информативных аллелей – 149, 143, 171, 183, 163, 151 и 161 пн. Низкоинформативными показали себя аллели с длиной 181, 139 и 141 пн. Распространенным аллелем локуса ЕТН225 признан аллель 148 (0.397), редким - 146 пн (0.024). В данном локусе присутствуют три информативных аллеля – 140, 148 и 150 пн, причем аллель 148 является наиболее информативным. Аллели 142, 144, 152 и 146 пн обладают низкой информативностью.

По локусу INRA023 наиболее распространен аллель 214 пн. Редко встречается аллель 198 —

0.019. По локусу INRA023 выявлено пять информативных аллелей -202, 206, 208, 210 и 214 пн и два низкоинформативных — 198 и 200 пн. В локусе SPS115 установлен самый распространенный аллель – 248 пн, который обладает высокой информативностью. Редких аллелей (менее 0.02) в данном локусе не выявлено. Информативными аллелями локуса являются 248, 256, 254 и 252 пн. В симментальской породе также данный аллель 248 является самым распространенным, его частота встречаемости составляет 0.778 [25]. По локусу TGLA126 наиболее распространен аллель 117 пн — 0.486. Редким аллелем локуса является аллель 119 пн - 0.020. Данный аллель - единственный неинформативный аллель локуса TGLA126. В локусе TGLA227 наблюдается большое разнообразие – девять аллелей. Наибольшей распространенностью обладает аллель 97 пн -0.28. Редкими аллелями локуса являются 79 и 101 пн — 0.013 и 0.016 соответственно. В данном локусе присутствуют шесть информативных аллелей — 89, 91, 83, 97, 81 и 103 пн. Три аллеля являются неинформативными — 101, 79 и 99 пн. В локусе ВМ1818 лидирующее положение заняли ал-



Рис. 2. Частоты встречаемости (%) аллелей локусов SPS115, TGLA53, TGLA122, TGLA126, TGLA227, BM1818.

лели 262 и 266 - 0.430 и 0.444 соответственно. Реже других встречаются аллели 268 и 270 пн -0.14 каждый. Аллели 262 и 266 пн данного локуса можно считать высокоинформативными, аллели 268 и 270 пн — низкоинформативными. В популяции крупного рогатого скота голштинизированной черно-пестрой породы число аллелей на локус варьировало от пяти до 12. Необходимо отметить, что в бурой швицкой породе крупного рогатого скота аллель 262 локуса ВМ 1818 — самый распространенный, его частота встречаемости составляет 0.680 [11], в то время как в черно-пестрой голштинизированной породе самый распространенный аллель 248 - 0.644. Кроме того, несмотря на меньшее число аллелей на локус в герефордской породе, в локусе ВМ1818 присутствуют девять аллелей, а в черно-пестрой голштинизированной — шесть аллелей [24]. При этом в симментальской породе данный локус представлен меньшим разнообразием аллелей — четыре аллеля на локус [25].

Также исследованы генотипы микросателлитных локусов популяции крупного рогатого скота (рис. 3). По локусу TGLA122 у особей крупного рогатого скота установлено 70 генотипов, что свидетельствует о высоком полиморфизме локуса. Генетическая структура популяции по данному локусу состоит из 61 гетерозиготного и восьми гомозиготных генотипов: 149/149, 143/143, 151/151, 163/163, 141/141, 183/183, 139/139 и 171/171. Наибольшая частота встречаемости отмечена у генотипа 143/149 - 0.108. В популяции обнаружено большое число редких генотипов – 41. Установлено 15 генотипов с частотой встречаемости 0.001 (143/181, 161/163, 153/149, 161/181, 173/183, 171/173, 171/181, 147/149, 139/149, 151/153, 149/175, 141/153, 153/171, 139/139 и 161/169), а также 13 генотипов с частотой встречаемости 0.002 (153/183,

