ГЕНЕТИКА ЖИВОТНЫХ

УДК 576.312

ФИЛОГЕНЕТИЧЕСКИЕ ОТНОШЕНИЯ КАМБАЛООБРАЗНЫХ РЫБ СЕМЕЙСТВА Pleuronectidae (Ostichties: Pleuronectiformes) НА ОСНОВЕ УЧАСТКА ГЕНА 16S рРНК

© 2021 г. А. Д. Редин^{1, *}, Ю. Ф. Картавцев^{1, **}

¹Национальный научный центр морской биологии им. А.В. Жирмунского Дальневосточного отделения Российской академии наук, Владивосток, 690041 Россия *e-mail: shurko92@yandex.ru **e-mail: yuri.kartavtsev48@hotmail.com Поступила в редакцию 13.04.2020 г. После доработки 11.09.2020 г. Принята к публикации 08.10.2020 г.

На основе неполной нуклеотидной последовательности *16S* pPHK, полных последовательностей *Co-1* и *Cyt-b* исследована систематика и филогения камбал. Проанализированы 62 образца у 14 видов собственных сборов и из коллекций GenBank/BOLD. Реконструировано четыре типа генных деревьев: байесовское (BA), максимального правдоподобия (ML), минимальной эволюции (ME) и ближайшего соседства (NJ). Эти деревья показали сходную топологию. Две отдельных ветви на деревьях поддерживают выделенные ранее подсемейства Hippoglossoidinae и Pleuronectinae с монофилетическим статусом этих таксонов. Подсемейство Pleuronectinae можно считать монофилетическим, при исключении из него трибы Microstomini, с переносом рода *Lepidopsetta* в трибу Pleuronectini. Были сформированы и независимо исследованы три набора нуклеотидных последовательностей. Один набор включал все полученные последовательности гена *16S* pPHK (291 пн), второй набор включал выборку более длинных последовательностей *16S* pPHK (617 пн), третий набор состоял из последовательностей трех генов: *16S* pPHK, *Co-1* и *Cyt-b* (2926 пн). Все три набора данных дают схожий филогенетический сигнал, который согласуется с традиционными представлениями о таксономии отряда Pleuronectiformes; однако второй и третий наборы дают лучшую топологию.

Ключевые слова: Co-1, Cyt-b, 16S рРНК, камбалы, молекулярная филогенетика. **DOI:** 10.31857/S0016675821030115

Семейство настоящих камбаловых рыб Pleuronectidae, которому в статье уделяется основное внимание, является одним из крупнейших в отряде Pleuronectiformes, включая 59 номинальных видов правосторонних камбаловых рыб, распространенных в морских водах Северного полушария [1, 2]. В своем анализе Дж. Купер и Ф. Чаплау [1] рассматривали семейство Pleuronectidae как монофилетический таксон, основываясь на десяти синапоморфиях по морфологическим признакам. Важный итог, полученный вышеупомянутыми авторами, в целом согласуется с топологией ветвей семейства, установленной в нескольких исследованиях молекулярной филогенетики [3-10]. Согласно [1] это семейство включает подсемейства Hippoglossinae, Eopsettinae, Lyopsettinae, Hippoglossoidinae и Pleuronectinae, которые представлены родами, обычно состоящими из видов с высокой промысловой ценностью (например, виды рода палтусовидных камбал, Hippoglossoides). В связи с рыбохозяйственной значимостью этих и других камбал и необходимостью управлять такими ценными возобновляемыми ресурсами весьма важными являются как точная классификация образцов особей видов в пределах родов, так и вся система взаимоотношений между таксонами в этом семействе.

Таксономические исследования Pleuronectidae традиционно основывались на морфологических признаках, как следует из приведенного выше абзаца. Однако частое отсутствие четких доказательств гомологии признаков у видов даже на низких таксономических уровнях (внутри рода) делает не всегда убедительными постулируемые таксономическо-филогенетические взаимосвязи многих групп камбаловых рыб, если они обоснованы лишь с помощью морфологии. Существует несколько версий классификации камбал, которые были предложены разными авторами [1, 11-13]. Определенные разногласия также отмечаются в отношении филогенетических взаимоотношений камбал, полученных на основе морфологических и молекулярно-генетических данных [1, 4, 14, 15]. Разработка новых ядерных и митохондриальных маркеров на основе ДНК позволяет лучше идентифицировать морфологически сходные виды рыб [16], включая многие виды камбаловых. Поэтому актуальным является поиск новых или уже известных, но недостаточно разработанных молекулярных маркеров для реконструкции генных деревьев, а также комбинированных или видовых филогенетических деревьев для камбал семейства Pleuronectidae.

В настоящем исследовании, учитывая вышеизложенное, представлен сравнительный анализ неполных нуклеотидных последовательностей (далее – последовательности) гена 16S рРНК для 14 видов, относящихся к Pleuronectidae, ранее не использованных в таком объеме для камбал, с целью оценки успешности таксономической идентификации образцов и установления филогенетических и таксономических взаимосвязей в этом семействе камбал. Новизна представленного исследования заключается в том, что систематику данной группы в цитированных выше работах авторов не рассматривали на основе 16S рРНК. Соответственно, в представленной статье рассмотрели потенциал данного маркера на достаточной выборке образцов для таксономических и эволюционно-генетических исследований камбал Российской Федерации.

МАТЕРИАЛЫ И МЕТОДЫ

В общей сложности проанализировали 62 последовательности 16S рРНК и дополнительно по 24 последовательности генов 16S рРНК, Co-1 и Cyt-b для 14 видов, относящихся к семи родам семейства Pleuronectidae. Латинские имена даны в соответствии с классификацией [1]. Пробы (2–5 образцов мышечной ткани, подвергнутой фиксации этанолом, 95%) взяты из имеющейся коллекции Лаборатории молекулярной систематики, а ваучерные экземпляры самих рыб находятся на ответственном хранении в музее ННЦМБ ДВО РАН. Выделение ДНК проводили с помощью коммерческих наборов ("ДНК Экстран-2", Синтол, Россия).

