УДК 575.113

СТРУКТУРА И РАЗНООБРАЗИЕ ДНК-ТРАНСПОЗОНОВ *Tc1/mariner* В ГЕНОМЕ УШАСТОЙ МЕДУЗЫ *Aurelia aurita*

© 2023 г. Ю. Н. Улупова¹, Л. В. Пузакова¹, М. В. Пузаков^{1, *}

¹Федеральный исследовательский центр "Институт биологии южных морей им. А.О. Ковалевского" Российской академии наук, Севастополь, 299011 Россия *e-mail: puzakov@ngs.ru

Поступила в редакцию 30.03.2022 г. После доработки 08.08.2022 г. Принята к публикации 30.08.2022 г.

Мобильные генетические элементы – ДНК-транспозоны и ретротранспозоны – это последовательности ДНК, способные к перемещениям внутри генома. Предполагается, что они играют одну их ключевых ролей в адаптивных и эволюционных процессах. Одной из наиболее изученных групп ДНК-транспозонов является инфракласс *ITm* и, в частности, суперсемейство *Tc1/mariner*. В настоящей работе мы рассмотрели представленность, структуру и эволюцию ДНК-транспозонов *Tc1/mariner* ушастой медузы *Aurelia aurita*. Было установлено, что преобладающая доля элементов *Tc1/mariner* медузы представлена семейством *TLE*. Выявлено новое подсемейство элементов *TLE*, названное *Aurum*. Кроме того, в семействе *Visitor* обнаружены две группы элементов *VS-aura* и *VS-beplau*, которые, вероятно, также являются отдельными подсемействами. Анализ структуры и разнообразия элементов *Tc1/mariner* показал, что в настоящий момент транспозоны *Tc1/mariner* в геноме медузы находятся на стадии деградации и элиминации. Практически все элементы делетированы или имеют структурные изменения и соответственно не имеют потенциально функциональных копий.

Ключевые слова: Aurelia aurita, мобильные генетические элементы, *Tc1/mariner*, транспозаза, ДНК-транспозоны.

DOI: 10.31857/S0016675823020133, EDN: KYLGLQ

Мобильные генетические элементы (МГЭ) – это последовательности ДНК, способные к самостоятельным перемещениям внутри генома. Впервые мобильные генетические элементы были описаны в 1940-х гг. Барбарой Макклинток [1]. В настоящее время известно, что они встречаются практически во всех организмах и суммарно составляют большой процент генома у высших эукариот [2, 3]. Известно, что последовательности МГЭ могут быть основой для возникновения новых генов или регуляторных последовательностей [4]. Кроме того, МГЭ являются высокомутабильными структурами геномов организмов, а также вносят существенный вклад в спонтанный мутагенез, формируя хромосомные перестройки (делеции, инверсии, дупликации), тем самым вызывая как вредные, так и полезные мутации для организма и популяции в целом. Предполагается, что они играют одну их ключевых ролей в адаптивных и эволюционных процессах [5].

МГЭ эукариот можно разделить на два класса – ретротранспозоны и ДНК-транспозоны [4, 6]. Ретротранспозоны – элементы I класса, кодируют обратную транскриптазу и для своего перемещения используют в качестве посредника молекулу РНК. Такой механизм называется "копирование– вставка". С помощью этого механизма ретротранспозонам удается быстро увеличивать число копий. ДНК-транспозоны – элементы II класса, кодируют транспозазу и перемещаются по геному без копирования путем вырезания собственной копии и ее последующей вставки в какой-либо другой участок генома. Такой механизм называется "вырезание–вставка" [4, 6].

Одной из наиболее изученных групп ДНКтранспозонов является ІТт-элементы. На данный момент элементы *ITm* обнаружены у большинства живых организмов [7, 8]. В геномах можно обнаружить несколько сотен и даже тысяч копий этой группы [9-11]. Протяженность ІТт-элементов составляет от 1 до 3 тыс. пар нуклеотидов. Транспозоны ІТт имеют концевые инвертированные повторы (КИП), длина которых составляет от 20 до 1900 пн [12, 13]. У некоторых транспозонов есть и субконцевые инвертированные повторы (СИП), длиной от 175 до 1403 пн [13]. В центральной части транспозона находится, как правило, единая открытая рамка считывания (ОРС), кодирующая фермент транспозазу, длина которого варьирует от 350 до 650 а.о. Для транспозазы элементов ІТт

свойственно наличие ДНК-связывающего домена (PAIRED) и каталитического домена (DDE/D). ДНК-связывающий домен находится в N-концевой части транспозазы и состоит из шести α-спиралей. Первые три α-спирали получили название РАІ-субдомен, вторые три α-спирали – RED-субдомен. Между этими доменами находится GRPR-подобный мотив, который обеспечивает связывание PAIRED с ДНК-мишенью [14]. Каталитический домен находится на С-концевой части транспозазы. DDE/D-домен обладает эндонуклеазной и лигирующей активностью, обеспечивая вырезание и вставку МГЭ. Также транспозаза ІТт может включать NLS-мотив (сигнал ядерной локализации). NLSмотив предположительно обеспечивает транспорт транспозазы из цитоплазмы в ядро [15, 16].

На данный момент *ITm*-транспозоны классифицируют как инфракласс, так как эта группа включает несколько суперсемейств: *Tc1/mariner*, *pogo*, *IS630*, *Sailor*, *Gambol* [8, 17, 18]. Суперсемейство *Tc1/mariner* включает в себя несколько семейств: *Tc1*-подобные элементы (*TLE/DD34-46E*), *mariner*-подобные элементы (*MLE/DD34D*), *Visitor* (DD41D), *maT* (DD37D), *Guest* (DD39D), *mosquito* (DD37E), *L18* (DD37E), *L31* (DD37E) [11, 13, 17, 19–21].

Здесь мы рассматриваем представленность, структуру и эволюцию ДНК-транспозонов ITm суперсемейства Tc1/mariner медузы Aurelia aurita. Ушастая медуза Aurelia aurita (также называемая обыкновенной медузой или лунной медузой) является разновидностью рода Aurelia (тип Cnidaria, класс Scyphozoa). Вид A. aurita встречается в Северном, Черном, Балтийском и Каспийском морях, северо-восточной Атлантике. Гренландии. северовостоке США и Канаде, северо-западной части Тихого океана и Южной Америке [22, 23]. Ушастые медузы являются одним из важных компонентов многих экосистем, кроме того обладают удивительной способностью выдерживать значительные колебания температур и солености воды [24]. У медузы A. aurita, а также у других представителей Scyphozoa структура, эволюция и представленность элементов *Tc1/mariner* практически не изучены.

