ГЕНЕТИКА РАСТЕНИЙ

УДК 575.22:582.736

ФИЛОГЕНЕТИЧЕСКИЕ СВЯЗИ ВИДОВ АЗИАТСКОЙ РОССИИ ПОДРОДОВ *Phacoxytropis* И *Tragacanthoxytropis* РОДА *Oxytropis* НА ОСНОВЕ ПОЛИМОРФИЗМА МАРКЕРОВ ХЛОРОПЛАСТНОГО И ЯДЕРНОГО ГЕНОМОВ

© 2021 г. А. Б. Холина^{1,} *, М. М. Козыренко¹, Е. В. Артюкова¹, М. Н. Колдаева², Д. В. Санданов³, И. Ю. Селютина⁴

¹Федеральный научный центр биоразнообразия наземной биоты Восточной Азии Дальневосточного отделения Российской академии наук, Владивосток, 690022 Россия

²Ботанический сад-институт Дальневосточного отделения Российской академии наук, Владивосток, 690022 Россия

³Институт общей и экспериментальной биологии Сибирского отделения Российской академии наук, Улан-Удэ, 670047 Россия

⁴Центральный Сибирский ботанический сад Сибирского отделения

Российской академии наук, Новосибирск, 630090 Россия

*e-mail: kholina@biosoil.ru

Поступила в редакцию 05.11.2020 г. После доработки 15.12.2020 г. Принята к публикации 18.01.2021 г.

На основе анализа нуклеотидного полиморфизма межгенных спейсеров psbA-trnH, trnL-trnF и trnS-trnG хлоропластной ДНК видов Oxytropis Азиатской России (O. tragacanthoides секции Hystrix подрода Tragacanthoxytropis, O. coerulea, O. filiformis и O. mandshurica секции Janthina и O. deflexa и O. glabra секции Mesogaea подрода Phacoxytropis) установлено, что все популяции характеризуются высоким гаплотипическим разнообразием (*h* изменяется от 0.676 до 1.000), кроме видов секции Меsogaea (h изменяется от 0 до 0.333). Обнаружены видоспецифичные маркеры у O. tragacanthoides, O. deflexa, O. glabra и O. mandshurica, а также специфичные маркеры для секции Mesogaea. Реконструкция филогенетических связей хлоротипов видов подродов Phacoxytropis, Tragacanthoxytropis и Oxytropis показала, что виды секции Janthina с высокой достоверностью объединяются в одну кладу с видами подродов Tragacanthoxytropis и Oxytropis, однако взаимоотношения их остались неразрешенными. Анализ генеалогических связей риботипов ITS ядерной ДНК выявил общий риботип у видов O. tragacanthoides, O. coerulea, O. lanata, O. chankaensis, O. oxyphylla и O. triphylla, относящихся к трем подродам. Выявленная генетическая близость при четких морфологических различиях характерна для таксонов с общим происхождением, испытавших относительно недавнюю быструю адаптивную радиацию. Полученные данные полиморфизма маркеров ядерного и хлоропластного геномов подтверждают статус O. coerulea, O. filiformis и O. mandshurica как самостоятельных видов.

Ключевые слова: Охуtropis, Fabaceae, генетическое разнообразие, филогенетические связи, хлоропластная ДНК, ITS.

DOI: 10.31857/S0016675821090058

Род *Oxytropis* DC. (сем. Fabaceae) сформировался предположительно около 5.6 млн лет назад на границе миоцена—плиоцена [1, 2] в ходе эволюции древних видов рода *Astragalus* L. подрода *Phaca* (L.) Bunge [2, 3]. По морфологическим признакам и экологии к ним наиболее близки виды *Oxytropis deflexa* (Pall.) DC. и *O. glabra* (Lam.) DC. секции *Mesogaea* Bunge подрода *Phacoxytropis* Bunge [2–4]. Только эти два вида секции представлены во флоре Азиатской России [5]. *O. deflеха* — это восточносибирско-североамериканский вид, который обнаруживает значительный полиморфизм на протяжении обширного прерывистого ареала [4–6]; считается реликтом, наиболее древним видом секции [3]; занесен в региональные Красные книги, так как существует в изолированных малочисленных популяциях. *О. glabra* – полиморфный вид, распространенный в европейской части России (Башкирия, р. Урал), Средней и Центральной Азии, Монголии и Северо-Западном Китае [5–7].

Подрод *Phacoxytropis* включает также секцию *Janthina* Bunge, виды которой морфологически сходны с видами секции *Mesogaea* [5]. В Азиат-

ской России секция Janthina представлена шестью видами: O. kaspensis Krasnob. et Pschen., O. ladvginii Kryl., O. saposhnikovii Kryl., O. coerulea (Pall.) DC., O. filiformis DC., O. mandshurica Bunge, отношения между тремя последними видами довольно сложные [5]. Малышев [5] отмечал, что O. filiformis плохо отличается от *O. coerulea* и интрогрессирует с ней в Предбайкалье и Забайкалье; O. filiformis и O. mandshurica – это самостоятельные вилы: *O. caerulea* (Pall.) DC. и *O. coerulea* Turcz. являются синонимами O. coerulea (Pall.) DC. Авторы работы "Флора Китая" [6] для O. filiformis в качестве синонима приводят O. coerulea Turcz., а для O. caerulea (Pall.) DC. – *O. mandshurica*, и относят *O. filiformis* и O. caerulea к секции Eumorpha (Bge.) Abduss., которую вместе с секциями Mesogaea и Janthina помещают в подрод Oxytropis ex genere Oxytropis DC. В дальнейшем исследование нуклеотидного полиморфизма маркеров хлоропластного генома видов Азиатской России подродов Oxvtropis и *Phacoxytropis* [8] показало, что подроду *Phacoxytropis* корреспондирует лишь секция Mesogaea, а секция Janthina этого же подрода объединяется с секциями Orobia Bunge, Verticillares DC. и Xerobia Bunge подрода Oxytropis. Кроме того, были выявлены молекулярные различия между O. coerulea и O. mandshurica, которые свидетельствуют о самостоятельности этих таксонов. Однако до сих пор существуют противоречия и другие нерешенные вопросы.

Подрод Tragacanthoxytropis Vass. является иной древней ветвью рода Oxytropis. Виды этого подрода представлены кустарничковыми формами и морфологически резко отличаются от видов других подродов [3, 9]. Одним из наиболее интересных видов подрода Tragacanthoxytropis является O. tragacanthoides Fisch. ex DC. секции Hystrix Bunge. Это горностепной вид с прерывистым ареалом, встречается в Центральном и Юго-Восточном Алтае и Монголии, изредка отмечается в Тувинской котловине и Хакасии, где проходит северная граница ареала, а также в нескольких пунктах Прибайкалья [5, 9]. O. tragacanthoides считается реликтом миоценплиоценовой флоры [3, 9]; занесен в региональные Красные книги как вид уязвимый, находящийся под угрозой исчезновения, и как вид, возможно, исчезнувший.

Данная работа является продолжением популяционных исследований эндемичных видов *Oxytropis* [10–14] и филогенетических связей видов секций *Verticillares* [15], *Orobia* [16], *Arctobia* [17] и подродов рода *Oxytropis* [8] по данным секвенирования межгенных спейсеров *psbA–trnH*, *trnL–trnF* и *trnS–trnG* хлоропластной ДНК (хпДНК) и ITS ядерной ДНК (рДНК).

Цель исследования — изучение генетического разнообразия и популяционной структуры видов *Охуtropis* Азиатской России секций *Mesogaea* и *Janthina* подрода *Phacoxytropis*, секции *Hystrix* подрода *Tragacanthoxytropis* и реконструкция филогенетических связей видов подродов *Phacoxytropis*, *Tragacanthoxytropis* и *Oxytropis* по данным изменчивости нуклеотидных последовательностей межгенных спейсеров *psbA*—*trnH*, *trnL*—*trnF* и *trnS*—*trnG* хпДНК и ITS рДНК.