Фрагмент последовательности гена *16S* рРНК амплифицировали посредством полимеразной цепной реакции (ПЦР) с помощью праймеров 16Sbr-H и 16Sar-L. Реакцию ПЦР проводили в объеме 25 мкл раствора, содержащего: дистиллированную деионизированную воду – 17.8 мкл; dNTP (3AO "Евроген", Москва, Россия) – 0.5 мкл; $5 \times$ Buffer (Evrogen) – 5 мкл; праймеры в концентрации 10 мкМ/мкл – по 0.3 мкл для каждого; Taq-полимераза – 0.1 мкл. Использовали следующую тепловую программу: денатурирование при 93°C в течение 1 мин, отжиг при 55°C в течение 1 мин и элонгация при 72°C в течение 1 мин для 33 циклов. Для определения локализации и порядка расположения нуклеотидов в последовательностях продукты ПЦР (ДНК-образцы) подвергали циклическому секвенированию с помощью набора для секвенирования циклов BrightDye Terminator по следующей программе: денатурирование при $96^{\circ}C - 10 \text{ с}$, отжиг при $45^{\circ}C - 10 \text{ с}$, элонгация при $60^{\circ}C - 2$ мин.

Двунаправленные последовательности цепей ДНК генов *16S* рРНК были получены для каждого ДНК-образца. Эти последовательности затем объединяли вместе для получиния консенсусных последовательностей каждого образца. Данная процедура выполнена с использованием программного пакета Geneious, Free Trial [17].

Так как длина полученных последовательностей варьировала довольно значительно, в диапазоне от 355 пар нуклеотидов (пн) до 642 пн, то для более точного дальнейшего анализа составили два набора последовательностей. Один набор представлял собой все полученные последовательности, а другой включал только наиболее длинные последовательности. Соответственно преобразованию данных набор 1 содержал 62, а набор 2 – 27 последовательностей. После проведения процедуры выравнивания и удаления гэпов (инделов) длина последовательностей двух наборов составила 291 и 617 пн соответственно.

Выравнивание последовательностей для всех таксонов было выполнено с использованием программного пакета (ПП) MEGA-X (http://megasoftware.net/) [18] на основе модуля ClustalW [19], как интегрированного продукта MEGA. Штрафы за открытие пропусков и за удлинение пропусков были установлены размером 15.0 и 5.0 соответственно (для других настроек программы выравнивания использовали параметры по умолчанию). После первого этапа выравнивания большие пробелы были удалены вручную, и окончательное выравнивание на втором этапе выполнено с уменьшенными уровнями штрафов (5.0 и 0.5 для двух опций соответственно). Все пробелы были затем снова удалены вручную.

Для увеличения информационной емкости кроме гена *16S* рРНК в анализ включены последовательности генов *Co-1* и *Cyt-b*, ранее использованные в анализе [10]; в совокупности эти данные составили третий набор последовательностей, включающий всего 24 образца длиной 2926 пн.

Для дальнейшего анализа последовательностей и построения генных деревьев подобрали оптимальную модель замены нуклеотидов для полученного набора последовательностей. Лучшая модель эволюции, которая соответствовала полученным данным, оценена посредством специального модуля программы MEGA. Для набора гена *16S* рРНК с короткими последовательностями (291 пн) наилучшей моделью оказалась K2P + G (двухпараметрическая модель М. Кимуры с гамма-распределением замен) [20], для набора этого гена с длинными последовательностями (617 пн) лучшей была модель JC + G (модель Джукса– Кантора с гамма-распределением замен) [21], для набора последовательностей трех генов наилучшей моделью оказалась HKY + G (модель Хасегава–Кишино–Яно с гамма-распределением замен) [22].

Генные деревья были построены посредством четырех методов реконструкции: на основе байесовского анализа (ВА), максимального правдоподобия (ML), ближайшего соседства (NJ) и минимальной эволюции (ME). Они были выполнены в MrBayes 3.2.7 (http://nbisweden.github.io/Mr-Bayes/download.html) [23, 24] и MEGA-X [18]. Моделирование процесса реконструкции деревьев в ВА проводили в течение одного миллиона поколений n ($n = 10^6$). Три другие реконструкции ML, NJ, ME проводили с повторностями равными k = 1000 копий бутстрепа (бутстреп-поддержки).

В качестве внешней группы при укоренении деревьев выбрали ветвь *Platichthys stellatus*, представитель которой по данным для полного митогенома (мтДНК) ранее был отнесен к внешней ветви в семействе Pleuronectidae [10]. Филогенетические деревья визуализировали и редактировали при необходимости с помощью программного обеспечения FigTree [25] и MEGA-X [18].

Все полученные последовательности по гену *16S* рРНК были зарегистрированы в GenBank (https://www.ncbi.nlm.nih.gov/); часть не опубликованных ранее последовательностей *Co-1* и *Cyt-b* также включена в статью (табл. 1).

Статистический анализ нуклеотидного состава выполнен с использованием ПП MEGA-X. Дополнительно с помощью программного пакета Statistica 6 [29] провели однофакторный дисперсионный анализ (ANOVA) нуклеотидного состава отдельно по каждому гену.

РЕЗУЛЬТАТЫ

Анализ строили, базируясь на последовательностях трех представленных ранее наборов данных. Полная длина участка гена *16S* рРНК (полноразмерные последовательности "от праймера до праймера") составляет 596–631 пн. Номера полноразмерных участков гена *16S* рРНК следующие: MN888911, MN888895, MN888908, MN888877, MN888901, MN888894, MN888893, MN888892, MN888917, MN888916, MN888915, MN888903,

ГЕНЕТИКА том 57 № 3 2021

MN888924, MN888918, MN888912, MN888904, MN888905, MN888868, MN888873, MN888898, MN888899, MN888902, MN888927, MN888909, MN888907, MN888884, MN888883, MN888876.