МАТЕРИАЛЫ И МЕТОДЫ

Поиск транспозонов

Для поиска ДНК-транспозонов суперсемейства *Tc1/mariner* был использован BLAST (https://blast.ncbi.nlm.nih.gov/Blast.cgi). В качестве матрицы использовались аминокислотные последовательности транспозаз *Tc1/mariner*, таких семейств как *TLE* (*Passport* (CAB51371), *Mariner-5 CGi*

(Repbase), DrTRT [25], IN Machilis hrabei [26], TR-Habu [27], IT Cf [28], MLE (Heteropoda venatoria (BAP05478), Mamestra brassicae (AAL69970), Adineta vaga (AAZ67099), Girardia tigrina (CAA50801), Bytmar1 (CAD45367), Bombyx mori (ABF51498), Tvmar1 (AAP45328)); Visitor (Crmar2.5 (AAK61417)), maT (Bmmar1 (U47917)), Guest (Sovmar1 (AF078934)), mosquito (Ae-atropalpus1 (AF377999)). Полногеномные последовательности ДНК медузы A. aurita (GCA 004194415) были взяты из базы данных NCBI. Для того чтобы выяснить являются ли нуклеотидные последовательности МГЭ полными, мы брали гомологичные транспозазе последовательности с наивысшей идентичностью к матрице из соответствующих скаффолдов. У каждой извлеченной последовательности был совершен поиск инвертированных повторов (КИП и СИП) с помощью BLASTn [29]. Полная последовательность каждого нового обнаруженного элемента использовалась для уточнения границ и определения количества копий, присутствующих в геноме. Копии с протяженностью от 10 до 100% от длины полноразмерного МГЭ подсчитывались как общее количество копий. Копии менее 10% от длины полноразмерного МГЭ при подсчете не учитывались. Копии, которые составляли >95% от длины полноразмерного МГЭ, имели КИП и полную транспозазу (~300 а.о.), считались полноразмерными. Потенциально функциональными копиями мы считали такие элементы, у которых были интактная транспозаза (отсутствие стоп-кодонов и сдвигов ОРС), КИП, ДНК-связывающий домен (PAIRED), GRPR-мотив и каталитический домен (DDE/D).

Анализ последовательностей

Границы предполагаемых ОРС определяли с помощью ORF Finder (https://www.ncbi.nlm.nih.gov/orffinder/) и далее уточняли визуально. Последовательность сигнала ядерной локализации (NLS) выявляли с помощью ScanProsite [30]. ДНК-связывающий мотив PAIRED определяли, используя PSIPRED v3.3 [31]. Мотив GRPR-типа, а также DDE/D-домен идентифицировали визуально.

Филогенетический анализ

Для филогенетического анализа были взяты аминокислотные последовательности транспозаз, относящиеся к различным группам суперсемейства *ITm*-транспозонов (рис. 1). Множественное выравнивание аминокислотных последова-

Рис. 1. Эволюционные взаимоотношения *ITm*-транспозонов. Черными ромбами обозначены ДНК-транспозоны *A. aurita*. Достоверность топологии оценивалась с использованием бутстреп-теста (1000 репликаций). Значения коэффициентов поддержки бутстреп-теста менее 50% не обозначены.

тельностей было выполнено с помощью MUSCLE [32] с использованием стандартных настроек. Поиск наилучшей модели для филогенетического анализа и филогенетический анализ проводились с использованием MEGA7.0 [33] по методу максимального правдоподобия.

РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЕ

Проанализировав геном медузы A. aurita, нами было обнаружено 18 МГЭ (табл. 1). Для того чтобы соотнести к каким группам суперсемейства Tc1/mariner они относятся, мы провели филогенетический анализ. Для филогенетического анализа были использованы все известные семейства группы *Tc1/mariner*. В качестве внешней группы были задействованы аминокислотные последовательности элементов суперсемейств *IS630* и родо. В результате филогенетического анализа было установлено, что 13 элементов (ITm-1 AAur, ITm-2 AAur, ITm-3 AAur, ITm-4 AAur, ITm-5 AAur, ITm-6 AAur, ITm-10 AAur, ITm-11 AAur, ITm-12 AAur, ITm-13 AAur, ITm-14 AAur, ITm-17 AAur, *ITm-18 AAur*) входят в семейство *TLE*, четыре элемента (ITm-7_AAur, ITm-8_AAur, ITm-9_AAur, *ITm-15 AAur*) относятся к семейству Visitor и еще один элемент (ITm-16 AAur) принадлежит к семейству *MLE*. МГЭ, относящиеся к семействам *maT*, *mosquito*, *Guest*, *L18*, обнаружить не удалось (рис. 1). Отсутствие у ушастой медузы элементов L18 также было показано ранее [34].

Visitor/DD41D

На данный момент элементы Visitor/DD41D классифицируют как отдельное семейство [11, 13]. Это семейство было разделено на шесть подсемейств (VS-A, VS-B, VS-C, VS-D, VS-E, Leidvi) [35]. В настоящем исследовании в геноме медузы мы обнаружили 4 МГЭ. относящихся к группе Visitor (табл. 1). Элементы ITm-15 AAur, Visitor-1 PBac, Visitor-2_PBac, Visitor-1_BOva сформировали группу с достаточно высоким значением бутстрепа (67%), названную нами VS-beplau. Элементы ITm-7 AAur, ITm-8_AAur сформировали группу (бутстреп 100%), которую мы назвали VS-aura. Можно предположить, что элементы ITm-7_AAur, ITm-8_AAur являются частью группы VS-D с низким значением бутстрепа (55%). Элемент ITm-9_AAur вошел в группу *VS-В* (рис. 1).

Для МГЭ семейства Visitor общая длина транспозонов составляет примерно 1300—4400 пн. Длина КИП варьирует от 15 до 1900 пн [11, 13, 36]. У *ITm-8_AAur* КИП обнаружить не удалось, следовательно элемент не способен к перемещениям, однако ОРС транспозазы *ITm-8_AAur* не имеет повреждений. Это может свидетельствовать о том, что транспозаза сохраняет свою ферментативную активность. У элемента *ITm-15_AAur* общий размер транспозона был типичен для этого семейства (1847 пн), а также были обнаружены КИП типичного размера (87 пн). Однако транспозаза элемента оказалась делетированной (107 а.о.). Элементы *ITm-7_AAur*, *ITm-9_AAur* представляют собой укороченные последовательности транспозазы без КИП (табл. 1).

У элементов *ITm-7_AAur*, *ITm-8_AAur* общее число копий составило от 23 до 29. Элемент *ITm-9_AAur* присутствует в виде единственной копии. *ITm-15_AAur* был представлен 129 копиями. При этом у четырех обнаруженных МГЭ полноразмерных копий не выявлено (табл. 1).