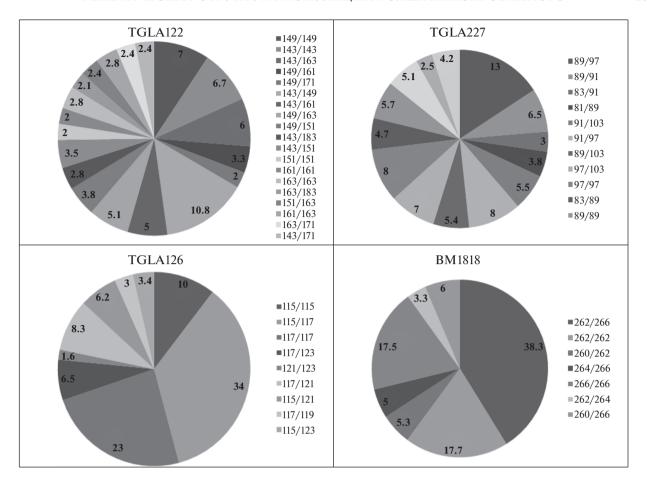


Рис. 3. Процентное соотношение распространенных генотипов локусов TGLA122, TGLA227, TGLA126, BM1818.

147/163, 151/181, 143/175, 181/183, 149/173, 141/161, 183/183, 139/141, 141/163, 143/147, 141/151, 171/171). В популяции крупного рогатого скота по локусу ТGLA122 выявлено шесть генотипов с частотой встречаемости 0.004 (141/171, 143/173, 153/163, 141/141, 163/181, 139/143) и три генотипа с частотой встречаемости 0.005 (139/161, 139/151, 139/163). Частота встречаемости генотипов 171/183 и 139/183 составляет 0.006, 141/149 и 141/183 — 0.008.

Локус TGLA227 представлен большим генетическим разнообразием — в нем установлено 53 генотипа, что также позволяет предположить о его высоком полиморфизме. При этом гомозиготных генотипов по локусу всего четыре -97/97, 89/89,81/81 и 83/83 и 49 генотипов — гетерозиготны. Самый распространенный генотип данного локуса — 89/97 (0.130). Также в популяции крупного рогатого скота по локусу TGLA227 имеется большое число генотипов с частотой встречаемости менее 0.01. Так, 11 генотипов имеют частоту встречаемости 0.001 - 99/103, 79/91, 77/83, 97/101, 77/91, 79/97, 89/101, 81/87, 91/95, 83/101 и 99/101. У 8 генотипов установлена частота встречаемости 0.002 — 91/101, 101/103, 87/103, 81/99, 81/81, 87/91, 83/99, 87/93. Выявлены пять генотипов с частотой

встречаемости 0.004 - 79/103, 83/87, 81/93, 77/89, 77/103. Частота встречаемости генотипов 83/93, 89/99, 91/93, 87/89, 93/103 и 83/83 составляет 0.005. Генотипы 97/99, 87/97, 81/83 и 81/91 имеют частоту встречаемости 0.008, генотипы 81/83 и 77/97 - 0.007, а генотип 103/103 - 0.009.

В локусе TGLA126 представлено 16 генотипов, среди них — четыре гомозиготных: 115/115, 117/117, 121/121 и 123/123 и 12 гетерозиготных. Наибольшее распространение получили четыре генотипа — 115/115, 117/121, 117/123 и 115/121 — 0.100, 0.083, 0.065 и 0.063 соответственно. Наиболее редкие генотипы данного локуса: 107/117, 111/121 — по 0.001 каждый; 123/123 - 0.002; 119/123, 119/121 — по 0.004 каждый.

В локусе ВМ1818 установлено 17 генотипов. Наиболее распространенными являются генотипы 262/266, 262/262 и 266/266-0.383, 0.177 и 0.175 соответственно. Редкими генотипами по данному локусу являются 260/268, 260/260 и 258/262- по 0.001 каждый; 264/268-0.002; 258/268-0.005 и 260/264-0.007. Частота встречаемости данных генотипов меньше одного процента. В популяции по локусу ВМ1818 выявлено три гомозиготных ге-

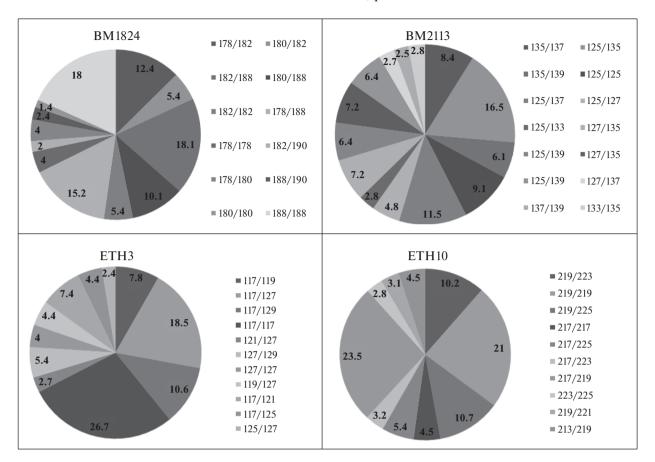


Рис. 4. Процентное соотношение распространенных генотипов локусов ВМ1824, ВМ2113, ЕТН3, ЕТН10.