Однако не все полученные последовательности достигли полного размера. Разница в длине последовательностей обусловлена некачественным секвенированием некоторых образцов, что привело к большему "обрезанию" участков рядом с праймерами при формировании консенсусных последовательностей. Эти погрешности секвенирования возможны в связи с тем, что часть образцов тканей хранились до анализа несколько лет. Однако короткие фрагменты не обязательно плохие для оценки изменчивости в близких таксонах и сопоставления степени их сходства-различия для реконструкции генного дерева. В связи с этим для анализа материал разбили на две группы, включающие длинные (1) и короткие (2) последовательности гена. В соответствии с изложенными подходами (в разделе "Материалы и методы") построено четыре типа деревьев: ВА, ML, NJ и ME.

Анализ всех последовательностей 16S рРНК

На рис. 1 показано укорененное ML-дерево, полученное на основе набора последовательностей гена *16S* рРНК длиной 291 пн. Поддержки на деревьях указаны в следующем порядке: BA/ME/ NJ/ML.

Ветвь с образцами *Limanda sakhalinensis* вошла в состав подсемейства Hippoglossoidinae, образуя отдельную, топологически неразрешенную ветвь (узел) вместе с *Cleisthenes pinetorum* подсемейства Hippoglossoidinae. Отдельная, также неразрешенная ветвь сформирована представителями трех номинальных видов палтусовидных камбал рода *Hippoglossoides. Lepidopsetta mochigarei*, представитель трибы Microstomini, имеет для всех пяти соответствующих ветвей на дереве неразрешенную топологию. Отдельный узел на древе формируют представители тихоокеанского белокорого палтуса *Hippoglossus stenolepis* из подсемейства Hippoglossinae.

Анализ более длинных последовательностей 16S рРНК

На рис. 2 представлено укорененное NJ-дерево, полученное на основе набора последовательностей гена *16S* рРНК длиной 617 пн. Ветвь *Limanda sakhalinensis* включена в подсемейство Hippoglossoidinae, располагаясь в одном кластере с *Cleisthenes pinetorum*. Последовательности, представляющие подсемейство Hippoglossinae, образуют отдельный узел.

348

Таблица 1. Список видов и присвоенные им номера в генном банке

Видовое название с лабораторным	Номер доступа в NCBI			
номером	16S	Co-I	Cyt-b	
Pseudopleuronectes herzensteini 7k	MN888867	KF386364	KF445172	
Pseudopleuronectes herzensteini 05-07	MN888868	KF386361	KF445169	
Pseudopleuronectes herzensteini 6k	MN888869	KF386363	KF445171	
Pseudopleuronectes schrenki 119-07	MN888870			
Liopsetta pinnifasciata 90-07	MN888871			
Liopsetta pinnifasciata 40-07	MN888872			
Liopsetta pinnifasciata 39-07(2)	MN888873			
Liopsetta pinnifasciata 39-07	MN888874			
Liopsetta pinnifasciata 21-07	MN888875			
Liopsetta pinnifasciata 20-07	MN888876	KF386379	KF445186	
Liopsetta pinnifasciata 2	MN888877			
Liopsetta pinnifasciata 19-07	MN888878	KF386378	KF445185	
Liopsetta pinnifasciata 13	MN888879	KF386377	KF445184	
Pseudopleuronectes yokohamae 46	MN888880	KF386355	KF445163	
Pseudopleuronectes yokohamae 45	MN888881	KF386354	KF445162	
Pseudopleuronectes obscurus 42-07	MN888882			
Pseudopleuronectes obscurus 36	MN888883			
Pseudopleuronectes yokohamae 09-07	MN888884	KF386353	KF445161	
Pseudopleuronectes obscurus 08-08(08-07)	MN888885			
Limanda punctatissima 89-07	MN888886			
Limanda punctatissima 86-07	MN888887	KF386388	KF445195	
Limanda punctatissima 58-07	MN888888			
Limanda punctatissima 50-07	MN888889			
Limanda punctatissima 37	MN888890	KF386386	KF445193	
Lepidopsetta mochigarei LMO12-5	MN888891			
Lepidopsetta mochigarei LMO12-4	MN888892			
Lepidopsetta mochigarei LMO12-3	MN888893			
Lepidopsetta mochigarei LMO12-2	MN888894			
Lepidopsetta mochigarei LMO12-1	MN888895			
Platichthys stellatus 11-07	MN888896			
Platichthys stellatus4k	MN888897	KF386371	KF445178	
Platichthys stellatus PS6-011	MN888898			
Platichthys stellatus PS5-011	MN888899			
Platichthys stellatus PS4-011	MN888900			
Platichthys stellatus Ps3-011	MN888901			
Platichthys stellatus Ps2-011	MN888902			
Platichthys stellatus 18-07	MN888903	KF386375	KF445182	
Platichthys stellatus 16-07	MN888904			
Platichthys stellatus 15-07	MN888905			
Liopsetta pinnifasciata PG1-011	MN888906			
Liopsetta pinnifasciata Pc2-011	MN888907			
Liopsetta pinnifasciata Pc1-011	MN888908			
Liopsetta pinnifasciata 2k	MN888909	KF386376	KF445183	
Limanda sakhalinensis 72(2012)	MN888910	KF386382	KF445189	