Как известно, потенциальную активность mariner-подобных транспозаз можно оценить по наличию ДНК-связывающего домена PAIRED, GRPRмотива в головной части белка и каталитического домена (DDE/D) в хвостовой части. Также у некоторых mariner-подобных транспозаз определяется NLS — последовательность сигнала ядерной локализации.

Анализ транспозаз обнаруженных нами элементов показал, что PAI-субдомен присутствует только в транспозазах элементов *ITm-7_AAur* и *ITm-8_AAur* – у транспозазы элемента *ITm-7_AAur* в наличии только одна альфа-спираль, а у транспозазы элемента *ITm-8_AAur* две спирали вместо трех. Вторые три альфа-спирали RED-субдомена обнаружились у транспозазы элемента *ITm-8_AAur*, но третья альфа-спираль очень укорочена, что скорее всего свидетельствует о ее нефункциональности.

GRPR-мотив найден в транспозазах элементов *ITm-7_AAur* и *ITm-8_AAur*. Он расположен типично, в головной части белка, между PAI и RED субдоменами. NLS у элементов данного семейства не найден.

Каталитическому домену для сохранения своей ферментативной активности необходимо наличие всех трех маркерных аминокислотных остатков (двух аспартатов (D) и третьего глутамата (E) или аспартата – DDE/D-домен), поэтому данная область обладает наибольшей консервативностью по сравнению с другими частями транспозазы [37] (рис. 1). В большинстве случаев для семейства Visitor характерен каталитический домен DD40-41D [38]. ITm-8_AAur имеет классический домен, свойственный транспозонам этой группы. У ITm-15 AAur сохранилась только вторая часть каталитической триады D41D. У двух других элементов – ITm-7_AAur и ITm-9_AAur в домене имелись видимые отличия, а именно у элемента ITm-7 AAur третий D (аспартат) в каталитической триаде отсутствовал, а у элемента ITm-9 ААиг он был замещен на Е (глутамат), также количество аминокислотных остатков между аспартатом и глутаматом составило 47 вместо типичных 40-41 (рис. 2). Данные изменения в консервативном домене вероят-

СТРУКТУРА И РАЗНООБРАЗИЕ ДНК-ТРАНСПОЗОНОВ

Элемент	Семейство/ подсемейство	Длина, пн	КИП, пн	СИП, пн	ТП, а.о.	Общее число копий	Число ПР	Число ПФ	Каталитический домен*
ITm-1_AAur	TLE/Aurum	4322	90/90	_	359	9	1	1	D106D34E, DNDPSQ
ITm-2_AAur	TLE/Aurum	2152	26/26		358	31	5	2	N104D34E, DGDPSQ
ITm-3_AAur	TLE/Aurum	4614	229/230	_	370	415	1	0	N105D34E, DGDPSQ
ITm-4_AAur	TLE/Aurum	963	_	_	320	8	0	0	E106D34E, DGDPSQ
ITm-5_AAur	TLE/Aurum	960	_		319	9	0	0	E106D34E, DGDPSQ
ITm-6_AAur	TLE	267	_		89	1	0	0	?D34Q, DNNPKH
ITm-7_AAur	Visitor/VS-aura	813	_		270	23	0	0	D94D?, DGGSAH
ITm-8_AAur	Visitor/VS-aura	1044	_	_	347	29	0	0	D94D41D, DGAPAH
ITm-9_AAur	Visitor/VS-B	699	_	_	232	1	0	0	D92D47E, DGAPPH
ITm-10_AAur	TLE/Aurum	381	_	_	127	6	0	0	D92D47E, DGDPSQ
ITm-11_AAur	TLE/Aurum	249	_		89	5	0	0	?D34E, DNDPSQ
ITm-12_AAur	TLE/Aurum	249	_	_	84	8	0	0	?D34E, DGDPSQ
ITm-13_AAur	TLE/Aurum	348	_	_	116	5	0	0	?D34E, DKDPSQ
ITm-14_AAur	TLE/Aurum	321	_	_	106	6	0	0	?D34E, DGCPRQ
ITm-15_AAur	Visitor/VS-beplau	1847	87/87	_	107	129	0	0	?D41D, DDAPVH
ITm-16_AAur	MLE/vertumnana	1325	50/52	_	347	49	22	0	D104G34D, GHASAH
ITm-17_AAur	TLE/Aurum	3770	34/35	40/41	303	28	3	0	L98D34E, DGCPRQ
ITm-18_AAur	TLE/Aurum	732	_	_	244	5	0	0	D105D34E, DGDPSQ

Таблица 1. ДНК-транспозоны суперсемейства *Tc1/mariner* в геноме медузы *A. aurita*

Примечание. пн – пары нуклеотидов, а.о. – аминокислотные основания, КИП – концевые инвертированные повторы, СИП – субконцевые инвертированные повторы, ТП – транспозаза, ПР – полноразмерные копии, ПФ – потенциально-функциональные копии, * – указан паттерн DDE/D-домена, включающий маркерные аминокислотные основания и протяженность между ними в а.о., а также консервативную область из шести а.о. в районе второго маркерного аминокислотного основания, *?" – неидентифицированный элемент каталитического домена.

УЛУПОВА и др.