нотипа — 262/262, 266/266, 260/260 и 14 гетерозиготных.

Локус ВМ 1824 представлен 15 генотипами. Гомозиготных генотипов по данному локусу четыре — 182/182, 180/180, 188/188 и 178/178. Наибольшую частоту встречаемости имеют генотипы 182/188 и 188/188 - 0.181 и 0.180 соответственно. Также выявлено три генотипа с низкой встречаемостью — 174/182 (0.001), 180/190 (0.007) и 178/190 (0.008) (рис. 4).

В популяции крупного рогатого скота по локусу ВМ2113 установлено 19 генотипов. Наибольшее распространение получил генотип 125/135-0.165, наименьшее — генотип 133/139-0.007. Установлено три гомозиготных по данному локусу генотипа — 125/125, 137/137 и 127/127.

Локус ЕТНЗ в популяции представлен 18 генотипами. Гомозиготные генотипы в данной популяции — 117/117, 119/119, 129/129 и 121/121. Наибольшую частоту встречаемости имеет генотип 117/117-0.267. Также установлены пять генотипов с низкой частотой встречаемости: 119/119 и 121/121-0.004, 119/125-0.005, 129/129 и 121/125-0.008 каждый.

По локусу ЕТН10 выявлен 21 генотип, среди них четыре гомозиготных — 219/219, 217/217, 225/225 и 223/223. Наибольшее распространение имеет генотип 217/219-0.235. Также выявлены пять редко встречающихся генотипов — 209/225 и 213/223-0.002, 209/217-0.004, 223/223 и 209/219-0.008 каждый.

Локус ЕТН225 представлен в данной популяции 18 генотипами. Установлено три гомозиготных генотипа (150/150, 140/140 и 148/148) и 15 гетерозиготных. Наибольшее распространение получил генотип 148/150-0.301. Также установлено три редко встречающихся генотипа — 146/152 (0.002), 140/142 (0.005) и 142/150 (0.007) (рис. 5).

Исследованы особи крупного рогатого скота по локусу INRA023. Всего установлено 29 генотипов, среди них четыре гомозиготных (202/202, 210/210, 208/208 и 206/206) и 25 гетерозиготных. Наибольшую частоту встречаемости имеет генотип 210/214-0.182. Также выявлено 11 генотипов с частотой встречаемости меньше 0.01. Два генотипа имеют частоту встречаемости 0.002 (198/202, 212/214), пять генотипов (198/208, 198/206, 202/204, 200/208, 204/208) — частоту встречаемости 0.004, и генотип 200/206-0.008.

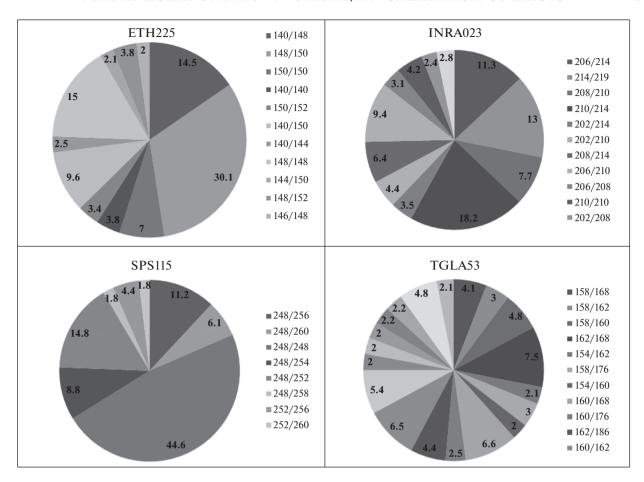


Рис. 5. Процентное соотношение распространенных генотипов локусов ETH225, INRA023, SPS115, TGLA53.