МАТЕРИАЛЫ И МЕТОДЫ

Материалом служили 124 растения, относящиеся к шести видам: *O. tragacanthoides* (20 образцов) секции *Hystrix* подрода *Tragacanthoxytropis*, *O. coerulea* (18), *O. filiformis* (20) и *O. mandshurica* (34) секции *Janthina*, *O. deflexa* (25) и *O. glabra* (7) секции *Mesogaea* подрода *Phacoxytropis* из 22 природных местонахождений (табл. 1, рис. 1). Названия видов, секций и подродов рода *Oxytropis* приведены согласно обработке Малышева [5].

ДНК экстрагировали из лиофильно высушенных листьев. Буфер для экстракции содержал 100 мМ Трис-HCl (pH 8.0), 0.7 M NaCl, 40 мМ EDTA, 1% CTAB (hexadecyltrimethylammonium bromide) и 10 мл/л β-меркаптоэтанола. Экстракт инкубировали при 65°С в течение 40 мин. ДНК депротеинизировали смесью хлороформ : октанол (24 : 1) и осаждали равным объемом изопропанола в присутствии 0.3 М ацетата натрия. ДНК промывали 75%-ным этанолом и растворяли в буфере, содержащем 10 мМ Трис-HCl (pH 8.0) и 1 мМ EDTA. Количество ДНК в образце определяли путем сравнения с ДНК фага лямбда известной концентрации методом электрофореза в 1.4%-ном агарозном геле [10]. Метолы амплификации межгенных спейсеров psbA-trnH, trnL-trnF и trnS-trnG приведены в наших предыдущих работах [8, 12, 13]. ITS регион рДНК амплифицирован с праймерами ITS1 и ITS4 в реакционных условиях и температурном режиме, приведенных в работе [18]. Циклическое секвенирование обеих цепей фрагментов ДНК осуществляли с использованием набора флуоресцентно меченых нуклеотидов Big Dye Terminator v. 3.1 (Applied Biosystems, CIIIA). Нуклеотидные последовательности прямых и обратных цепей определяли на генетическом анализаторе ABI 3500 (Applied Biosystems), затем редактировали и собирали с помощью пакета программ Staden Package v. 1.5 [19]. Для каждого образца последовательности регионов выравнивали в программе SeaView v. 4.7 [20].

Матрицу объединенных последовательностей трех спейсеров хпДНК использовали для расчета гаплотипического (h) и нуклеотидного (π) разнообразия (для популяций с числом образцов пять и более), степени дивергенции (Dху) между популяциями/видами на основе нуклеотидных замен, для анализа молекулярной дисперсии (AMOVA) и для идентификации гаплотипов с помощью пакетов программ Arlequin v. 3.5 [21] и DnaSP v. 5.0 [22]. Статистическую значимость (P) индексов

Таблица 1. Исследуемые популяции видов *Охуторі*з подродов *Tragacanthoxytropis и Phacoxytropis* и параметры генетического разнообразия по данным _{хп}ДНК

Вид, местонахождение	Координаты	O M	7 <u>00</u>	Разно	образие
(число образцов)	с.ш., в.д.	ТОМ		h (SD)	π (SD)
Подрод Tragacanthoxytropis					
Секция <i>Hystrix</i>					
0. tragacanthoides					
Республика Алтай, плато Укок, правобережье р. Жумалы, высота 2422 м (10)	49.51°, 88.06°	TRA1	P1-P7	0.867 (0.107)	0.0048 (0.0027)
Республика Алтай, окр. с. Чаган-Узун, высота 1780 м (5)	$50.10^{\circ}, 88.38^{\circ}$	TRA2	P8-P10	0.700 (0.218)	0.0008 (0.0006)
Монголия, Центральный аймак, окр. сомона Ундэрширээг, высота 1282 м (5)	47.55°, 105.11°	TRA3	P11-P13	0.800 (0.164)	0.0005 (0.0004)
Подрод Phacoxytropis					
Секция Janthina					
O. coerulea					
Республика Бурятия, окр. с. Заиграево, высота 675 м (5)	51.87°, 108.24°	COE1	P14P17	0.900 (0.161)	0.0017 (0.0012)
Иркутская обл., окр. с. Сарма, высота 476 м (12)	53.12°, 106.85°	COE2	P18-P27	0.970 (0.044)	0.0046 (0.0025)
Иркутская обл., западное побережье оз. Байкал, окр. п. Сахюрта (1)	53.01°, 106.89°	COE3	P28	I	I
0. filiformis					
Забайкальский край, окр. оз. Ножий, высота 686 м (4)	50.82°, 114.72°	FIL1	P29-P32	I	I
Монголия, Центральный аймак, окр. сомона Аргалант, высота 1488 м (5)	47.77°, 105.90°	FIL2	P29, P33–P36	1.000 (0.126)	0.0048 (0.0031)
Монголия, Восточный аймак, окр. сомона Гурванзагал, высота 837 м (2)	48.86°, 115.11°	FIL3	P37, P38	I	I
Монголия, Восточный аймак, окр. сомона Гурванзагал, высота 797 м (9)	49.27°, 114.71°	FIL4	P30, P37, P39–P41	0.722 (0.159)	0.0012 (0.0008)

ФИЛОГЕНЕТИЧЕСКИЕ СВЯЗИ ВИДОВ АЗИАТСКОЙ РОССИИ

1041

ГЕНЕТИКА

том 57 № 9 2021

Таблица 1. Окончание					
Вид, местонахождение	Координаты	0 /1		Разно	образие
(число образцов)	с.ш., в.д.	ПОЛ		h (SD)	π (SD)
0. mandshurica					
Приморский край, Сихотэ-Алинский заповедник, бух. Удобная (15)	44.95°, 136.55°	MANI	P42-P47	0.838 (0.061)	0.0015 (0.0009)
Приморский край, Сихотэ-Алинский заповедник, кордон "Благодатное" (4)	45.21°, 136.53°	MAN2	P45	I	I
Приморский край, окр. г. Дальнегорск, падь Барачная (15)	44.57°, 135.62°	MAN3	P42, P45, P48, P49	0.676 (0.101)	0.0004 (0.0003)
Секция Mesogaea					
O. deflexa					
Республика Бурятия, Джергинский заповедник, урочище Биранкур (2)	55.11°, 111.46°	DEF1	P50, P51	I	I
Республика Тыва, Саянский перевал (1)	51.43°, 89.53°	DEF2	P52	I	I
Магаданская обл., окр. г. Сусуман (9)	62.83°, 148.22°	DEF3	P53, P54	0.222 (0.166)	0.0098 (0.0054)
Магаданская обл., окр. с. Оротук, надпойменная терраса р. Колыма (9)	62.10°, 148.49°	DEF4	P54	0.000 (0.000)	0.0000 (0.0000)
Магаданская обл., п-ов Пьягина, мыс Средний, у ручья (1)	59.32°, 154.57°	DEF5	P55	I	I
Магаданская обл., пос. Сеймчан (1)	62.93°, 152.39°	DEF6	P55	I	I
Восточный Таймыр, район слияния рек Болышая Лесная Рассоха и Новая (2)	72.60°, 101.26°	DEF7	P55, P56	I	I
0. glabra					
Республика Бурятия, окр. с. Оронгой, высота 528 м (6)	51.55°, 107.03°	GLA1	P57, P58	0.333 (0.215)	0.0001 (0.0002)
Красноярский край, окр. с. Темра, берег оз. Гнилое (1)	55.43°, 89.27°	GLA2	P59	I	I
Примечание. SD – стандартное отклонение.					