ГЕНЕТИКА том 57 № 3 2021

Таблица 1. Окончание

Видовое название с лабораторным номером	Номер доступа в NCBI			
	<i>16S</i>	Co-I	Cyt-b	
Limanda sakhalinensis 71(2012)	MN888911	KF386381	KF445188	
Limanda sakhalinensis 69(2012)	MN888912			
Limanda sakhalinensis 68(2012)	MN888913			
Hippoglossus stenolepis HST12-4	MN888914			
Hippoglossus stenolepis HST12-3	MN888915			
Hippoglossus stenolepis HST12-2	MN888916			
Hippoglossus stenolepis HST12-1	MN888917			
Hippoglossoides robustus 289	MN888918	KF386414	KF445220	
Hippoglossoides robustus 288	MN888919	KF386413	KF445219	
Hippoglossoides robustus 286	MN888920	KF386411	KF445217	
Hippoglossoides elassodon 35	MN888921			
Hippoglossoides elassodon 34	MN888922	KF386418	KF445223	
Hippoglossoides elassodon 33	MN888923	KF386417	KF445222	
Hippoglossoides robustus 31	MN888924	KF386410	KF445216	
Hippoglossoides dubius 5k	MN888925			
Cleisthenes pinetorum 79-07	MN888926	KF386409	KF445215	
Cleisthenes pinetorum 78-07	MN888927	KF386408	KF445214	

Lepidopsetta mochigarei, как и ранее по короткому фрагменту, формирует неразрешенный узел, но топологически входит в трибу Microstomini.

Анализ реконструкции генных деревьев по объединенным последовательностям трех генов

Для данного анализа были сопоставлены выровненные последовательности участка гена 16S рРНК, а также генов Co-1 и Cyt-b. Последовательности были конкатенированы в MEGA-X и затем подвергнуты дальнейшему анализу. Согласно полученным данным ветвь Limanda sakhalinensis включена в подсемейство Hippoglossoidinae (рис. 3). Ветвь Cleisthenes pinetorum также включена в подсемейство Hippoglossoidinae (рис. 3).

Нуклеотидный состав

Соотношение пиримидинов (T, C) и пуринов (A, G) в генах *16S* pPHK, *Co-1* и *Cyt-b* отклонялись от соотношения 50 : 50 (Приложение, рис. 4). В последовательностях *16S* pPHK нет больших различий в соотношении пиримидинов (T, C) и пуринов (A, G), но можно наблюдать общую гетерогенность состава нуклеотидов с преобладанием C- и A-нуклеотидов (рис. 4,*a*). В случае *Co-1* и *Cyt-b* наблюдается статистически значимое отклонение в соотношении пиримидинов к пуринам с преобладанием пиримидинов (рис. 4,*б*, *в*).

ГЕНЕТИКА том 57 № 3 2021

АNOVA по каждому гену обнаружил, что различия для четырех нуклеотидов статистически значимые: для *16S* pPHK – F = 2147.9, d.f. = 3; 92, P < 0.0001; для *Co*-1 – F = 3673.3, d.f. = 3; 92, P < 0.0001; для *Cyt*-b – F = 4320.7, d.f. = 3; 92, P < 0.0001. Доля (T + C) : (A + G) для *16S* pPHK, *Co*-1 и *Cyt*-b составила 45.4 : 54.6, 56.5 : 43.5 и 61.1 : 38.9% соответственно.

ОБСУЖДЕНИЕ

Как отмечено во введении, крупнейшим подсемейством в семействе является Pleuronectinae. Это подсемейство представлено двумя трибами – Місгоstomini и Pleuronectini. Согласно полученным данным по *16S* pPHK они не образуют монофилетические ветви (см. рис. 1, 2). Таким образом, систематика на уровне подсемейств нуждается в дальнейшем уточнении. Например для большего информационного сигнала необходимо увеличить число как ядерных, так и митохондриальных маркеров при исследовании. Это поможет уменьшить число неразрешенных топологически узлов полученных деревьев.

Как отмечалось, Дж. Купер и Ф. Чаплау [1] в своей ревизии этого семейства на основе традиционных признаков морфологии обосновали, что Pleuronectidae представляет монофилетическую группу. Монофилия камбаловых, установленная

Рис. 1. Укорененное генное дерево, показывающее филогенетические взаимосвязи на основе 62 коротких нуклеотидных последовательностей участка *16S* рРНК. Топология представлена на основе ML-реконструкции. В узлах даны значения поддержки для четырех способов реконструкции деревьев в порядке: BA/ME/NJ/ML. Для BA-дерева показаны апостериорные вероятности (%, $n = 10^6$ поколений), а для трех других реконструкций даны бутстреп-поддержки (k = 1000 реплик).

ФИЛОГЕНЕТИЧЕСКИЕ ОТНОШЕНИЯ КАМБАЛООБРАЗНЫХ РЫБ

Рис. 2. Топология укорененного NJ-дерева, показывающая филогенетические взаимоотношения на основании данных для 27 последовательностей участка гена *16S* рРНК. В узлах даны значения поддержек для ВА-древа (*n* = 10⁶ поколений) и трех других реконструкций в общем порядке: BA/ME/ML/NJ (k = 1000 реплик бутстрепа для трех последних методов реконструкции).

на основе классического подхода, соответствует во многих случаях молекулярно-филогенетическим реконструкциям в исследованиях этого семейства по таким маркерам как *12S* рРНК, *16S* рРНК, а также по генам *Co-1* и *Cyt-b* [4–6, 8, 9] и полному митогеному [10].