ITm-1_AAur	MVFHKKIDSKKRAYINYLRSVASMSYRKIACICGISPSSVLRICREGFKVKPK	QTRS GRPV AMNDRKRDRFLRKFRSMREDNPNLTVMEIAKECDI
ITm-2_AAur	MARPRTISAETRAYIKYKKNSNVGKLVKETTVSRSQIYKIWKESLGGKRERKDL	KSVG GRSS KLSVRDKRKILRLVTTLRGQEPNWTIKRMMARADV
IIm-3_AAur	MVFKGKYDSKVRENILKLKKEGKWTVKEICQICSVSRTTVKRVCSKANKVKFNTSAIGKVFV	APKKMGRPRMLDERDERKILRQIEAFRRGDNTGRFSLNQVRKAAGL
IIm-4_AAUr	MKKPIDDIIIDK K	KNNKGRPPKLTARDKKNILKQVEILKRDYGYFTTKKLKVFAGV
ITm-6 44ur	MG1GAVK1DGK	HKNI <mark>GKKK</mark> KLIEKDEKNIFKKLEHLKGSMGIFSSKEIQKSAGL
ITm-7 AAur	MYWPDVPAPAKSSTRKLYOKFOEHGTCLDRN	KGNSGRSRTART PENVERVREFLTEDGVTSSRR
ITm-8 AAur	MSLVENAYOVRRSWEDHWPGIPAPSARTIRNNYAKYREHGTSLNMN	-RERSGRPRTARSDONVERVRRSLORNGDVSARR
ITm-9 AAur		
ITm -10_AAr		
ITm-11_AAur		
ITm-12_AAur		
ITm-13_AAur		
ITm-14_AAur		
ITm-15_AAur		
IIm-16_AAur	MELQRTHWRAMIFYD*KSGLNQQQS	HDRLQAVFGT*APSQSTVYDRFPEF*RGRGSLEDDPRSGCQAT
IIm -1/_AAUr		KGRPSKLSAKDKKRILKSVPKLRDSDGSFTSPRIAVEACV
11m-18_AAur		
ITm-1 AAur	SDVSYRTLVRTL-NNAGYRSLRPRRKGILSAKDKKKRVRYARNALK-KLEKS	FWVDDVLMYLDGVSFVHKTNPYKDALTPNGRVWRKISEG
ITm-2 AAur	KNVSRRTFSRFL-SKEGYNYLOARKKGLLSERDKKTRVKFAKKMLR-EHHFG	VWINEIAFYLDGAGFVYKRNPLDOSLAPRGRVWRTEG
ITm-3_AAur	GTVPLYTIR*VL-LRHGFAYRQARKKGLLTAKDLKKRYNFAMKMKR-DYSGD	VWKNEISFYLDGKSFVHKMNPLSTCTSPRARVWRKRGEG
ITm-4_AAur	SPE-ISDETV RRVL-RDAGFKYTHFRKK GILSRNDLQTRFEFAKTVRR-RLARA	VWTEGIAFYLDGVGFTHKYNPHDQALAPRTMAWRRPADG
ITm-5_AAur	SEKDISNRTVRRCL-NARGYQFLQCRTKGLLTAADLKKRLKFARTCKK-LLSDK	FWKEGVSFYLDGTGFAHKVNPSKYARTQRTRAWR KRGEG
ITm-6_AAur		
ITm-7_AAur	NGLGLSQSSYVRIT-KEIGFHPYVLARKQKLENGDQAKRLEFCN*ILETVARESEMINNF	EINTKNGVFYARRDIG
IIm-8_AAur	NGMHISRSSFSRIVQKDLRFHPYVLIERQELLPNDPAKRLEFCNWFINQSNNDEAFLTNL	EVNKWNVVKYARYGNG
IIm-9_AAur	NRLHFARLVRQELRNGTLDLQEV	GVNTWNTRSYAEKGNG
ITm-11 AAur		
ITm-12 AAur		
ITm-13 AAur		
ITm-14 AAur		
ITm-15 AAur		
ITm-16_AAur	AITDVQVAAVHKVVDEDA*VTVLQIAEEVGISSGNVSKILHNSLGIRNVSARWVPHMLTGEKRRA	AECADAIPWWKNLTEEDLMQFGR*SVVMKHGFTVLILNKAAVSTVDA
ITm -17_AAur	ENK-VSNRTI RRVL-RSDGYSYLRSRKK GLMTKQDLKKRMKFCRTVRKLKLGQD	FWNYHISFY
ITm-18_AAur	YDDS	EDLETSVGRP
17. 1 44.		
IIm-I_AAur	LTYTTKGSKDLPGGRRLHLLVGVTHGLGVTVTEEYT-KMNG-AYFARFIQTTMERALGDIAVQ	2KDKNNFIFVMDNDPSONSKVAKKALEDI
IIm-2_AAur		
ITm_A AAur	I.SEOOTSKCSHEGSCCKTAHEEVAIAYKKCUI.AEOYEGOLMG-OKEAEEVREOEPTLEERS	SNPKCKLELODCDPSONCKSARTAWES
ITm-5 AAur	LTTHCTAKGKKEGTGGRVAKFMVATAFGKGVIKCOOYEGNING-ELFAEFVOOEFPEMFENS	SSNPKGKLFLODGDPSONSKVYOGAMDSV
ITm-6 AAur	LLCWGAISNCGASSLC-LFOGRMDA-PFYODILGDYLIPYIDE*	FAEDPHRFMODNNPKHTARSTKEYFNDN
ITm-7_AAur	HPEHHYVEFKQGPGQVMVWVGLTKNGNIFCPHFVQGTLDTAEYLRIVRYHVVQREFREQG	GIVKERILWQQ <mark>DGGSAH</mark> TSNRSIHYLQGHFPGKIISRR
ITm-8_AAur	HPDDHYIGRRQGAGQVMVWLGLTGNGDILGPHFAENNLNTREYLRIIRYNVVQRDFANKG	GIDRNTVWWQQ <mark>DGAPAH</mark> TSNESMQYLRGQFPGKVISKR
ITm-9_AAur	PLEFIRERCQNKAKLHCWAALRNGEK-FGIFFFDQNITA-QTYTTLISRRLLPMIRARGID	DAARNVVFQQ <mark>DGAPPH</mark> TAVVTVRYLDRKFKRVISKRPNAAQNA
ITm -10_AAr	LNG-GNFAQFVLDKFDIIFDS	SAQKNSRMWIQ <mark>DGDPSQ</mark> NSKLAKEAMIAV
ITm-11_AAur	EEYT-QKNG-TYFARFIQTTMERAFGDIAVQ	<u>DKDKNNFIFVMDNDPSQ</u> NSKIAKKALEDI
ITm-12_AAur	KMDG-NYFASFIRENFDTIFLA	ASGKSTNTWLQDGDPSQNSAIARVEMDKM
IIm-13_AAur	GVILIEPYK-KMDA-KHFSKFVKDKLNACFAF	AGPRVEGKQIFVMDKDPSOTSKSGLEAISS
ITm-14_AAur		
ITm-16 AAur	SWKEAPOKFFHSHTVAKOMIAVFVSRAGHLATIPLVTORTVTAAWYVKDCLPCVLATVAER	REPRTRERGLILHH GHASAH MSATTOEFLOAE
ITm -17 AAur	LKLGCTAKGRKEGAVNSNFMIGISYNRGVVLCEOYFGPING-DVMEEIIHSAFPRAFEOS	SIDPKGKRFLODGCPRONCKKAMDAYLSV
ITm-18_AAur	-TIRLHN*G*QKWPGGNYV*IITAISYGKGVVAHVPYE-KMDG-DYFASFICENFDTIFLA	ASGKSTNTWLQDGDPSQNSAIARAEMDKM
ITm-1_AAur	GAELQAIPPRSPDLNPIENV-FHNVRIILRQQALEERIERENFASFKNRVLGVLANSNIGIINRI	I-ETMRDRLKLIIASGGCRTKY*-
ITm-2_AAur	NSQLLPIPPRSPDVNPLENF-FGIVKQALHRDALERQPNVETINQFESRIKRTMNEVPTATIDKI	I-ESMNKRMKIITEFKGERTKY*-
ITm-3_AAur	GVKLLQIPPQSPDVNPIENV-VHFAVKALEKDTMEQAITHETSKQFVSRVIRILLAIPVSIIDKT	"I-ESVEKRINLIIANKGKRLKY*-
IIm-4_AAur	GAKKFSIPPRSPDLNPIDNV-FHNIKSKMRDDAFNKRITNETYSQFCARVKDTLLNYPTEIIDRI	'I-MSMDKRIDLVIKAKGQRIRY*-
ITm-6 AAur	GCALFAIPPRSPDLNPIESV-FHLARAQLNADAIAADIEHEIIAEFSKAVASLLLNFSSVVIDRI	
ITm-7 AAur	CDIPWPPRSPDLAVCAFF-CGVI*	
ITm-8 AAur	GDFLWPPRSPDLATLEFFVWGHLKHOTWKAORNOOPRNIDELKRAIRRECEATPRDMVVNA	F-HAMIDRCRRCINSNGNCFDNE*
ITm-9 AAur	NAIAWPPRSPDLTPLDFFLWGYLKSKVFVDPLPRTLOELSLRITEEFDLIPOEMIERA	ATNQGFLGRLDKMVAARGGHFEY*-
ITm -10 AAr	HAELLQIPPRSPDINPIENV-FHLVKTQLNSQAIKENIVTESIDKFETRIKRTLFKLTVSHINNT	I-ESMGNRMKKIIAEK
ITm-11_AAur	GAELQAIPPRSPDLNPIENV-FHNVRI	
ITm-12_AAur	GAELFPIPPRSPDINPIENF-FHLVRRKLTKDAIQ	
ITm-13_AAur	EAEFHRIPTRSPDLNPIENA-FHLVKKAVDDESMSLNITNENIKQLFSILEPRPLS	
ITm-14_AAur	GATVFRIPSRSPDLNPIENF-FNCITRELKKQALEKNIRKETFEQFSRRVKKTVVEYPATKIDKI	II-ETMDKRIGMVMKARGMRIKY*-
ITm-15_AAur	HDIKWPPRSSDLNPCDFF	
11m-10_AAur	KVQQLEQFQISPDLYPWD-F-FVFPFVTSKLKGVRFDTPDLAIEAFLEHFEGIRQIEWPSVFQKW	NE^CMQKCIDNAGE*
IIM - I /_AAUP ITm-18 44up	GALVEALESUSEDINEINE - ENCLIKELANQALEKNIKKETEEQESKKVKKTVVEYPATKIDKI GAELFPISPRSPDINPIDNE - ENCLIKELANQALEKNIKKETEEQESKKVKKTVVEYPATKIDKI	T-CSI.PKRMTETTKCKGERI.KY