1042

ХОЛИНА и др.

ГЕНЕТИКА том 57 № 9 2021

Рис. 1. Карта-схема с указанием мест сбора растений видов *Oxytropis tragacanthoides* секции *Hystrix* подрода *Tragacanthoxytropis, O. coerulea, O. filiformis и O. mandshurica* секции *Janthina, O. deflexa и O. glabra* секции *Mesogaea* подрода *Phacoxytropis* из 22 природных местонахождений. Код популяции см. табл. 1.

фиксации (Φ_{ST}) оценивали на основе 1023 пермутаций. Филогенетический анализ проводили методами ML. MP и NJ с помошью пакета программ РАUP v. 4.0b10 [23]. Оптимальную модель эволюции нуклеотидных замен для ML-анализа выбирали в программе Modeltest v. 3.06 [24] с использованием иерархических тестов. Для ML и MP анализов применяли эвристический поиск оптимальной топологии с алгоритмом TBR (Tree Bisection-Reconnection). Статистическую достоверность порядка ветвления оценивали с помощью бутстреп-анализа 1000 альтернативных деревьев (ВР, %). Кроме того, был использован баесовский подход (Bayesian Inference, BI) в программе MrBayes 3.1.6 [25] на портале CIPRES (http://www.phylo.org/) [26]. Для оценки достоверности определены апостериорные вероятности (Posterior Probabilities, PP). Значения BP < 50% и PP < 0.95 не рассматривались. В качестве внешней группы были использованы полученные нами ранее [8] нуклеотидные последовательности этих же спейсеров (LM653198, LM653161, LM653235) A. davuricus (Pall.) DC. Feнеалогические связи риботипов ITS рДНК анализировали методом медианного связывания (MJ) в программе Network v. 5.0.1.1 [27], кодируя каждую делецию/вставку, независимо от ее размера, как единичное мутационное событие. В ка-

ГЕНЕТИКА том 57 № 9 2021

честве внешней группы была использована полученная нами ранее последовательность ITS (LM653272) *A. davuricus*.

Работа проводилась с использованием оборудования ЦКП "Биотехнология и генетическая инженерия" ФНЦ Биоразнообразия ДВО РАН.

РЕЗУЛЬТАТЫ

Нуклеотидные последовательности каждого из регионов psbA-trnH, trnL-trnF и trnS-trnGхпДНК у 124 образцов исследованных видов характеризуются относительно низкой нуклеотидной изменчивостью и разной длиной вследствие присутствия коротких (1-8 пн) и длинных (52-168 пн) инсерций/делеций (инделей), моно- и динуклеотидных повторов. Длина объединенной матрицы трех регионов после выравнивания составила 2769 сайтов. Обнаружено 42 вариабельные нуклеотилные замены. из них 38 были информативны согласно методу максимальной экономии и 4 единичные. Выявлено 59 хлоротипов (Р1-Р59), из них 40 (67.8%) уникальные, общих хлоротипов у видов не обнаружено (табл. 1). Последовательности хлоротипов депонированы в GenBank/ENA/EMBL-EBI, номера доступа приведены в табл. 2. У всех изученных видов, кроме

O. coerulea и O. filiformis, обнаружены видоспецифичные маркеры. Так, последовательности O. mandshurica и O. tragacanthoides имеют нуклеотид А в позициях 862 и 1658 соответственно. У О. deflexa выявлены четыре нуклеотидные замены (Т в позициях 332 и 1406, С в позиции 2105, С в позиции 1410) и вставка 97-110 пн (позиции 684-793); у 0. glabra – шесть нуклеотидных замен (G в позициях 261, 332, 1935, 2099, 2597 и Т в позиции 2346) и делеция нуклеотида А в позиции 861. Кроме того, обнаружены маркерные нуклеотидные замены, специфичные для секции Mesogaea: все последовательности представителей этой секции имеют шесть замен (G в позиции 136, Т в позиции 618, С в позициях 650 и 1087, А в позициях 1393 и 1394) и шесть инделей длиной от 1 до 6 пн. отсутствующих у других. Популяции O. tragacanthoides подрода Tragacanthoxytropis и видов O. coerulea, O. filiformis и O. mandshurica секции Janthina подрода Phacoxytropis характеризуются высоким гаплотипическим и низким/средним нуклеотидным разнообразием, а популяция O. glabra – низким гаплотипическим и нуклеотидным разнообразием. В популяции O. deflexa DEF3 при низком гаплотипическом разнообразии выявлен достаточно высокий уровень нуклеотидного разнообразия, а популяция DEF4 оказалась мономорфной (табл. 1).

Согласно результатам АМОVА (табл. 3), самые большие и значимые межпопуляционные различия у *O. deflexa* и у *O. tragacanthoides* ($\Phi_{ST} = 0.81602$ и $\Phi_{ST} = 0.75975$ соответственно, *P* < 0.0001), около 35% от общей генетической изменчивости приходится на межпопуляционную компоненту у O. coerulea и у O. mandshurica ($\vec{\Phi}_{ST} = 0.34055, P < 0.05$ и $\Phi_{\text{ST}} = 0.33889, P < 0.0001$ соответственно). Статистически незначимая высокая дифференциация определена между популяциями O. glabra $(\Phi_{\rm ST} = 0.71429, P > 0.05)$, а у *O. filiformis* дифференциация между популяциями отсутствует ($\Phi_{\rm ST} =$ = -0.08489, P > 0.05). Другим показателем степени генетической разобщенности между популяциями является дивергенция нуклеотидных последовательностей (Dxy). У O. tragacanthoides межпопуляционные значения Dxy (среднее число нуклеотидных замен на один сайт и среднее число нуклеотидных различий (число фиксированных различий)) изменяются от 0.00142 до 0.00226 и от 3.400 (3) до 5.400 (2) соответственно. Наименьшие значения Dxy определены между популяциями у O. mandshurica и у O. filiformis (табл. 4), наибольшие — между популяциями O. deflexa, между двумя популяциями O. glabra дивергенция отсутствует (табл. 5).

В табл. 6 приведены значения *D*ху между видами. Низкая дивергенция определена между *O. coerulea* и *O. filiformis*, значение которой ниже таковых между популяциями *O. coerulea* (табл. 4). Дивергенция между *O. filiformis* и *O. mandshurica* соответствует межпопуляционным значениям, а дивергенция

O. coerulea от *O. mandshurica* $B \approx 1.4$ раза превышает межпопуляционную. Нуклеотидная дивергенция O. tragacanthoides от видов секций Janthina в ≈ 1.8 раз выше межпопуляционных значений, а от видов секции Mesogaea в ≈ 5 раз выше (табл. 6). По данным иерархического AMOVA (табл. 3), дифференциация между O. coerulea и O. filiformis низка и незначима ($\Phi_{\rm CT} = 0.19727, P > 0.075$), а дифференциация между тремя видами секций Janthina составляет более 57% ($\Phi_{\rm CT} = 0.57412, P < 0.0001$). Наибольшие различия выявлены между секциями Mesogaea и Janthina ($\Phi_{CT} = 0.89754, P < 0.0001$), чуть меньшие — между *O. tragacanthoides* и секци-ей *Mesogaea* ($\Phi_{CT} = 0.79942$, P < 0.004), а генетические различия между O. tragacanthoides и секцией Janthina оказались ниже популяционных значений ($\Phi_{\rm CT} = 0.32227, P < 0.009$).