В подсемейство Hippoglossoidinae в наиболее представительном в работе материале вошли два из трех родов *Cleisthenes* (*C. pinetorum*) и *Hippoglossoides* (*H. dubius* Schmidt, 1904, *H. elassodon* Jordan & Gilbert, 1180, *H. robustus* Gill & Townsend, 1897) (рис. 3). Виды рода *Hippoglossoides* образуют смешанный кластер на ВА-дереве (рис. 3). На основании чего можно предположить, что два таксона *H. elassodon* и *H. robustus* являются синонимами одного вида. Синонимия *H. elassodon* и *H. robustus* уже предлагалась ранее на основании морфологических и молекулярно-филогенетических данных [4, 27–31]. По принципу старшинства можно принять валидным таксон видового ранга *H. elassodon* Jordan & Gilbert, 1180, а *H. robustus* Gill & Townsend, 1897 считать младшим синонимом этого вида. Предложение о сведении в синонимию *H. elassodon* и *H. robustus* уже сделано ранее, как

ГЕНЕТИКА том 57 № 3 2021

Рис. 3. Укорененное ML-дерево, показывающее филогенетические взаимоотношения на основании данных для 24 конкатенированных последовательностей участка гена *16S* pPHK, *Co-1* и *Cyt-b*. В узлах даны значения поддержек для ВА-древа ($n = 10^6$ поколений) и для трех других реконструкций в общем порядке: BA/NJ/ME/ML (k = 1000 реплик бутстрепа для трех последних методов реконструкции).

отмечено выше. Однако К.А. Винников с соавт. [31] в своем двустороннем анализе (морфология + + генетика) предлагают вновь ввести синонимию. Но синонимия так и не введена. В базах данных эти два таксона до сих пор фигурируют как самостоятельные виды. Одна из задач представленной статьи — заострить этот вопрос, с тем чтобы в специальной публикации наконец разрешить этот казус. Отдельного обсуждения заслуживают данные для рода *Limanda*. Последовательности вида *Limanda sakhalinensis* оказались, как отмечено в результатах и представлено на рис. 1–3, включены в ветвь подсемейства Hippoglossoidinae. В сравнительном анатомическом исследовании Дж. Купера и Ф. Чаплау [1] монофилия этого рода не была подтверждена. В нашем же исследовании, как и в

Рис. 4. Средние значения состава (%) четырех нуклеотидов в 24 исследованных последовательностях генов *16S* pPHK (*a*), *Co-1* (*b*) и *Cyt-b* (*b*). По результатам однофакторного дисперсионного анализа (ANOVA). Вертикальные линии отмечают 95%-ный доверительный интервал.

предыдущих молекулярно-филогенетических исследованиях [4, 5, 10], *Limanda sakhalinensis* Hubbs, 1915 оказалась включена в подсемейство Hippoglossoidinae. Учитывая все эти данные, вполне уместно рекомендовать пересмотреть позицию *Limanda sakhalinensis* Hubbs, 1915, переместив ее в род *Hippoglossoides* с именем *Hippoglossoides* (Limanda) *sakhalinensis* в составе подсемейства Hippoglossoidinae. Соответственно, необходима ревизия морфологии и видовых признаков, а также диагностических ключей, что предполагается выполнить в самостоятельной работе.

Род Lepidopsetta (L. mochigarei) оказался включенным в трибу Pleuronectini, подсемейства Pleuronectiпае, тогда как в работе [1] этот род рассматривался исключительно в составе трибы Microstomini подсемейства Pleuronectinae. В молекулярно-филогенетических исследованиях на основе *Co-1* и *Cyt-b* [4, 5, 10] род *Lepidopsetta* рассматривался в трибе Pleuronectini. Таким образом, род *Lepidopsetta* предпочтительнее рассматривать в составе трибы Pleuronectini. Однако этот вопрос, учитывая слабый топологический сигнал для данной ветви по маркеру *16S* рРНК в работе, требует дальнейшего уточнения с использованием большего числа генов.

Смещение в соотношении (T + C) : (A + T) хорошо описано в литературе для многих белок-кодирующих генов [4, 32]. Представленный анализ (рис. 4, Приложение) показывает, что смещение для генов *Co-1* и *Cyt-b* в соотношении пуринов к пиримидинам значительно отличается от смещения для гена *16S* рРНК. Очевидно, что обнаруженное смещение нуклеотидного состава для изученных в работе структурных генов отражает гидрофобные свойства кодируемых ими белков [33]. Выяснение причины неоднородности нуклеотидного состава в последовательностях *16S* рРНК требует дальнейшего исследования.

Исследование финансово поддержано грантом РФФИ 15-29-02456-офи по направлению исследования генетических основ биоразнообразия, а также Дальневосточным отделением РАН — грант ДВ № 18-4-040 по тематике "Комплексное исследование биоразнообразия рыб и беспозвоночных животных на основе ДНК-штрих кодирования, разработки и поддержки баз данных и биобанкинга".

Все применимые международные, национальные и/или институциональные принципы ухода и использования животных были соблюдены.

Авторы заявляют, что у них нет конфликта интересов.

ПРИЛОЖЕНИЕ

Нуклеотидный состав для генов 16S рРНК, Co-1 и Cyt-b в 24 последовательностях камбалообразных рыб