Рис. 2. Множественное выравнивание аминокислотных последовательностей транспозаз *A. aurita*. Серым выделены шесть α-спиралей, формирующих PAIRED-домен; жирным курсивом обозначен гипотетический сигнал ядерной локализации (NLS); выделен жирным и подчеркиванием GRPR-подобный мотив; черным показаны маркерные локусы каталитического домена.

но могут негативно повлиять на ферментативные свойства транспозазы.

Обобщая результаты анализа доменной структуры элементов *Visitor* ушастой медузы, мы предполагаем, что семейство *Visitor* представлено в геноме только нефункциональными копиями, поскольку каждый элемент имеет какое-либо видимое повреждение.

MLE/DD34D

MLE является хорошо изученным семейством группы *Tc1/mariner* [17]. Это семейство считается одной из основных групп ДНК-транспозонов и широко представлено во всех организмах. Транспозоны MLE особенно часто встречаются у высших животных, где они способны к горизонтальному переносу между видами [39]. Протяженность транспозонов MLE составляет около 1300 пн. Размеры КИП варьируют от 20 до 40 пн и транспозаза состоит из 340 а.о. [40]. В результате филогенетического анализа было установлено, что один из обнаруженных нами элементов (ITm-16 AAur) относится к этому семейству (рис. 1). Общая длина транспозона и самой транспозазы, а также КИП была типична для семейства *MLE*. OPC элемента *ITm-16 ААиг* содержит множество стоп-кодонов.

Семейство *MLE* имеет характерный каталитический домен DD34D [40]. У *ITm-16_AAur* каталитический домен претерпел изменения: в каталитической триаде второй D (аспартат) был замещен на (G) глицин (рис. 2).

ДНК-связывающий мотив у транспозазы элемента *ITm-16_AAur* также оказался неполноценен: из трех альфа-спиралей в PAI-субдомене присутствуют только две. GRPR-мотив и NLS не обнаружены.

В результате анализа, проведенного с помощью программы BLASTn, было обнаружено 49 копий элемента *ITm-16_AAur*. При этом количество полноразмерных копий составило 22 (табл. 1). Однако анализ доменной структуры транспозазы показал, что все обнаруженные элементы в настоящее время являются нефункциональными.

TLE/DD34-38E

Семейство *TLE* – также одно из самых распространенных семейств группы *Tc1/mariner*. Первый представитель семейства TLE, транспозон Tc1, имеющий активную транспозазу, был обнаружен в геноме нематоды *Caenorhabditis elegans* [41, 42]. Транспозоны этой группы также широко распространены в геномах позвоночных, включая телеостных рыб [43]. Семейство TLE включает элементы протяженностью 1200-2000 пн [25-28, 35, 43, 44]. Для транспозонов *TLE* характерен домен DD34E [45]. Тем не менее за последние годы были обнаружены элементы *TLE* с нехарактерным доменом для этого семейства. Таким образом это семейство разделилось на несколько подсемейств: TRT/DD37E [25], Incomer/DD36E [26], Intruder/DD38E [28], TLEWI/DD36E [44], Traveler/DD35E [27] и ctmTLE/DD34E [35].

В геноме *А. aurita* мы обнаружили 13 элементов, относящихся к группе *TLE* (табл. 1). В результате филогенетического анализа 12 элементов сформировали отдельную группу *Aurum* с вы-

ГЕНЕТИКА том 59 № 2 2023

соким значением бутстрепа (100%) (рис. 1). На филогенетическом дереве видно, что элементы группы Aurum близко расположены к подсемейству TRT. Таким образом можно предположить, что отделившаяся группа Aurum представляет новое подсемейство TLE. Здесь же следует отметить, что элемент ITm-6_AAur не вошел в эту группу, а также ни в одно известное подсемейство TLE. Однако на основании проведенного филогенетического анализа можно сказать, что он также относится к семейству TLE (рис. 1).

Анализ числа копий транспозонов, относящихся к семейству TLE, показал, что у десяти элементов (ITm-1_AAur, ITm-4_AAur, ITm-5_AAur, ITm-6_AAur, ITm-10_AAur, ITm-11_AAur, ITm-12_AAur, ITm-13 AAur, ITm-14 AAur, ITm-18 AAur) низкое количество копий – от 1 до 9. Два элемента (ITm-17_AAur, ITm-2_AAur) имеют от 28 до 31 копии. И только один элемент (ITm-3 AAur) имеет очень высокое (415) число копий (табл. 1). Из 13 МГЭ этой группы полноразмерные копии обнаружены только у четырех элементов (ITm-1 AAur, ITm-2 AAur, ITm-3 AAur, ITm-17 AAur). У транспозонов ITm-1_AAur, ITm-3_AAur полноразмерные копии присутствовали в единственном числе. У ІТт-2 ААиг и ІТт-17 ААиг обнаружено пять и три полноразмерных копий соответственно.