Для реконструкции филогенетических связей в матрицу, включающую 46 из 59 выявленных хлоротипов видов двух подродов (некоторые уникальные хлоротипы были исключены в связи с большой представленностью). добавлены полученные нами ранее последовательности хлоротипов пяти видов подрода Oxytropis: O. triphylla (Pall.) Pers. (8 хлоротипов) секции Xerobia Bunge, O. lanata (Pall.) DC. (10) и O. gracillima Bunge (5) секции Verticillares DC., O. sordida (Willd.) Pers. (5) и O. ochotensis Bunge (10) секции Orobia Bunge (табл. 2). Длина объединенной матрицы 84 последовательностей хлоротипов трех регионов после выравнивания составила 2790 сайтов. Обнаружено 48 вариабельных нуклеотидных замен, из них 43 были информативны согласно методу максимальной экономии и 5 единичные. Общих хлоротипов у видов не обнаружено. Филогенетический анализ методами MP, NJ, ML дал деревья сходной топологии. На рис. 2 представлено МР-дерево (консенсус 10000 деревьев: длина 413 шагов, CI = = 0.5617, HI = 0.4383, RI = 0.8002), в котором хлоротипы видов Oxytropis формируют две сестринские клады. Клада I с высокой степенью поддержки только в MP-анализе объединяет хлоротипы O. deflexa и O. glabra секции Mesogaea подрода Phacoxytropis, при этом хлоротипы каждого из видов формируют высокоподдержанные группы (рис. 2). Клада II с высокой степенью поддержки во всех анализах объединяет хлоротипы видов подродов Tragacanthoxytropis, Oxytropis и секции Janthina подрода Phacoxytropis, но взаимоотношения между ними остались неразрешенными. Хорошо поддержанные группы образуют хлоротипы видов O. mandshurica, O. sordida, O. gracillima, O. lanata. Следует отметить, что три хлоротипа O. tragacanthoides (P1, РЗ и Р4) подрода Tragacanthoxytropis объединились в одну группу со средней поддержкой в МР, ML, NJ и высокой в BI анализах с хлоротипами O. triphylla секции Xerobia подрода Oxytropis (рис. 2).

ГЕНЕТИКА том 57 № 9 2021

ФИЛОГЕНЕТИЧЕСКИЕ СВЯЗИ ВИДОВ АЗИАТСКОЙ РОССИИ

V		Номер доступа	
Алоротин	psbA—trnH	trnL-trnF	trnS-trnG
O. tragacanthoides			
P1	MW172222	MW177548	MW177535
P2	MW172223	MW177549	MW177536
P3	MW172224	MW177550	MW177537
P4	MW172225	MW177551	MW177538
P5	MW172226	MW177552	MW177539
P6	MW172227	MW177553	MW177540
P7	MW172228	MW177554	MW177541
P8	MW172229	MW177555	MW177542
Р9	MW172230	MW177556	MW177543
P10	MW172231	MW177557	MW177544
P11	MW172232	MW177558	MW177545
P12	MW172233	MW177559	MW177546
P13	MW172234	MW177560	MW177547
O. coerulea	Y	I	
P14	LR898256	LR898302	LR898413
P15	LR898257	LR898303	LR898414
P16	LR898258	LR898304	LR898415
P17	LR898259	LR898305	LR898416
P18	LR898260	LR898306	LR898417
P19	LR898261	LR898307	LR898418
P20	LR898262	LR898308	LR898419
P21	LR898263	LR898309	LR898420
P22	LR898264	LR898310	LR898421
P23	LR898265	LR898311	LR898422
P24	LR898266	LR898312	LR898423
P25	LR898267	LR898313	LR898424
P26	LR898268	LR898314	LR898425
P27	LR898269	LR898315	LR898426
P28	LR898270	LR898316	LR898427
O. filiformis	Y		
P29	LR898271	LR898317	LR898428
P30	LR898272	LR898318	LR898429
P31	LR898273	LR898319	LR898430
P32	LR898274	LR898320	LR898431
P33	LR898275	LR898321	LR898432
P34	LR898276	LR898322	LR898433
P35	LR898277	LR898323	LR898434
P36	LR898278	LR898324	LR898435
P37	LR898278	LR898325	LR898436
P38	LR898280	LR898326	LR898437
P39	LR898281	LR898327	LR898438
P40	LR898282	LR898328	LR898439

Таблица 2. Хлоротипы видов *Oxytropis* и номера доступа в GenBank/ENA/EMBL-EBI нуклеотидных последовательностей межгенных спейсеров *psbA-trnH*, *trnL-trnF* и *trnS-trnG* хпДНК

Таблица 2. Продолжение

		Номер доступа	
Хлоротип	psbA-trnH	trnL-trnF	trnS-trnG
P41	LR898283	LR898329	LR898440
O. mandshurica	I	Ι	Ι
P42	LR898284	LR898330	LR898441
P43	LR898285	LR898331	LR898442
P44	LR898286	LR898332	LR898443
P45	LR898287	LR898333	LR898444
P46	LR898288	LR898334	LR898445
P47	LR898289	LR898335	LR898446
P48	LR898290	LR898336	LR898447
P49	LR898291	LR898337	LR898448
O. deflexa	•	'	·
P50	LR898292	LR898338	LR898449
P51	LR898293	LR898339	LR898450
P52	LR898294	LR898340	LR898451
P53	LR898295	LR898341	LR898452
P54	LR898296	LR898342	LR898453
P55	LR898297	LR898343	LR898454
P56	LR898298	LR898344	LR898455
O. glabra	•	·	
P57	LR898299	LR898345	LR898456
P58	LR898300	LR898346	LR898457
P59	LR898301	LR898347	LR898458
O. triphylla*			
H1	LT856461	LT856494	LT856527
H2	LT856462	LT856495	LT856528
H3	LT856463	LT856496	LT856529
H4	LT856464	LT856497	LT856530
H5	LT856465	LT856498	LT856531
H6	LT856466	LT856499	LT856532
H7	LT856467	LT856500	LT856533
H10	LT856472	LT856505	LT856538
O. lanata**		I	Ι
V1	LT994841	LT994895	1.7994949
V3	LT994843	LT994897	1.7994951
V4	1 T004844	17004808	17004052
V5	17004845	17004800	17004053
V7	17004947	L1 994099	17004055
V/		LT 994901	LT 994933
V9	L1	L1 994903	L1 99493 /
V13	L1 994853	L1994907	L1994961
V14	LT994854	LT994908	LT994962
V16	LT994856	LT994910	LT994964
V18	LT994858	LT994912	LT994966

Таблица 2. Окончание

Хлоротип		Номер доступа	
Алоротин	psbA-trnH	trnL-trnF	trnS–trnG
O. gracillima**			
V58	MH174938	LT996062	<i>LT996067</i>
V59	LT996058	LT996063	LT996068
V60	LT996059	LT996064	LT996069
V61	LT996060	LT996065	LT996070
V62	LT996061	LT996066	LT996071
O. sordida***			
H1	LS991870	LS991896	LS991922
H2	LS991871	LS991897	<i>LS991923</i>
H3	LS991872	LS991898	LS991924
H4	LS991873	LS991899	LS991925
H5	LS991874	LS991900	LS991926
O. ochotensis****			
H1	MK806162	MK806201	MK806240
H2	MK806163	MK806202	MK806241
H3	MK806164	MK806203	MK806242
H4	MK806165	MK806204	MK806243
H5	MK806166	MK806205	MK806244
H7	MK806168	MK806207	MK806246
Н9	MK806170	MK806209	MK806248
H11	MK806172	MK806211	MK806250
H12	MK806173	MK806212	MK806251
H14	MK806175	MK806214	MK806253

Примечание. Номера доступа, выделенные курсивом, приведены в предыдущих исследованиях: * – [12], ** – [15], *** – [14], **** – [16].