Локус SPS115 в популяции крупного рогатого скота черно-пестрой породы представлен 16 генотипами. Установлено четыре гомозиготных генотипа (248/248, 252/252, 256/256 и 260/260) и 12 гетерозиготных. Наибольшее распространение получил генотип 248/248 - 0.446. Также установлено пять редких генотипов. Частота встречаемости генотипов 254/258 и 260/260 составляет 0.002, 256/258 и 256/260 - 0.004 и 256/256 - 0.005.

В популяции крупного рогатого скота по локусу TGLA53 обнаружено 80 генотипов. Данный локус ввиду значительного количества аллелей и генотипов возможно отнести к высокополиморфным. Число гомозиготных генотипов у особей — восемь (168/168, 162/162, 160/160, 176/176, 186/186, 154/154, 170/170, 166/166), гетерозиготных — 72. Наибольшую частоту встречаемости имеет генотип 162/168 — 0.075. Также в популяции установлено 48 редких генотипов. У исследованных животных присутствуют 18 генотипов с частотой встречаемости 0.001 (172/184, 154/174, 168/174, 178/184, 186/186, 154/184, 158/182, 154/154, 172/186, 158/174, 170/170, 166/172, 162/172, 160/172, 164/176, 168/178, 176/182, 154/164) и 13 генотипов с частотой встречаемости 0.002 (160/182, 162/174, 154/178, 166/170,

184/186, 164/184, 160/174, 158/178, 164/186, 166/166, 158/164, 166/176, 158/158). Также выявлено семь генотипов с частотой встречаемости 0.004 (160/164, 154/170, 160/184, 164/168, 166/182, 154/166, 162/178) и три генотипа с частотой встречаемости 0.005 (170/184, 176/184 и 178/186). Частота встречаемости генотипов 158/184 и 154/176 составляет 0.007, 176/176 и 170/176-0.008 и 170/186, 168/170 и 158/170-0.009.

ОБСУЖДЕНИЕ

В ходе проведенных исследований генетической структуры популяции крупного рогатого скота черно-пестрой породы установлено, что гомозиготность по микросателлитным локусам варьирует от 6.1% по локусу TGLA53 до 43.1% по локусу SPS115. Число аллелей на локус в голштинизированной черно-пестрой породе варьирует от пяти до 12 и составляет в среднем семь аллелей. В сычевской, бурой швицкой и ярославской породах получены аналогичные данные по среднему числу аллелей на локус, в то время как в герефордской и симментальской породах данный показатель снижен до 3.3 и 5.3 аллеля на локус соот-

ветственно. Наибольшую распространенность среди аллелей 12 локусов в популяции имеет аллель 248 пн локуса SPS115 — 0.644. Редкими аллелями популяции являются аллель 141 пн локуса BM2113 — 0.001 и аллель 182 пн локуса TGLA53 — 0.005. Всего по 12 микросателлитным локусам выявлено 52 информативных аллеля. Наиболее распространенным генотипом является генотип 248/248 локуса SPS115 — 0.446. Высокая частота встречаемости данного генотипа позволяет назвать его характерным для голштинизированной черно-пестрой породы. Также у исследованных особей установлено 169 генотипов с частотой встречаемости меньше 0.01. Установлено три высокополиморфных локуса: TGLA53, TGLA227, TGLA122. Гомозиготные генотипы присутствуют как среди распространенных, так и среди редко встречающихся, что свидетельствует о том, что гомозиготное состояние генотипа не связано с его частотой встречаемости. Установлено, что при увеличении общего числа генотипов локуса с 15-18 до 70-80 возрастает количество редких аллелей в данных локусах с 0.20-0.30 до 0.58-0.68, что обусловлено большим генетическим разнообразием. Популяция крупного рогатого скота черно-пестрой голштинизированной породы представлена значительным числом аллелей и генотипов, что позволяет делать предположения об уровне инбридинга в данной популяции. Симментальская и ярославская породы крупного рогатого скота имеют меньшее генетическое разнообразие. По изученным микросателлитным локусам они имеют разницу на 1-2 аллеля на локус по сравнению с черно-пестрой голштинизированной породой.