Длина полноразмерных транспозонов группы Аигит варьировала от 2152 до 4614 пн, тогда как характерная длина транспозонов для семейства TLE составляет 1200-2000 пн. Увеличение длины могло произойти из-за вставок в некодирующую последовательность. Длина полноразмерных транспозаз варьировала от 303-370 а.о., что является типичным для транспозаз этого семейства. Также у найденных нами полноразмерных МГЭ были обнаружены КИП, длина которых колебалась от 26 до 230 пн, что также характерно для семейства TLE. У ITm-17_AAur были обнаружены СИП, длина которых составила 40/41 пн. Однако у остальных полноразмерных транспозонов СИП обнаружены не были. У других элементов (ITm-4_AAur, ITm-5_AAur, ITm-6_AAur, ITm-10 AAur, ITm-11 AAur, ITm-12 AAur, ITm-13 AAur. ITm-14 AAur. ITm-18 AAur) длина транспозона оказалась значительно ниже, чем у TLE, и составила от 249 до 963 пн. Длина транспозазы варьировала от 84 до 320 а.о. КИП обнаружены не были (табл. 1).

Необходимо добавить, что при сравнении обнаруженных консервативных доменов с характерным паттерном для семейства *TLE (DD34E)* нами были выявлены некоторые различия. Два элемента (*ITm-1_AAur*, *ITm-18_AAur*) имели классический домен DD34E. У других десяти элементов были отличия в каталитической триаде, а именно у элементов *ITm-2_AAur*, *ITm-3_AAur* первый аспартат (D) заменился на аспарагин (N), у

ITm-4 AAur, ITm-5 AAur первый аспартат (D) – на глутамат (E), а у *ITm-17 ААиг* первый аспартат (D) – на лейцин (L). У элементов ITm-11 AAur, *ITm-12 AAur, ITm-13 AAur, ITm-14 AAur* первый аспартат (D) отсутствовал, зато вторая часть каталитической триады была сохранена D34E. Также следует отметить, что у элемента ITm-10 AAur в каталитическом домене DD47E наблюдались различия в протяженности между вторым аспартатом (D) и третьим глутаматом (E) (рис. 2). Однако на филогенетическом дереве видно, что этот транспозон все же относится к семейству *TLE* (рис. 1). При сравнении каталитического домена у транспозона ITm-6 AAur с классическим доменом семейства *TLE* (DD34E) были выявлены отличия, а именно в каталитической триаде первый аспартат (D) отсутствовал, а глутамат (E) был замещен на глутамин (Q) (рис. 2). В результате филогенетического анализа выявлено, что транспозон *ITm-6 AAur* относится к семейству *TLE*.

Анализ транспозаз обнаруженных нами элементов показал, что первые три альфа-спирали РАІ-субдомена присутствуют только в транспозазах элементов *ITm-1_AAur*, *ITm-2_AAur* и *ITm-3_AAur*, у транспозаз остальных элементов они укорочены или отсутствуют. Вторые три альфа-спирали RED-субдомена обнаружились у транспозаз элементов *ITm-1_AAur*, *ITm-2_AAur*, *ITm-4_AAur*, *ITm-5_AAur* и *ITm-17_AAur* (рис. 2). Однако у элементов *ITm-1_AAur* и *ITm-5_AAur* альфа-спирали фрагментированы, что может свидетельствовать о их нефункциональности.

GRPR-мотив присутствует в транспозазах элементов *ITm-1_AAur*, *ITm-2_AAur*, *ITm-3_AAur*, *ITm-4_AAur*, *ITm-5_AAur* и *ITm-17_AAur*.

NLS у элементов ITm-4 AAur и ITm-17 AAur локализован в двух различных районах транспозазы. В транспозазах элементов ITm-1_AAur и ITm-5 AAur найдено по одной последовательности NLS, однако только у элемента ITm-1_AAur NLS расположен типично, между ДНК-связываюшим и каталитическим доменами. Таким образом, потенциально функциональным условно можно считать только элемент ITm-1_AAur, поскольку он имеет черты функционального элемента (неповрежденную ОРС, КИП, GRPR-мотив, классический каталитический домен DD34E и NLS), однако из-за фрагментации одной альфа-спирали в ДНК-связывающем мотиве он может быть нефункционален, хотя насколько это сказывается на его активности не известно. Элемент ITm-2 AAur, вероятнее всего, также нефункционален, так как наличие мутации первого аминокислотного остатка в каталитическом домене, который является наиболее консервативной областью, может нарушать работу транспозазы.

Преобладающая доля элементов *Tc1/mariner* медузы представлена элементами семейства *TLE*.

В этой группе обнаружено новое подсемейство, названное Aurum. В семействе Visitor обнаружены две группы элементов VS-aura и VS-beplau, которые, возможно, являются новыми подсемействами. Анализ элементов *Tc1/mariner* в геноме медузы показал, что в настоящий момент изучаемые транспозоны находятся на стадии деградации и элиминации. Практически все элементы делетированы или имеют структурные изменения и соответственно не имеют потенциально функциональных копий. Элемент ITm-3_AAur был, по всей видимости, очень активен в прошлом (415 копий), возможно из-за особенностей его структуры или по другим причинам, однако на момент исследования этот элемент так же, как и другие, находится на завершаюшей сталии жизненного цикла.

Работа проведена в рамках Государственного задания ФГБУН ИМБИ "Функциональные, метаболические и токсикологические аспекты существования гидробионтов и их популяций в биотопах с различным физико-химическим режимом", номер гос. регистрации 121041400077-1.

Все применимые международные, национальные и/или институциональные принципы ухода и использования животных были соблюдены.

Авторы заявляют, что у них нет конфликта интересов.