Регион ITS рДНК отсеквенирован у 49 образцов: O. tragacanthoides (13), O. coerulea (11), O. filiformis (7), O. mandshurica (9), O. deflexa (6) и O. glabra (3), представляющих большинство выявленных в данной работе хлоротипов хпДНК. ITS регион характеризуется одинаковой длиной (603 пн) и низкой нуклеотидной изменчивостью: 592 сайта были мономорфными и 11 вариабельными и информативными согласно методу максимальной экономии. Шесть замен (позиции 57, 68, 90, 122, 200, 201) обнаружено в спейсере ITS1 и пять (позиции 422, 427, 513, 548, 555) — в ITS2. Выявлено шесть риботипов: O. coerulea принадлежат два риботипа (RP1 и RP2), у всех других видов по одному: O. filiformis -RP3, O. mandshurica – RP4, O. deflexa – RP5, *O. glabra* – RP6, *O. tragacanthoides* – RP1, который является общим с O. coerulea. Последовательности риботипов видов депонированы в GenBank/ENA/ EMBL-EBI под номерами доступа MW186811, LR898459-LR898464. Для выявления генеалогических связей в матрицу риботипов видов двух подродов были добавлены полученные нами ра-

ГЕНЕТИКА том 57 № 9 2021

нее последовательности ITS видов подрода Oxytropis: O. triphylla (MW015143) секции Xerobia, O. lanata (LM653259, LM653260), O. chankaensis Jurtz. (FR839001, FR839010) и O. oxyphylla (Pall.) DC. (FR839000) секции Verticillares и O. ochotensis (МК795939, МК795941-МК795943) секции Огоbia, а также A. davuricus в качестве внешней группы. Построенная медианная сеть представлена на рис. 3. Наиболее близким видом к Astragalus является O. deflexa, риботип которого через 42 мутационных шага и гипотетический риботип (вымерший или не выявленный в данном исследовании) связан с риботипом A. davuricus. Пять мутационных шагов и гипотетический риботип разделяют виды O. deflexa и O. glabra секции Mesogaea подрода Phacoxvtropis. К ним близки риботипы O. mandshurica и O. filiformis секции Janthina этого же подрода. Наиболее распространенный и общий для шести видов, относящихся к трем подродам, риботип RP1 занимает центральное положение в сети и образует звездчатую структуру с другими рибо-

	, , , , , , , , , , , , , , , , , , , ,	2 1	
	Генетическ	кие различия (%	б) между
Источник дисперсии	группами	популяциями внутри групп	особями в популяции
Популяции видов Оху	vtropis		
Одна группа: (популяции O. tragacanthoides)	—	75.97*	24.03
Одна группа: (популяции O. coerulea)	_	34.05**	65.95
Одна группа: (популяции O. filiformis)	—	-8.49 ns	108.49
Одна группа: (популяции O. mandshurica)	—	33.89*	66.11
Одна группа: (популяции O. deflexa)	—	81.60*	18.4
Одна группа: (популяции O. glabra)	—	71.43 ns	28.57
Две группы: (популяции O. coerulea) и (популяции O. filiformis)	19.72 ns	16.51**	32.98*
Три группы: (популяции <i>O. coerulea</i>), (популяции <i>O. filiformis</i>) и (популяции <i>O. mandshurica</i>)	57.41*	10.03**	32.56*
Две группы: (популяции O. deflexa) и (популяции O. glabra)	74.74**	21.17*	4.09*
Две группы: (популяции видов секции <i>Janthina</i>) и (популяции видов секции <i>Mesogaea</i>)	89.75*	8.91*	1.33*
Две группы: (популяции O. tragacanthoides) и (популяции видов секции Janthina)	32.23**	44.68*	23.09*
Две группы: (популяции O. tragacanthoides) и (популяции видов секции Mesogaea)	79.94**	18.32*	1.74*

Таблица 3. Распределение генетической изменчивости (AMOVA) между группами Oxytropis

Примечание. * P < 0.0001; ** P < 0.05; ns – незначимое. Уровень значимости определен на основе 1023 пермутаций.

Таблица 4. Нуклеотидная дивергенция между популяциями видов Oxytropis coerulea, O. filiformis и O. mandshurica секции Janthina подрода Phacoxytropis

Популяция	COE1	COE2	COE3	FIL1	FIL2	FIL3	FIL4	MAN1	MAN2	MAN3
COE1	_	3.917 (2)	4.000 (4)	0.000 (0)	0.200 (0)	0.000 (0)	0.000 (0)	4.067 (4)	4.000 (4)	4.000 (4)
COE2	0.00164	_	4.250 (2)	3.917 (2)	4.117 (2)	3.917 (2)	3.917 (2)	6.317 (4)	6.250 (4)	6.250 (4)
COE3	0.00168	0.00178	-	4.000 (4)	4.200 (4)	4.000 (4)	4.000 (4)	4.067 (4)	4.000 (4)	4.000 (4)
FIL1	0.00000	0.00164	0.00168	—	0.200 (0)	0.000 (0)	0.000 (0)	4.067 (4)	4.000 (4)	4.000 (4)
FIL2	0.00008	0.00173	0.00176	0.00008	_	0.200 (0)	0.200 (0)	4.267 (4)	4.200 (4)	4.200 (4)
FIL3	0.00000	0.00164	0.00168	0.00000	0.00008	—	0.000 (0)	4.067 (4)	4.000 (4)	4.000 (4)
FIL4	0.00000	0.00164	0.00168	0.00000	0.00008	0.00000	_	4.067 (4)	4.000 (4)	4.000 (4)
MAN1	0.00170	0.00265	0.00170	0.00170	0.00179	0.00170	0.00170	_	0.067 (0)	0.067 (0)
MAN2	0.00167	0.00262	0.00167	0.00167	0.00176	0.00167	0.00167	0.00003	_	0.000 (0)
MAN3	0.00167	0.00262	0.00167	0.00167	0.00176	0.00167	0.00167	0.00003	0.00000	—

Примечание. Выше диагонали – среднее число нуклеотидных различий (число фиксированных различий), ниже диагонали – среднее число нуклеотидных замен на один сайт. Код популяции см. табл. 1.

типами, связанными одномутационными переходами (рис. 3).

ОБСУЖДЕНИЕ

Генетическое разнообразие исследованных популяций видов O. tragacanthoides подрода Tragacanthoxytropis и O. coerulea, O. filiformis и O. mandshurica секции Janthina подрода Phacoxytropis характеризуется сочетанием высоких значений гаплотипического и низких/средних значений нуклеотидного разнообразия (табл. 1), которое было отмечено для ряда эндемичных видов *Oxytopis* [12], некоторых популяций *O. glandulosa* [13] и *O. ruthenica* [16], а также других представителей сем. Fabaceae – *Astragalus onobrychis* L. [28], видов рода *Sophora* L. [29]. Это указывает на быстрый рост популяции после падения численности, сопровождающийся восстановлением гаплотипической изменчивости за счет мутационного процесса [28, 30]. Низ-

Популяция	DEF1	DEF2	DEF3	DEF4	DEF5	DEF6	DEF7	GLA1	GLA2
DEF1	_	4.000(2)	4.000 (2)	4.000(2)	6.000 (4)	6.000 (4)	6.000 (4)	15.000 (13)	15.000 (13)
DEF2	0.00175	_	0.000 (0)	0.000 (0)	3.000 (3)	3.000 (3)	3.000 (3)	14.000 (14)	14.000 (14)
DEF3	0.00167	0.00000	—	0.000 (0)	3.000 (3)	3.000 (3)	3.000 (3)	16.000 (16)	16.000 (16)
DEF4	0.00167	0.00000	0.00000	_	3.000 (3)	3.000 (3)	3.000 (3)	16.000 (16)	16.000 (16)
DEF5	0.00263	0.00131	0.00131	0.00131	—	0.000 (0)	0.000 (0)	12.000 (12)	12.000 (12)
DEF6	0.00263	0.00131	0.00131	0.00131	0.00000	—	0.000 (0)	12.000 (12)	12.000 (12)
DEF7	0.00263	0.00131	0.00131	0.00131	0.00000	0.00000	—	12.000 (12)	12.000 (12)
GLA1	0.00661	0.00639	0.00705	0.00705	0.00547	0.00547	0.00547	—	0.000 (0)
GLA2	0.00661	0.00638	0.00705	0.00705	0.00547	0.00547	0.00547	0.00000	—

Таблица 5. Нуклеотидная дивергенция между популяциями видов Oxytropis deflexa и O. glabra секции Mesogaea подрода Phacoxytropis

Примечание. См. примечание к табл. 4.