Вид/Средние значения	Нуклеотиды, все позиции (% от общего числа)				
	Т	С	А	G	суммарно (пн)
16S рРНК					
Cleisthenes pinetorum 78-07	16.8	28.9	29.9	24.4	291
Cleisthenes pinetorum 79-07	16.8	28.9	29.9	24.4	291
Hippoglossoides elassodon 33	16.8	28.9	30.2	24.1	291
Hippoglossoides elassodon 34	16.8	28.9	29.9	24.4	291
Hippoglossoides robustus 286	16.8	28.9	30.2	24.1	291
Hippoglossoides robustus 288	17.2	28.5	30.2	24.1	291
Hippoglossoides robustus 289	16.8	28.9	30.2	24.1	291
Hippoglossoides robustus 31	16.8	28.9	30.2	24.1	291
Limanda sakhalinensis 71	16.8	28.9	29.9	24.4	291
Limanda sakhalinensis 72	16.8	28.9	29.9	24.4	291
Liopsetta pinnifasciata 13	17.5	27.8	31.6	23.0	291
Liopsetta pinnifasciata 19-07	17.5	27.8	31.6	23.0	291
Liopsetta pinnifasciata 20-07	17.5	27.8	31.6	23.0	291
Liopsetta pinnifasciata 2k	17.5	27.8	31.6	23.0	291
Myzopsetta punctatissima 37	17.2	27.5	32.3	23.0	291
Myzopsetta punctatissima 86-07	17.2	27.5	32.3	23.0	291
Platichthys stellatus 18-07	17.2	27.8	31.3	23.7	291
Platichthys stellatus 4k	17.2	27.8	31.6	23.4	291
Pseudopleuronectes herzensteini 05-07	17.5	27.8	32.0	22.7	291
Pseudopleuronectes herzensteini 6k	17.5	27.8	32.0	22.7	291
Pseudopleuronectes herzensteini 7k	17.5	27.8	32.0	22.7	291
Pseudopleuronectes obscurus 09-07	17.2	28.2	32.0	22.7	291
Pseudopleuronectes obscurus 45	16.8	28.2	32.0	23.0	291
Pseudopleuronectes obscurus 46	17.2	28.2	32.0	22.7	291
Среднее значение	17.14 ± 0.13	$\textbf{28.26} \pm \textbf{0.13}$	31.1 ± 0.13	23.5 ± 0.13	_
		Co-1	1		1
Cleisthenes pinetorum 78-07	29.4	27.5	23.6	19.5	1540
Cleisthenes pinetorum 79-07	29.4	27.3	23.7	19.5	1540
Hippoglossoides elassodon 33	29.3	27.6	24.0	19.2	1540
Hippoglossoides elassodon 34	29.1	27.6	24.0	19.4	1540
Hippoglossoides robustus 286	29.0	27.8	24.0	19.2	1540
Hippoglossoides robustus 288	29.2	27.5	24.0	19.3	1540
Hippoglossoides robustus 289	29.2	27.4	24.1	19.3	1540
Hippoglossoides robustus 31	29.0	27.8	24.0	19.2	1540
Limanda sakhalinensis 71	28.8	27.1	24.4	19.7	1540
Limanda sakhalinensis 72	28.6	27.3	24.4	19.7	1540
Liopsetta pinnifasciata 13	29.4	27.0	24.8	18.8	1540
Liopsetta pinnifasciata 19-07	29.4	27.0	24.8	18.8	1540
Liopsetta pinnifasciata 20-07	29.4	27.0	24.8	18.8	1540
Liopsetta pinnifasciata 2K	29.4	27.0	24.8	18.8	1540
Myzopsetta punctatissima 37	28.8	27.2	24.7	19.2	1540
Myzopsetta punctatissima 86-07	28.8	27.2	24.7	19.2	1540

ГЕНЕТИКА том 57 № 3 2021

Приложение. Продолжение

Вид/Средние значения	Нуклеотиды, все позиции (% от общего числа)				
	Т	С	А	G	суммарно (пн)
Platichthys stellatus 18-07	29.0	27.2	24.8	19.0	1540
Platichthys stellatus 4K	28.8	27.3	24.8	19.0	1540
Pseudopleuronectes herzensteini 05-07	28.8	28.0	23.7	19.5	1540
Pseudopleuronectes herzensteini 6K	28.7	28.0	23.7	19.6	1540
Pseudopleuronectes herzensteini 7K	28.7	28.0	23.6	19.7	1540
Pseudopleuronectes obscurus 09-07	29.3	26.9	24.5	19.2	1540
Pseudopleuronectes obscurus 45	29.3	27.0	24.5	19.2	1540
Pseudopleuronectes obscurus 46	29.4	27.1	24.5	19.1	1540
Среднее значение	$\textbf{29.09} \pm \textbf{0.07}$	$\textbf{27.38} \pm \textbf{0.07}$	$\textbf{24.29} \pm \textbf{0.07}$	19.25 ± 0.07	_
		Cyt-b			1
Cleisthenes pinetorum 78-07	30.8	30.9	22.5	15.9	1095
Cleisthenes pinetorum 79-07	30.8	30.8	22.6	15.8	1095
Hippoglossoides elassodon 33	30.3	31.2	22.2	16.3	1095
Hippoglossoides elassodon 34	30.3	31.2	22.2	16.3	1095
Hippoglossoides robustus 286	30.3	31.3	22.2	16.2	1095
Hippoglossoides robustus 288	30.6	31.1	22.1	16.3	1095
Hippoglossoides robustus 289	30.6	31.1	22.2	16.2	1095
Hippoglossoides robustus 31	30.4	31.3	22.1	16.2	1095
Limanda sakhalinensis 71	30.8	30.1	23.4	15.7	1095
Limanda sakhalinensis 72	30.8	30.2	23.3	15.7	1095
Liopsetta pinnifasciata 13	29.9	30.9	22.9	16.3	1095
Liopsetta pinnifasciata 19-07	29.7	31.0	22.9	16.4	1095
Liopsetta pinnifasciata 20-07	29.5	31.3	23.1	16.1	1095
Liopsetta pinnifasciata 2K	29.8	30.9	23.0	16.3	1095
Myzopsetta punctatissima 37	30.8	29.8	22.0	17.4	1095
Myzopsetta punctatissima 86-07	30.8	29.9	22.1	17.3	1095
Platichthys stellatus 18-07	30.0	30.6	22.6	16.7	1095
Platichthys stellatus 4K	29.8	30.8	22.9	16.5	1095
Pseudopleuronectes herzensteini 05-07	29.9	31.4	21.4	17.4	1095
Pseudopleuronectes herzensteini 6K	30.0	31.0	21.6	17.4	1095
Pseudopleuronectes herzensteini 7K	30.0	31.2	21.4	17.4	1095
Pseudopleuronectes obscurus 09-07	30.5	30.1	22.6	16.7	1095
Pseudopleuronectes obscurus 45	30.4	30.3	22.2	17.1	1095
Pseudopleuronectes obscurus 46	30.4	30.1	22.6	16.9	1095
Среднее значение	$\textbf{30.29} \pm \textbf{0.1}$	30.77 ± 0.1	$\textbf{22.42} \pm \textbf{0.1}$	16.52 ± 0.1	_

Примечание. Средние значения приведены со стандартной ошибкой.