СПИСОК ЛИТЕРАТУРЫ

- 1. *McClintock B*. Chromosome organization and genetic expression // Cold Spring Harbor Symp. Quant. Biol. 1951. V. 16. P. 13–47. https://doi.org/10.1101/sqb.1951.016.01.004
- Guo B., Zou M., Gan X., He S. Genome size evolution in pufferfish: an insight from BAC clone-based *Diodon holocanthus* genome sequencing // BMC Genomics. 2010. V. 11. P. 396. https://doi.org/10.1186/1471-2164-11-396
- Feschotte C., Pritham E.J. DNA transposons and the evolution of eukaryotic genomes // Annu. Rev. Genet. 2007. V. 41. P. 331–368. https://doi.org/10.1146/annurev.genet.40.110405.090448
- 4. Bourque G., Burns K.H., Gehring M. et al. Ten things you should know about transposable elements // Genome Biology. 2018. V. 19. № 1. P. 199. https://doi.org/10.1186/s13059-018-1577-z
- Piacentini L., Fanti L., Specchia V. et al. Transposons, environmental changes, and heritable induced phenotypic variability // Chromosoma. 2014. V. 123. № 4. P. 345–354. https://doi.org/10.1007/s00412-014-0464-y
- Kojima K.K. Structural and sequence diversity of eukaryotic transposable elements // Genes Genet. Syst. 2020. V. 94. P. 233–252. Epub. 2018. Nov. 9. https://doi.org/10.1266/ggs.18-00024
- 7. Dupeyron M., Baril T., Bass C., Hayward A. Phylogenetic analysis of the *Tc1/mariner* superfamily reveals the unexplored diversity of *pogo*-like elements // Mobile

DNA. 2020. V. 11. P. 21. https://doi.org/10.1186/s13100-020-00212-0

- Gao B., Wang Y., Diaby M. et al. Evolution of pogo, a separate superfamily of IS630-Tc1-mariner ransposons, revealing recurrent domestication events in vertebrates // Mobile DNA. 2020. V. 11. P. 25. https://doi.org/10.1186/s13100-020-00220-0
- 9. *Lee C.C., Wang J.* Rapid expansion of a highly germline-expressed *Mariner* element acquired by horizontal transfer in the fire ant genome // Genome Biol. Evol. 2018. V. 10. № 12. P. 3262–3278. https://doi.org/10.1093/gbe/evy220
- Xie L.Q., Wang P.L., Jiang S.H. et al. Genome-wide identification and evolution of *TC1/Mariner* in the silkworm (*Bombyx mori*) genome // Genes Genomics. 2018. V. 40. № 5. P. 485–495. https://doi.org/10.1007/s13258-018-0648-6
- 11. *Shen D., Gao B., Miskey C. et al.* Multiple invasions of *visitor*, a DD41D family of *Tc1/mariner* transposons, throughout the evolution of vertebrates // Genome Biol. Evol. 2020. V. 12. № 7. P. 1060–1073. https://doi.org/10.1093/gbe/evaa135
- Claudianos C., Brownlie J., Russell R. et al. maT a clade of transposons intermediate between mariner and Tc1 // Mol. Biol. Evol. 2002. V. 19. № 12. P. 2101–2109. https://doi.org/10.1093/oxfordjournals.molbev.a004035
- Zhang H.H., Shen Y.H., Xiong X.M. et al. Identification and evolutionary history of the DD41D transposons in insects // Genes Genomics. 2016. V. 38. P. 109–117. https://doi.org/10.1007/s13258-015-0356-4
- Ivics Z., Izsvák Z. Sleeping Beauty transposition // Microbiol. Spectrum. 2015. V. 3. № 2. MDNA3-0042-2-14. https://doi.org/10.1128/microbiolspec.MDNA3-0042-2014
- Ivics Z., Hackett P.B., Plasterk R.H., Izsvák Z. Molecular reconstruction of Sleeping Beauty, a Tc1-like transposon from fish, and its transposition in human cells // Cell. 1997. V. 91. № 4. P. 501–510. https://doi.org/10.1016/s0092-8674(00)80436-5
- Plasterk R.H., Izsvák Z., Ivics Z. Resident aliens: the Tc1/mariner superfamily of transposable elements // Trends in Genet. 1999. V. 15. № 8. P. 326–332. https://doi.org/10.1016/s0168-9525(99)01777-1
- Tellier M., Bouuaert C.C., Chalmers R. Mariner and the ITm superfamily of transposons // Microbiol. Spectrum. 2015. V 3. № 2. MDNA3-0033-2014. https://doi.org/10.1128/microbiolspec.MDNA3-0033-2014
- Shi S., Puzakov M., Guan Z. et al. Prokaryotic and eukaryotic horizontal transfer of Sailor (DD82E), a new superfamily of IS630-Tc1-mariner DNA transposons // Biology (Basel). 2021. V. 10. № 10. P. 1005. https://doi.org/10.3390/biology10101005
- Wang S., Diaby M., Puzakov M. et al. Divergent evolution profiles of DD37D and DD39D families of *Tc1/mariner* transposons in eukaryotes // Mol. Phylogenet. Evol. 2021. V. 161. P. 107143. https://doi.org/10.1016/j.ympev.2021.107143
- Shao H., Tu Z. Expanding the diversity of the IS630-Tc1mariner superfamily: Discovery of a unique DD37E transposon and reclassification of the DD37D and DD39D

transposons // Genetics. 2001. V. 159. № 3. P. 1103–1115. https://doi.org/10.1093/genetics/159.3.1103

- Puzakov M.V., Puzakova L.V., Cheresiz S.V. An analysis of IS630/Tc1/mariner transposons in the genome of a Pacific oyster, Crassostrea gigas // J. Mol. Evol. 2018. V. 86. № 8. P. 566–580. https://doi.org/10.1007/s00239-018-9868-2
- 22. Lawley J.W., Gamero-Mora E., Maronna M.M. et al. The importance of molecular characters when morphological variability hinders diagnosability: Systematics of the moon jellyfish genus Aurelia (Cnidaria: Scyphozoa) // Peer J. 2021. V. 9. e11954. https://doi.org/10.7717/peerj.11954
- Dawson M.N., Sen Gupta A., England M.H. Coupled biophysical global ocean model and molecular genetic analyses identify multiple introductions of cryptogenic species // Proc. Natl Acad. Sci. USA. 2005. V. 102. P. 11968–11973. https://doi.org/10.1073/pnas.0503811102
- 24. Луппова Н.Е. Динамика численности и биомассы популяций черноморского макрозоопланктона // Бюл. науки и практики. 2020. Т. 6. № 5. С. 74–82. https://doi.org/10.33619/2414-2948/54/09
- Zhang H.H., Li G.Y., Xiong X.M. et al. TRT, a vertebrate and protozoan *Tc1-like* transposon: Current activity and horizontal transfer // Genome Biol. Evol. 2016. V. 8. № 9. P. 2994–3005. https://doi.org/10.1093/gbe/evw213
- Sang Y., Gao B., Diaby M. et al. Incomer, a DD36E family of *Tc1/mariner* transposons newly discovered in animals // Mobile DNA. 2019. V. 10. P. 45. https://doi.org/10.1186/s13100-019-0188-x
- 27. *Zong W., Gao B., Diaby M. et al. Traveler*, a new DD35E family of *Tc1/mariner* transposons, invaded vertebrates very recently // Genome Biol. Evol. 2020. V. 12. № 3. P. 66–76.
 - https://doi.org/10.1093/gbe/evaa034
- 28. *Gao B., Zong W., Miskey C. et al. Intruder* (DD38E), a recently evolved sibling family of DD34E/*Tc1* transposons in animals // Mobile DNA. 2020. V. 11. № 1. P. 32. https://doi.org/10.1186/s13100-020-00227-7
- 29. Zhang Z., Schwartz S., Wagner L. W. et al. A greedy algorithm for aligning DNA sequences // J. Computational Biol. 2000. V. 7. № 1–2. P. 203–214. https://doi.org/10.1089/10665270050081478
- De Castro E., Sigrist C.J., Gattiker A. et al. ScanProsite: Detection of PROSITE signature matches and ProRuleassociated functional and structural residues in proteins // Nucl. Acids Res. 2006. V. 34. P. W362–W365. https://doi.org/10.1093/nar/gkl124
- Buchan D.W., Minneci F., Nugent T.C. et al. Scalable web services for the PSIPRED Protein Analysis Workbench // Nucl. Acids Res. 2013. V. 41 (W1). P. W349–W357. https://doi.org/10.1093/nar/gkt381
- 32. *Edgar R.C.* MUSCLE: A multiple sequence alignment method with reduced time and space complexity // Nucl. Acids Res. 2004. V. 32. P. 1792–1797. https://doi.org/10.1093/nar/gkh340
- 33. *Kumar S., Stecher G., Tamura K.* MEGA7: Molecular evolutionary genetics analysis version 7.0 for bigger datasets // Mol. Biol. Evol. 2016. V. 33. № 7. P. 1870–1874. https://doi.org/10.1093/molbev/msw054