Таблица 6. Нуклеотидная дивергенция между видами Oxytropis подродов Tragacanthoxytropis и Phacoxytropis

Вид	O. tragacanthoides	O. coerulea	O. filiformis	O. mandshurica	O. deflexa	O. glabra
O. tragacanthoides	—	7.939 (2)	7.600 (5)	7.579 (5)	22.910 (14)	22.800 (20)
O. coerulea	0.00334	—	2.883 (0)	5.529 (2)	24.829 (16)	24.389 (21)
O. filiformis	0.00320	0.00121	—	4.079 (4)	23.490 (18)	23.050 (23)
O. mandshurica	0.00318	0.00232	0.00171	_	21.549 (17)	22.029 (22)
O. deflexa	0.01097	0.01193	0.01128	0.01034	_	13.600 (10)
O. glabra	0.01031	0.01106	0.01044	0.00994	0.00620	—

Примечание. См. примечание к табл. 4.

кое гаплотипическое разнообразие в популяциях видов O. deflexa и O. glabra секции Mesogaea подрода Phacoxytropis (табл. 1) может быть следствием дрейфа генов в изолированных малочисленных популяциях и влияния отбора в суровых условиях существования. Высокий уровень межпопуляционной дифференциации у O. deflexa (табл. 3) объясняется, в первую очередь, значительной географической удаленностью местонахождений (Южная Сибирь, Магаданская обл., Таймыр, рис. 1). Отсутствие нуклеотидной дивергенции между удаленными популяциями O. glabra (табл. 5) может быть проявлением анцестрального полиморфизма широко распространенного вида. У O. deflexa и O. glabra выявлены видоспецифичные маркерные нуклеотидные замены хпДНК, а также маркерные замены для секции Mesogaea. Виды секции Mesogaea значительно дивергированы от видов секции Janthina этого же подрода и O. tragacanthoides подрода Tragacanthoxytropis (табл. 6). Базальная позиция риботипов ITS рДНК O. deflexa и O. glabra в генеалогической сети (рис. 3) свидетельствует об их более древнем происхождении. Обособленное положение было показано ранее для O. deflexa [31] по данным полиморфизма маркеров TRPT ядерного и *matK* хлоропластного геномов, а также для O. deflexa и O. glabra по измен-

ГЕНЕТИКА том 57 № 9 2021

чивости ITS рДНК [32]. Кроме этого, изучение полиморфизма межгенного спейсера *trnL-trnF* и интрона *trnL* хпДНК видов *Oxytropis*, обитающих в Турции, показало, что *O. kotschyana* секции *Mesogaea* значительно дивергирована как от видов секции Janthina, так и от видов других подродов [33].

В данном исследовании секция Janthina представлена тремя видами. У О. filiformis отсутствует межпопуляционная дифференциация (табл. 3) и выявлен очень низкий уровень нуклеотидной дивергенции (табл. 4), что обусловлено, вероятно, активным обменом генами между близко расположенными популяциями. У О. coerulea популяции значительно дивергированы друг от друга (табл. 4), при этом такой же уровень нуклеотидной дивергенции выявлен между популяциями O. coerulea и O. filiformis, а между популяцией COE1 O. coerulea, расположенной восточнее оз. Байкал (Бурятия), и популяциями FIL1, FIL3 и FIL4 O. filiformis из Забайкалья и Монголии нуклеотидная дивергенция отсутствует (табл. 4). Результаты анализа полиморфизма межгенных спейсеров хпДНК (отсутствие видоспецифичных маркеров хпДНК и значимой генетической дифференциации у O. coerulea и O. filiformis и объединение хлоротипов в одну, хотя и слабо поддержанную, филогруппу (рис. 2)), указывают на генетическую близость этих двух

ХОЛИНА и др.

Рис. 2. МР-дерево филогенетических связей хлоротипов хпДНК видов *Oxytropis* подродов *Tragacanthoxytropis*, *Phacoxytropis* и *Oxytropis*. Числами над ветвью обозначены значения индекса бутстрепа, рассчитанные для MP/NJ/ML методов (>50%), под ветвью – значения апостериорной вероятности, рассчитанные для BI анализа (>0.95). Названия видов, секций и подродов рода *Oxytropis* приведены согласно обработке Малышева [5].

видов, тем не менее отсутствие общих хлоротипов и наличие разных риботипов ITS рДНК подтверждают самостоятельность *O. coerulea* и *O. filiformis*. У *O. mandshurica* выявлен видоспецифичный маркер в спейсере trnL-trnF хпДНК, хлоротипы образуют высокоподдержанную филогруппу (рис. 2), отмечен индивидуальный риботип. Эти результаты, а также высокий уровень дифференциации между видами секции *Janthina* (табл. 3), все в целом подтверждает статус *O. mandshurica* как самостоятельного вида.

Между популяциями *O. tragacanthoides* выявлены значительная нуклеотидная дивергенция и высокая межпопуляционная дифференциация, что может быть связано с изоляцией местонахождений и приуроченностью вида к специфическим экотопам, а также с наличием кариологических рас. Так, у O. tragacanthoides обнаружены как диплоидные (2n = 16), так и тетраплоидные (2n = 32)представители [5, 9, 34]. Выявленные хлоротипы *O. tragacanthoides* в MP-дереве разделились на две группы, в одной из них со средней в MP, ML, NJ и высокой в BI анализах поддержками (рис. 2) три хлоротипа объединены с хлоротипами O. triphylla секции Xerobia подрода Oxytropis, который является диплоидом с 2n = 16 [35]. Кроме этого, эти виды имеют один общий риботип ITS (рис. 3). Однако морфологически O. tragacanthoides и *О. triphylla* резко отличаются как друг от друга, так и от других видов Oxytropis. Представители подрода Tragacanthoxytropis — это подушковидные колючие кустарнички, а характерной особенностью *О. triphylla* являются листья с одной, редко двумя парами листочков, в целом по морфологическим признакам вид выделяют в особый олиготипный ряд Triphyllae внутри секции Xerobia [5]. Можно предположить, что генетическая близость этих реликтовых видов, обитающих в Южной Сибири, обусловлена широким распространением предковых форм Oxytropis на данной территории [9].