Источником финансирования являлось выполнение государственного задания по теме: "Разработать селекционно-генетические и теоретические основы сохранения и эффективного использования генофонда крупного рогатого скота в Уральском регионе с применением современных биотехнологий".

Все применимые международные, национальные и/или институциональные принципы ухода и использования животных были соблюдены.

Авторы заявляют, что у них нет конфликта интересов.

СПИСОК ЛИТЕРАТУРЫ

- 1. *Ковалюк Н.В., Сацук В.Ф., Волченко А.Е.* Изменчивость гена *BoLA-DRB3* у крупного рогатого скота молочного направления продуктивности и его влияние на параметры жизнеспособности // Генетика. 2012. Т. 48. № 8. С. 962—965.
- 2. *Хатами С.Р., Лазебный О.Е., Максименко В.Ф., Сулимова Г.Е.* ДНК-полиморфизм генов гормона роста и пролактина у ярославского и черно-пестрого скота в связи с молочной продуктивностью // Генетика. 2005. Т. 41. № 2. С. 229—236.

- Глазко В.И. Геномное распределение ISSR-маркеров (AG)9С и (GA)9С у видов Bovinae и Caprinae // С.-х. биология. 2009. Т. 44. № 4. С. 31–36.
- 4. *Глазко В.И.*, *Столновский Ю.А*. Структурно-функциональные особенности микросателлитов в геномах крупного рогатого скота и овец // Докл. PACXH. 2011. № 1. С. 41–45.
- 5. *Столповский Ю.А.*, *Ахани Азари М.*, *Евсюков А.Н. и др*. Сравнительный анализ полиморфизма ISSR-маркеров у пород крупного рогатого скота // Генетика. 2011. Т. 47. № 2. С. 213—226.
- 6. *Столповский Ю.А.*, *Ахани Азари М.*, *Кол Н.В и др.* Дифференциация генофонда пород крупного рогатого скота по ISSR-PCR-маркерам // Изв. Тимирязевской с.-х. академии. 2009. № 3. С. 89–97.
- 7. *Киселева Т.Ю., Каптапеп J., Воробьев Н.И. и др.* Неравновесие по сцеплению микросателлитных локусов у шести локальных популяций крупного рогатого скота // Генетика. 2014. Т. 50. № 4. С. 464—473.
- 8. Волкова В.В., Денискова Т.Е., Костонина О.В. и др. Характеристика аллелофонда локальных пород крупного рогатого скота России по микросателлитным маркерам // Генетика и разведение животных. 2018. № 1. С. 3—10. https://doi.org/10.31043/2410-2733-2018-1-3-10
- Копылов К.В., Шелёв А.В., Копылова К.В., Березовский А.В. Генетическая структура популяций украинской черно-пестрой и украинской красно-пестрой молочных пород по полиморфизму QTL и STR маркеров // Вестник Сумского национ. аграрного ун-та. 2014. № 7. С. 31–37.
- 10. *Нурбаев С.Д., Омбаев А.М., Карымсаков Т.Н. и др.* Определение чистопородности популяций крупного рогатого скота мясного направления продуктивности по микросателлитным ДНК // Зоотехния. 2017. № 8. С. 10—13.
- 11. Стрекозов Н.И., Зиновьева Н.А., Горелов П.В. и др. Генетическая характеристика созданных типов скота бурой швицкой и сычевской пород с использованием полиморфизма микросателлитных локусов // С.-х. биология. 2009. Т. 44. № 2. С. 10—15.
- 12. *Гайнуллина К.П.* Некоторые аспекты применения микросателлитных маркеров в сельскохозяйственной практике // Изв. Оренбургского гос. аграрного ун-та. 2018. № 5. С. 232—234.
- 13. *Карымсаков Т.Н., Гладырь Е.А., Нурбаев С.Д. и др.* Сравнительная характеристика аллелофонда крупного рогатого скота трех родственных пород черно-пестрого корня, разводимых в республике Казахстан // Молочное и мясное скотоводство. 2017. № 3. С. 11–14.
- 14. *Кольцов Д.Н., Волкова В.В., Гладырь Е.А. и др.* Характеристика аллелофонда сычевской породы крупного рогатого скота по ДНК микросателлитам // Достижения науки и техники АПК. 2012. № 8. С. 56—57.
- 15. Модоров М.В., Ткаченко И.В., Грин А.А. Генетическая изменчивость голштинизированного чернопестрого скота на территории Свердловской области // Вопр. нормативно-правового регулирова-