ГЕНЕТИКА том 59 № 2 2023

- 34. Пузаков М.В., Пузакова Л.В. Распространенность, разнообразие и эволюция ДНК-транспозонов L18 (DD37E) в геномах стрекающих (Cnidaria) // Мол. биология. 2022. Т. 56. № 3. С. 1–15 https://doi.org/10.31857/S0026898422030120
- Puzakov M.V., Puzakova L.V., Cheresiz S.V., Sang Y. The IS630/Tc1/mariner transposons in three ctenophore genomes // Mol. Phylogenet. Evol. 2021. V. 163. P. 107231. https://doi.org/10.1016/j.ympev.2021.107231
- 36. Bouallègue M., Filée J., Kharrat I. et al. Diversity and evolution of mariner-like elements in aphid genomes // BMC Genomics. 2017. V. 18. № 1. P. 494. https://doi.org/10.1186/s12864-017-3856-6
- 37. Benjamin B., Yves B., Corinne A.G. Assembly of the Tc1 and mariner transposition initiation complexes depends on the origins of their transposase DNA binding domains // Genetica. 2007. V. 130. № 2. P. 105–120. https://doi.org/10.1007/s10709-006-0025-2
- Gomulski L.M., Torti C., Bonizzoni M. et al. A new basal subfamily of mariner elements in *Ceratitis rosa* and other tephritid flies // J. Mol. Evol. 2001. V. 53. № 6. P. 597–606. https://doi.org/10.1007/s002390010246

Pohentson H M Lampa D L Distribution

- Robertson H.M., Lampe D.J. Distribution of transposable elements in arthropods // Annual Rev. Entomol. 1995. V. 40. P. 333–357. https://doi.org/10.1146/annurev.en.40.010195.002001
- 40. Jacobson J.W., Medhora M.M., Hartl D.L. Molecular structure of a somatically unstable transposable ele-

ment in *Drosophila* // Proc. Natl Acad. Sci. USA. 1986. V. 83. № 22. P. 8684–8688. https://doi.org/10.1073/pnas.83.22.8684

- Emmons S.W., Yesner L. High-frequency excision of transposable element Tc1 in the nematode Caenorhabditis elegans is limited to somatic cells // Cell. 1984. V. 36. № 3. P. 599–605. https://doi.org/10.1016/0092-8674(84)90339-8
- Eide D., Anderson P. Transposition of Tc1 in the nematode Caenorhabditis elegans // Proc. Natl Acad. Sci. USA. 1985. V. 82. № 6. P. 1756–1760. https://doi.org/10.1073/pnas.82.6.1756
- 43. *Guo X.M., Zhang Q.Q., Sun Y.W. et al. Tc1-like* transposase *Thm3* of silver carp (*Hypophthalmichthys molitrix*) can mediate gene transposition in the genome of blunt snout bream (*Megalobrama amblycephala*) // G3: Genes, Genomes, Genetics. 2015. V. 5. № 12. P. 2601–2610. https://doi.org/10.1534/g3.115.020933
- 44. *Puzakov M.V., Puzakova L.V., Cheresiz S.V.* The *Tc1-like* elements with the spliceosomal introns in mollusk genomes // Mol. Genet. Genomics. 2020. V. 295. № 3. P. 621–633. https://doi.org/10.1007/s00438-020-01645-1
- 45. *Capy P., Vitalis R., Langin T. et al.* Relationships between transposable elements based upon the integrasetransposase domains: is there a common ancestor? // J. Mol. Evol. 1996. V. 42. № 3. P. 359–368. https://doi.org/10.1007/BF02337546

Structure and Diversity of *Tc1/mariner* Transposons in the Genome of the Jellyfish *Aurelia aurita*

Yu. N. Ulupova^a, L. V. Puzakova^a, and M. V. Puzakov^{a, *}

^aFederal Research Center "Kovalevsky Institute of Biology of the Southern Seas", Russian Academy of Sciences, Sevastopol, 299011 Russia *e-mail: puzakov@ngs.ru

Transposable elements, DNA transposons and retrotransposons are DNA sequences capable of movement within the genome. It is assumed that they play one of their key roles in adaptive and evolutionary processes. One of the most studied groups of DNA transposons is the infraclass *ITm*, and in particular the superfamily *Tc1/mariner*. In this work, we considered the representation, structure, and evolution of *Tc1/mariner* DNA transposons in the jellyfish *Aurelia aurita*. It was found that the predominant proportion of *Tc1/mariner* elements of the jellyfish is represented by the *TLE* family. A new subfamily of *TLE* elements called *Aurum* has been identified. In addition, two groups of elements *VS-aura* and *VS-beplau* were found in the *Visitor* family, which are probably also separate subfamilies. Analysis of the structure and diversity of *Tc1/mariner* elements showed that at the moment *Tc1/mariner* transposons in the jellyfish genome are at the stage of degradation and elimination. Almost all elements are deleted or have structural changes, and, accordingly, do not have potentially functional copies.

Keywords: Aurelia aurita, transposable elements, Tc1/mariner, transposase, DNA transposons.