СПИСОК ЛИТЕРАТУРЫ

- 1. *Cooper J.A., Chapleau F.* Monophyly and intrarelationships of the family Pleuronectidae (Pleuronectiformes), with a revised classification // Fishery Bull. 1998. V. 96. № 4. P. 686–726.
- 2. *Keast A., Chapleau F.* A phylogenetic reassessment of the monophyletic status of the family Soleidae, with comments on the suborder Soleoidei (Pisces; Pleu-

ronectiformes) // Canad. J. Zool. 1988. V. 66. № 12. P. 2797–2810. https://doi.org/10.1139/z88-408

 Berendzen P.B., Dimmick W.W. Phylogenetic relationships of Pleuronectiformes based on molecular evidence // Copeia. 2002. V. 3. P. 642–52. https://doi.org/10.1643/0045-8511(2002)002[0642: PROPBO]2.0.CO;2

- Kartavtsev Y.P., Park T.-J., Vinnikov K.A. et al. Cytochrome b (Cyt-b) gene sequence analysis in six flatfish species (Teleostei, Pleuronectidae), with phylogenetic and taxonomic insights // Marine Biol. 2007. V. 152. № 4. P. 757–773. https://doi.org/10.1007/s00227-007-0726-9
- 5. *Kartavtsev Y.P., Sharina S.N., Goto T. et al.* Cytochrome oxidase 1 gene sequence analysis in six flatfish species (Teleostei, Pleuronectidae) of Far East Russia with inferences in phylogeny and taxonomy // Mitochondrial DNA. 2008. V. 19. P. 479–489. https://doi.org/10.1080/19401730802570934
- 6. *Pardo B.G., Machordom A., Foresti F. et al.* Phylogenetic analysis of flatfish (order Pleuronectiformes) based on mitochondrial 16S rDNA sequences // Scientia Marina. 2005. V. 69. № 4. P. 531–543.
- Шарина С.Н., Картавцев Ю.Ф. Филогенетический анализ камбал (Teleostei, Pleuronectiformes), основанный на исследовании нуклеотидных последовательностей гена цитохромоксидазы 1 (Co-1) // Генетика. 2010. Т. 46. № 3. С. 401–407.
- Betancur R.R., Munroe T.A., Ortí G. et al. Addressing gene tree discordance and non-stationarity to resolve a multi-locus phylogeny of the Flatfishes (Teleostei: Pleuronectiformes) // Syst. Biol. 2013. V. 62. P. 763– 785.

https://doi.org/10.1093/sysbio/syt039

 Betancur R.R., Ortí G. Molecular evidence for the monophyly of flatfishes (Carangimorpharia, Pleuronectiformes) // Mol. Phylogenet. and Evol. 2014. V. 73. P. 18–22.

https://doi.org/10.1016/j.ympev.2014.01.006

 Kartavtsev Y.Ph., Sharina S.N., Saitoh K. et al. Phylogenetic relationships of Russian Far Eastern Flatfish (Pleuronectiformes, Pleuronectidae) based on two mitochondrial gene sequences, Co-1 and Cyt-b, with inferences in order phylogeny using complete mitogenome data // Mitochondrial DNA. 2014. V. 27. № 1. P. 667–678.

https://doi.org/10.3109/19401736.2014.913139

- 11. Norman I.R. A systematic monograph of the flatfishes (Heterosomata). Volume I. Psettodidae, Bothidae, Pleuronectidae. London: British Museum, 1934. 459 p.
- Sakamoto K. Interrelationships of the family Pleuronectidae (Pisces: Pleuronectiformes) // Memoirs of the Fac. of Fisheries, Hokkaido University. 1984. V. 31. P. 95–215.
- Lindberg G.U., Fedorov V.V. Fishes of Japan Sea and nearby parts of Okhotsk and Yellow seas. Part 6. Teleostomi. Osteichthyes. Actinopterigii. XXXI. Pleuronectiformes. Sankt-Petersburg Univ. Press. Sankt-Petersburg. 1993. 272 p.
- Chapleau F. Pleuronectiform relationships: A cladistic reassessment // Bull. of Marine Sci. 1993. V. 52. № 1. P. 516–540.
- 15. Vernau O., Moreau C., Catzeflis F.M., Renaud F. Phylogeny of flatfishes (Pleuronectiformes): Comparisons and contradictions of molecular and morpho-anatomical data // J. Fish Biol. 1994. V. 45. № 4. P. 685–696. https://doi.org/10.1111/j.1095-8649.1994.tb00934.x
- 16. Keith P., Lord C., Lorion J. et al. Phylogeny and biogeography of Sicydiinae (Teleostei: Gobiidae) inferred

from mitochondrial and nuclear genes // Marine Biol. 2011. V. 158. P. 311–326. https://doi.org/10.1007/s00227-010-1560-z

- 17. *Kearse M., Moir R., Wilson A. et al.* Geneious Basic: An integrated and extendable desktop software platform for the organization and analysis of sequence data // Bio-informatics. 2012. V. 28. № 12. P. 1647–1649. https://doi.org/10.1093/bioinformatics/bts199
- Tamura K., Peterson D., Peterson N. et al. MEGA5: Molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods // Mol. Biol. and Evol. 2011. V. 28. N
 № 10. P. 2731–2739.