- ния в ветеринарии. 2019. № 4. С. 111—113. https://doi.org/10.17238/issn2072-6023.2019.4.111
- 16. Часовщикова М.А., Шевелева О.М. Генетическая характеристика крупного рогатого скота герефордской породы тюменской области с использованием микросателлитных ДНК-маркеров // Вестник ИРГСХА. 2018. № 88. С. 141—150.
- 17. *Чысыма Р.Б., Храброва Л.А., Зайцев А.М. и др.* Оценка генетического разнообразия в популяциях тувинских лошадей по локусам систем крови и микросателлитным ДНК // С.-х. биология. 2017. Т. 52. № 4. С. 679—685. https://doi.org/10.15389/agrobiology.2017.4.679eng
- 18. *Озеров М.Ю., Тапио М., Марзанов Н.С. и др.* Микросателлитный анализ эволюционно-генетических связей у различных пород овец // Докл. РАСХН. 2006. № 2. С. 30—33.
- 19. *Марзанов Н.С., Девришов Д.А., Марзанова С.Н. и др.* Популяционно-генетическая характеристика лосей по локусам микросателлитов // Пробл. биологии продуктивных животных. 2018. № 1. С. 75–82. https://doi.org/10.25687/1996-6733.prodanimbiol.2018. 1.75-82
- 20. Баранова А.И., Холодова М.В., Сипко Т.П. Генетическая структура дикого северного оленя (Rangifer tarandus) России на основании полиморфизма микросателлитных локусов: Материалы Всерос. науч. конф., посвященной 70-летнему юбилею ка-

- федры "Зоология и экология" Пензенского гос. ун-та и памяти профессора В.П. Денисова (1932—1997) "Актуальные вопросы современной зоологии и экологии животных". Пенза, 2016. 21 с.
- 21. *Марзанов Н.С., Озеров М.Ю., Насибов М.Г., Марзанова Л.К.* Микросателлиты и их использование для оценки генетического разнообразия животных (обзор иностранной литературы) // С.-х. биология. 2004. Т. 39. № 2. С. 104—111.
- 22. *Митютько В.И., Грачев В.С.* Генетическое разнообразие у сельскохозяйственных животных и механизмы его изменения // Изв. Санкт-Петербургского гос. аграрного ун-та. 2011. № 23. С. 140—146.
- 23. Фураева Н.С., Ганченкова Т.Б., Кертиев Р.М., Калашникова Л.А. Генетическая гетерогенность быков-производителей ярославской породы по маркерам ДНК // Молочное и мясное скотоводство. 2016. № 6. С. 2—5.
- 24. *Седых Т.А., Глазырь Е.А., Долматова И.Ю. и др.* Полиморфизм микросателлитных локусов крупного рогатого скота герефордской породы различных эколого-генетических генераций // Вестник АПК Ставрополья. 2014. № 3(15). С. 121—128.
- 25. Денискова Т.Е., Волкова В.В., Костюнина О.В. и др. Характеристика аллелофонда популяции симментальского и помесного скота Поволжья с использованием микросателлитов // Вестник Алтайского гос. аграрного ун-та. 2019. № 3(173). С. 100—106.

Genetic Structure of the Population of Holstein Black-and-White Cattle by Microsatellite Loci

O. S. Shatalina^{a, *}, I. V. Tkachenko^a, and A. A. Yarvshkin^a

^aUral Federal Agrarian Scientific Research Center, Ural Branch of the Russian Academy of Scence, Ekaterinburg, 620142 Russia *e-mail: shatalinao@list.ru

This article presents the results of a study of the genetic structure of a cattle population at 12 microsatellite loci. The object of the study was 702 specimens of cattle of Holstein black-motley breed. It was found that on average the heterozygosity of animals at the loci is 78.3%. The average number of alleles per locus is 7.0 \pm 0.08. The most widespread in the population was the 248 bp allele, locus SPS115 - 0.644. Genotype 248/248 of the SPS115 locus has the highest frequency of occurrence - 0.446. 169 rare genotypes with a frequency of occurrence of less than 0.01 were identified in the population.

Keywords: cattle, population, microsatellite locus, allele, genotype.