Филогенетические связи хлоротипов видов **Охуторія** Азиатской России подродов Tragacanthoxytropis, Oxytropis и секции Janthina подрода Phacoxytropis, образующих высокоподдержанную кладу II (рис. 2), остались неразрешенными. Кроме того, анализ генеалогических связей риботипов ITS рДНК выявил у видов O. tragacanthoides, *O. coerulea*, *O. lanata*, *O. chankaensis*, *O. oxyphylla* и *О. triphylla*, относящихся к этим трем подродам, общий риботип RP1 (рис. 3). Все это может быть проявлением сетчатой эволюции, отмеченной для видов рода Oxytropis [5]. Выявленная генетическая близость при четких морфологических различиях характерна для таксонов с общим происхождением, испытавших относительно недавнюю быструю адаптивную радиацию, что отмечено для ряда родов сем. Fabaceae [1]. Учитывая обособление группы бобовых, в которую входят Astragalus и Oxvtropis, около 39 млн лет назад [36], можно сказать, что дивергенция рода Oxytropis, появившегося на границе миоцена-плиоцена около 5.6 млн лет назад, была относительно недавней. Быстрая адаптивная радиация показана для видов Oxytropis [1] и других родов сем. Fabaceae: Pultenaea [37], Astragalus [38], Sophora [29] и др. Определенный вклад в полученную картину взаимосвязей видов Oxytropis трех подродов может вносить и происходившая на ранних этапах эволюции рода гибридизация между не полностью специализированными таксонами после быстрой радиации, но перед расхождением генеалогических линий, как это было отмечено для видов рода Pultenaea [37].

Рис. 3. Генеалогическая сеть риботипов ITS рДНК видов Oxytropis подродов Tragacanthoxytropis (RP1), Phacoxytropis (RP1–RP6) и Oxytropis (RP1, RP7– RP12), построенная с помощью MJ-метода. Размер окружностей отражает частоту встречаемости риботипов, маленькие черные кружки – гипотетические гаплотипы, поперечные тонкие штрихи на ветвях – мутационные события.

Таким образом, проведенный анализ нуклеотидного полиморфизма межгенных спейсеров *psbA-trnH*, *trnL-trnF* и *trnS-trnG* хпДНК и ITS рДНК расширенной выборки образцов из разных популяций видов O. coerulea, O. filiformis и O. mandshurica секции Janthina подрода Phacoxvtropis подтвердил, что три этих таксона являются самостоятельными видами. Результаты реконструкции филогенетических связей хлоротипов и анализа генеалогических связей риботипов ITS видов подродов *Phacoxytropis*, *Tragacanthoxytropis* и Oxytropis согласуются с мнением Zhu с соавт. [6] о принадлежности видов O. coerulea, O. filiformis и O. mandshurica подроду Oxytropis, однако необходимы дальнейшие исследования с привлечением других видов этой секции.

Авторы выражают благодарность И.Н. Поспелову и Е.Б. Поспеловой за предоставление образцов *O. deflexa* с п-ова Таймыр.

Настоящая статья не содержит каких-либо исследований с использованием в качестве объекта животных.

ГЕНЕТИКА том 57 № 9 2021

Настоящая статья не содержит каких-либо исследований с участием в качестве объекта людей.

Авторы заявляют, что у них нет конфликта интересов.

СПИСОК ЛИТЕРАТУРЫ

 Shavvon R.S., Kazempour-Osaloo S., Maassoumi A.A. et al. Increasing phylogenetic support for explosively radiating taxa: The promise of high-throughput sequencing for Oxytropis (Fabaceae) // J. Syst. Evol. 2017. V. 55. Nº 4. P. 385–404.

https://doi.org/10.1111/jse.12269

- Положий А.В. К вопросу о происхождении и эволюции рода Oxytropis (Fabaceae) // Бот. журн. 2003. Т. 88. № 10. С. 55–59.
- 3. Положий А.В. Флорогенетический анализ остролодочников Средней Сибири // Уч. зап. Томского гос. ун-та. Биология и почвоведение. 1965. № 51. С. 18–38.
- Юрцев Б.А. Oxytropis DC. // Арктическая флора СССР. Л.: Наука, 1986. Вып. 9. Ч. 2. С. 61–146.
- 5. *Малышев Л.И*. Разнообразие рода Остролодка (*Oxytropis*) в Азиатской России // Turczaninowia. 2008. Т. 11. № 4. С. 5–141.
- Zhu X., Welsh S.L., Ohashi H. Oxytropis // Flora of China. 2010. V. 10. P. 453–500. http://www.efloras.org.
- Положий А.В. Oxytropis DC. Остролодочник // Флора Сибири. Новосибирск: ВО "Наука", 1994. Т. 9. С. 74–151.
- Холина А.Б., Козыренко М.М., Артюкова Е.В. и др. Филогенетические взаимоотношения видов Oxytropis DC. subg. Oxytropis и Phacoxytropis (Fabaceae) Азиатской России на основе анализа нуклеотидных последовательностей межгенных спейсеров хлоропластного генома // Генетика. 2016. Т. 52. № 8. С. 895–909.
- Пешкова Г.А. Флорогенетический анализ степной флоры гор Южной Сибири. Новосибирск, 2001. 192 с.
- Артюкова Е.В., Холина А.Б., Козыренко М.М., Журавлев Ю.Н. Анализ генетической изменчивости редкого эндемичного вида Oxytropis chankaensis Jurtz. (Fabaceae) на основе RAPD маркеров // Генетика. 2004. Т. 40. № 7. С. 877–884.
- Artyukova E.V., Kozyrenko M.M., Kholina A.B., Zhuravlev Yu.N. High chloroplast haplotype diversity in the endemic legume Oxytropis chankaensis may result from independent polyploidization events // Genetica. 2011. V. 139. № 2. P. 221–232.

https://doi.org/10.1007/s10709-010-9539-8

- Холина А.Б., Козыренко М.М., Артюкова Е.В., Санданов Д.В. Современное состояние популяций эндемичных видов Oxytropis Байкальской Сибири и их филогенетические связи по данным секвенирования маркеров хлоропластной ДНК // Генетика. 2018. Т. 54. № 7. С. 795–806.
- Kholina A., Kozyrenko M., Artyukova E. et al. Plastid DNA variation of the endemic species Oxytropis glandulosa Turcz. (Fabaceae) // Turk. J. Bot. 2018. V. 42. P. 38-50.

https://doi.org/10.3906/bot-1706-11

14. Холина А.Б., Козыренко М.М., Артюкова Е.В. и др. Генетическое разнообразие и филогенетические связи Oxytropis evenorum (Fabaceae) по данным секвенирования межгенных спейсеров хлоропластной ДНК // Вестник СВНЦ ДВО РАН. 2019. № 2. С. 117–125.

https://doi.org/10.1134/S0016675819060055

- 15. Холина А.Б., Козыренко М.М., Артюкова Е.В., Санданов Д.В. Дивергенция видов Oxytropis секции Verticillares (Fabaceae) степной флоры Байкальской Сибири на основе анализа хлоропластной ДНК // Генетика. 2019. Т. 55. № 6. С. 665–674.
- 16. Козыренко М.М., Холина А.Б., Артюкова Е.В. и др. Молекулярно-филогенетическая характеристика эндемичных дальневосточных близкородственных видов секции Orobia рода Oxytropis (Fabaceae) // Генетика. 2020. Т. 56. № 4. С. 421–432.
- 17. Холина А.Б., Козыренко М.М., Артюкова Е.В. и др. Филогенетические отношения видов Oxytropis секции Arctobia северо-востока Азии по данным секвенирования межгенных спейсеров хлоропластного и ITS ядерного геномов // Генетика. 2020. Т. 56. № 12. С. 1386–1397.
- Mir B.A., Koul S., Kumar A. et al. Intraspecific variation in the internal transcribed spacer (ITS) regions of rDNA in Withania somnifera (Linn.) Dunal // Indian J. Biotechnol. 2010. V. 9. P. 325–328.
- Bonfeld J.K., Smith K.F., Staden R. A new DNA sequence assembly program // Nucl. Acids Res. 1995. V. 23. P. 4992–4999.
- Gouy M., Guindon S., Gascuel O. SeaView version 4: A multiplatform graphical user interface for sequence alignment and phylogenetic tree building // Mol. Biol. Evol. 2010. V. 27. P. 221–224. https://doi.org/10.1093/molbev/msp259
- Excoffier L., Lischer H.E.L. Arlequin suite ver 3.5: A new series of programs to perform population genetics analyses under Linux and Windows // Mol. Ecol. Resour. 2010. V. 10. P. 564–567.
- 22. *Librado P., Rozas J.* DnaSP v5: A software for comprehensive analysis of DNA polymorphism data // Bioinformatics. 2009. V. 25. № 11. P. 1451–1452.
- 23. Swofford D.L. PAUP*: Phylogenetic analysis using parsimony (*and other methods): version 4.04. Sunderland, MA, USA: Sinauer Associates Inc., 2003.
- Posada D., Crandall K.A. Modeltest: testing the model of DNA substitution // Bioinformatics. 1998. V. 14. P. 817–818.
 https://doi.org/10.1003/bioinformatics/14.0.817