 https://doi.org/10.1093/molbev/msr121
- 19. Thompson J.D., Higgins D.G., Gibson T.J. CLUSTAL W: Improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice // Nucl. Ac. Res. 1994. V. 22. № 22. P. 4673–4680. https://doi.org/10.1093/nar/22.22.4673
- *Kimura M.* A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences // J. Mol. Evol. 1980.
 V. 16. P. 111–120. https://doi.org/10.1007/bf01731581
- Jukes T.H., Cantor C.R. Evolution of protein molecules // Mammalian Protein Metabolism. Volume III. N. Y.: Academic Press, 1969. P. 21–132. https://doi.org/10.1016/B978-1-4832-3211-9.50009-7
- Hasegawa M., Kishino H., Yano T. Dating of the human-ape splitting by a molecular clock of mitochondrial DNA // J. Mol. Evol. 1985. V. 22. P. 160–174. https://doi.org/10.1007/bf02101694
- Huelsenbeck J.P., Ronquist F. MRBAYES: Bayesian inference of phylogenetic trees // Bioinformatics. 2001. V. 17. № 8. P. 754–755. https://doi.org/10.1093/bioinformatics/17.8.754
- Ronquist F., Huelsenbeck J.P. MrBayes 3: Bayesian phylogenetic inference under mixed models // Bioinformatics. 2003. V. 19. № 12. P. 1572–1574. https://doi.org/10.1093/bioinformatics/btg180
- 25. http://tree.bio.ed.ac.uk/software/figtree/
- 26. StatSoft, Inc. (1999). STATISTICA for Windows [Computer program manual]. Tulsa, OK: StatSoft, Inc. Available from: http://statsoft.ru/products/STATIS-TICA_Base/.
- Ivankov V.N., Vinnikov K.A., Borisovets E.E., Kartavtsev Y.P. Taxonomic relations between Pseudopleuronectes yokohamae and P. schrenki // Abstract of Conference for Educated Students, Science and Education Centre. Vladivostok: Far Eastern University Press, 2002. P. 69–70.
- 28. Картавцев Ю.Ф., Свиридов В.В., Ханзава Н., Сасаки Т. Генетическая дивергенция видов дальневосточных красноперок рода *Tribolodon* (Pisces, Cyprinidae) и близких таксонов // Генетика. 2002. Т. 38. № 11. С. 1–14.
- 29. Винников К.А. О таксономическом статусе камбал *Hippoglossoides elassodon* и *H. robustus* (морфометрический анализ) // VI Региональная конференция по актуальным проблемам экологии, морской биологии и биотехнологии студентов, аспирантов,

молодых преподавателей и сотрудников вузов и научных организаций Дальнего Востока России. Тезисы докладов. Владивосток: Изд-во Дальневосточного университета, 2003. С. 25–26.

- 30. Винников К.А., Иванков В.Н., Питрук Д.Л. Таксономический статус японской лиманды Pseudopleuronectes yokohamae и лиманды Шренка P. schrenki (Pleuronectidae, по: Cooper, Chapleau, 1998) // Вопр. ихтиологии. 2006. Т. 46. № 3. С. 316–325.
- 31. Vinnikov K.A., Thomson R.C., Munroe T.A. Revised classification of the righteye flounders (Teleostei: Pleuronectidae) based on multilocus phylogeny with com-

plete taxon sampling // Mol. Phylogenet. and Evol. 2018. V. 125. P. 147–162. https://doi.org/10.1016/j.ympev.2018.03.014

- 32. Kim I.C., Kweon H.S., Kim Y.J. et al. The complete mitochondrial genome of the javeline goby Acanthogobius hasta (Perciformes, Gobiidae) and phylogenetic considerations // Gene. 2004 V. 336. № 2. P. 147–153. https://doi.org/10.1016/j.gene.2004.04.009
- 33. *Nailor G.J., Collins T.M., Brown W.M.* Hydrophobicity and phylogeny // Nature. 1995. V. 373. № 6515. P. 565–566. https://doi.org/10.1038/373565b0

Phylogenetic Relationships of Flounders from the Family Pleuronectidae (Ostichties: Pleuronectiformes) Based on 16S rRNA Gene

A. D. Redin^{*a*, *} and Yu. Ph. Kartavtsev^{*a*, **}

^aZhirmunsky National Scientific Center of Marine Biology Far East Branch of the Russian Academy of Sciences, Vladivostok, 690041 Russia *e-mail: shurko92@yandex.ru **e-mail: vuri.kartavtsev48@hotmail.com

The systematics and phylogeny of flatfish is investigated on the incomplete nucleotide sequence of *16S* rRNA and the complete *Co-1* and *Cyt-b* sequences. In total 62 specimens of 14 species of our own collections were submitted to the GenBank/BOLD repositories and studied. Four types of gene trees were reconstructed: Bayesian (BA), maximum likelihood (ML), minimum evolution (ME), and neighbor joining (NJ). These trees showed basically similar topology. Two separate branches on the trees support the previously identified subfamilies Hippoglossoidinae and Pleuronectinae with the monophyletic status of these taxa. The subfamily Pleuronectinae can be considered monophyletic, if the tribe Microstomini is excluded from it and genus *Lepidopsetta* is moved into the tribe Pleuronectini. Three sets of nucleotide sequences were formed and independently studied. One set included all the obtained *16S* rRNA gene sequences (291 bp), the second set included a sample of longer *16S* rRNA sequences (617 bp), the third set consisted of three gene sequences: *16S* rRNA, *Co-1* and *Cyt-b* (2926 bp). All three data sets gave similar phylogenetic signal, which consistent with the traditional concept of the taxonomy of the Pleuronectiformes order; however, the second and third sets provided better resolution of topology.

Keywords: Co-1, Cyt-b, 16S rRNA, flatfish, molecular phylogenetics.