https://doi.org/10.1093/bioinformatics/14.9.817

- Ronquist F., Huelsenbeck J.P. MrBAYES3: Bayesian phylogenetic inference under mixed models // Bioinformatics. 2003. V. 19. P. 1572–1574. https://doi.org/10.1093/bioinformatics/btg180
- Miller M.A., Pfeiffer W., Schwartz T. Creating the CIP-RES Science Gateway for inference of large phylogenetic trees // Proc. Gateway Computing Environments Workshop (GCE). LA: New Orleans, 2010. https://doi.org/10.1109/GCE.2010.5676129
- 27. *Bandelt H.-J., Forster P., Röhl A.* Median-joining networks for inferring intraspecific phylogenies // Mol. Biol. Evol. 1999. V. 16. № 1. P. 37–48.
- Plenk K., Willner W., Demina O.N. et al. Phylogeographic evidence for long-term persistence of the Eurasian steppe plant Astragalus onobrychis in the Pannonian region (eastern Central Europe) // Flora. 2020. V. 264. 151555. 10 p. https://doi.org/10.1016/j.flora.2020.151555
- 29. Shepherd L.D., Lange P.J., Perrie L.R., Heenan P.B. Chloroplast phylogeography of New Zealand Sophora trees (Fabaceae): Extensive hybridization and wide-

spread Last Glacial Maximum survival // J. Biogeogr. 2017. V. 44. P. 1640-1651. https://doi.org/10.1111/jbi.12963

- 30. Абрамсон Н.И. Филогеография: итоги, проблемы, перспективы // Информ. вестник ВОГиС. 2007. T. 11. № 2. C. 307–331.
- 31. Meyers Z.J. A contribution to the taxonomy and phylogeny of Oxytropis section Arctobia (Fabaceae) in North America: Master Diss. Fairbanks. Alaska: Univ. Alaska Fairbanks, 2012, 155 p.
- 32. Archambault A., Strömvik M.V. Evolutionary relationships in Oxytropis species, as estimated from the nuclear ribosomal internal transcribed spacer (ITS) sequences point to multiple expansions into the Arctic // Botany. 2012. V. 90. № 8. P. 770–779. https://doi.org/10.1139/B2012-023
- 33. Tekpinar A., Karaman Erkul S., Avtac Z., Kava Z. Phylogenetic relationships among native Oxytropis species in Turkey using trnL intron, trnL-F IGS, and trnV intron cpDNA regions // Turk. J. Bot. 2016. V. 40. P. 472-479. https://doi.org/10.3906/bot-1506-45

- 34. Krivenko D.A., Kotseruba V.V., Kazanovsky S.G. et al. Fabaceae // IAPT/IOPB chromosome data 11 / Ed. Marhold K. // Taxon. 2011. V. 60. № 4. P. 1222; E12, E13
- 35. Konichenko E.S., Selyutina I.Yu., Dorogina O.V. Oxytropis triphylla // IAPT/IOPB chromosome data 14 / Ed. Marhold K. // Taxon. 2012. V. 61. № 6. P. 1339; E13.
- 36. Lavin M., Herendeen P.S., Woiciechowski M.F. Evolutionary rates analysis of Leguminosae implicates a rapid diversification of lineages during the Tertiary // Syst.Biol. 2005. V. 54. P. 530-549. https://doi.org/10.1080/10635150590947131
- 37. Orthia L.A., Crisp M.D., Cook L.G., de Kok R.P.J. Bush pea: A rapid radiation with no support for monophyly of Pultenaea (Fabaceae: Mirbelieae) // Aust. Syst. Bot. 2005. V. 18. P. 133-147. https://doi.org/10.1071/SB04028
- 38. Bagheri A., Maassoumi A.A., Rahiminejad M.R. et al. Molecular phylogeny and divergence times of Astragalus section Hymenostegis: An analysis of a rapidly diversifying species group in Fabaceae // Sci. Rep. 2017. №7: 14033. 9 pages. https://doi.org/10.1038/s41598-017-14614-3

Population Studies of the Species of Asian Russia of the Subgenera *Phacoxytropis* and Tragacanthoxytropis Genus Oxytropis and Phylogenetic Relationships: Data on the Polymorphism of Markers of the Chloroplast and Nuclear Genomes

A. B. Kholina^{*a*, *}, M. M. Kozyrenko^{*a*}, E. V. Artyukova^{*a*}, M. N. Koldaeva^b, D. V. Sandanov^c, and I. Yu. Selyutina^d

^aFederal Scientific Center of the East Asia Terrestrial Biodiversity, Far Eastern Branch, Russian Academy of Sciences, Vladivostok, 690022 Russia

^bBotanical Garden-Institute, Far Eastern Branch, Russian Academy of Sciences, Vladivostok, 690022 Russia

^cInstitute of General and Experimental Biology, Siberian Branch, Russian Academy of Sciences, Ulan-Ude, 670047 Russia

^dCentral Siberian Botanical Garden, Siberian Branch, Russian Academy of Science, Novosibirsk, 630090 Russia

*e-mail: kholina@biosoil.ru

Based on the analysis of the nucleotide polymorphism of the intergenic spacers *psbA*-*trnH*, *trnL*-*trnF* and trnS-trnG of chloroplast DNA of the Oxytropis species from Asian Russia: O. tragacanthoides section Hystrix subgenus Tragacanthoxytropis, O. coerulea, O. filiformis, and O. mandshurica sect. Janthina, and O. deflexa and O. glabra sect. Mesogaea subg. Phacoxytropis, it was found that all populations are characterized by high haplotype diversity (h varies from 0.676 to 1.000), except for species of sect. Mesogaea (h varies from 0 to 0.333). Species-specific markers were found for O. tragacanthoides, O. deflexa, O. glabra, and O. mandshurica, as well as specific markers for sect. Mesogaea. Reconstruction of the phylogenetic relationships of the chlorotypes of the species of the subgenera Phacoxytropis, Tragacanthoxytropis, and Oxytropis showed that the species of the sect. Janthina are combined into one well-supported clade with the species of the subgenera Tragacanthoxytropis and Oxytropis, but their relationships remained unresolved. An analysis of the genealogical relationships of the ribotypes of the ITS of nuclear DNA revealed a common ribotype for the species O. tragacanthoides, O. coerulea, O. lanata, O. chankaensis, O. oxyphylla and O. triphylla, belonging to three subgenera. The revealed genetic affinity with clear morphological differences is characteristic for taxa with a common origin that have experienced relatively recent rapid adaptive radiation. The obtained data on the variability of markers of the nuclear and chloroplast genomes confirm the status of O. coerulea, O. filiformis, and *O. mandshurica* as a three separate species.

Keywords: Oxytropis, Fabaceae, genetic diversity, phylogenetic relationships, chloroplast DNA, ITS.

ГЕНЕТИКА том 57 <u>№</u> 9 2021