ГЕНЕТИКА МИКРООРГАНИЗМОВ

УДК 575.174.015.3:582.282.232:579.25

ГЕНЕТИЧЕСКИ ИЗОЛИРОВАННАЯ ПОПУЛЯЦИЯ ДРОЖЖЕЙ Saccharomyces bayanus В НОВОЙ ЗЕЛАНДИИ И АВСТРАЛИИ

© 2023 г. А. Н. Боровкова^{1, 2}, Г. И. Наумов¹, А. В. Шнырева², Е. С. Наумова^{1, *}

¹Национальный исследовательский центр "Курчатовский институт", Курчатовский комплекс генетических исследований (ГосНИИгенетика), Москва, 123098 Россия ²Московский государственный университет им. М.В. Ломоносова, Москва, 119234 Россия

> *e-mail: lena_naumova@yahoo.com Поступила в редакцию 11.07.2022 г. После доработки 05.09.2022 г. Принята к публикации 20.09.2022 г.

С помощью методов молекулярной и классической генетики изучено генетическое родство дрожжей комплекса Saccharomyces bayanus и обнаружена дивергентная популяция этих дрожжей в Новой Зеландии и Австралии. Комплекс S. bayanus включает четыре генетические популяции: S. bayanus var. bayanus, S. bayanus var. uvarum, S. eubayanus и новозеландская. Штаммы новозеландской популяции существенно отличаются по нуклеотидным последовательностям ядерных (FSY1, HIS3, MET2) и митохондриальных (FUN14, COX2) генов и образуют полустерильные гибриды с остальными популяциями: 6.2–23.3%. Между S. bayanus var. bayanus, S. bayanus var. uvarum, S. eubayanus и новозеландской популяцией нет полной межвидовой постзиготической изоляции: все гибриды имели регулярное мейотическое расщепление контрольных ауксотрофных маркеров. Согласно полученным результатам указанные генетические популяции относятся к одному биологическому виду, обладая дивергенцией геномов на уровне таксономических разновидностей.

Ключевые слова: комплекс *Saccharomyces bayanus*, *S. bayanus* var. *bayanus*, *S. bayanus* var. *uvarum*, *S. eubayanus*, новозеландская популяция, гибридологический и филогенетический анализы, молекулярное кариотипирование.

DOI: 10.31857/S0016675823040021, EDN: ATSSFD

Генофонд культурных дрожжей-сахаромицетов представлен видами S. cerevisiae, S. bayanus (син. S. uvarum) и их гибридом S. pastorianus (син. S. carlsbergensis) [1, 2]. Помимо двух указанных род Saccharomyces включает еще шесть видов: S. arboricola, S. cariocanus, S. jurei, S. kudriavzevii, S. mikatae и S. paradoxus [2-6]. Благодаря общей системе типов спаривания восемь биологических видов рода Saccharomyces могут скрещиваться во всех комбинациях, но за счет постзиготической изоляции образующиеся гибриды стерильны и имеют нежизнеспособные аскоспоры. Естественные межвидовые гибриды S. cerevisiae \times S. bavanus, S. cerevisiae \times S. kudriavzevii и S. cerevisiae × S. bayanus × S. kudriavzevii обнаружены среди коммерческих винных, пекарских и пивных дрожжей, используемых во Франции, Испании, Австрии, Швейцарии и Австралии [7-11].

Растущий интерес к изучению дрожжей *S. bayanus* связан не только с его возможной ролью в качестве одного из родительских геномов пивных дрожжей низового брожения *S. pastorianus*, но и с его значением как нового генофонда культурных дрожжей *Saccharomyces*. С помощью различных молекулярных методов была показана гетерогенность вида *S. bayanus*, включающего две группы штаммов, которые различаются по рибосомным последовательностям (ITS1 и IGS2) и молекулярным кариотипам: "*bayanus*" и "*uvarum*" [7, 12, 13]. Гибридологическим анализом установлена частичная генетическая изоляция указанных групп: их гибриды полустерильны (15–34% выживаемости аскоспор), имея регулярную мейотическую сегрегацию ауксотрофных контрольных маркеров [7, 14]. В то же время штаммы обеих групп образуют стерильные гибриды с дрожжами *S. cerevisiae*. На основании генетических и молекулярных данных были предложены две разновидности вида *S. bayanus*: var. *bayanus* и var. *uvarum*, принятые в современных монографиях по систематике дрожжей [2, 7, 14].

Специфической экологической нишей *S. bayanus* var. *uvarum* является виноделие и виноградарство при пониженных температурах: эти дрожжи ассоциированы с производством белых, сладких и игристых вин, а также сидра [15–23]. Природные изоляты *S. bayanus* var. *uvarum* обнаружены в Испании, Словакии, Венгрии, Португалии, на Дальнем Востоке России, в США, Аргентине, Чили, Австралии и Новой Зеландии [1, 20, 24]. Дрожжи

S. bayanus var. bayanus представлены в основном штаммами, загрязняющими пивоварение, включая типовую культуру CBS 380 [7, 13]. Некоторые авторы возводят указанные разновидности в ранг отдельных видов: S. bayanus и S. uvarum [25-27]. В отличие от S. bayanus var. uvarum дрожжи S. bayanus var. bayanus обладают субтеломерными последовательностями S. cerevisiae [7, 28]. На этом основании было высказано предположение о гибридной природе этих дрожжей и было предложено закрыть вид S. bayanus как "неправильный" (not proper) и восстановить не содержащий чужеродных последовательностей вид S. uvarum как таксономически "чистый" [26, 28, 29]. В качестве типовой культуры был выбран штамм CBS 7001 (МСҮС 623), у которого определена полная нуклеотидная последовательность генома [30]. С помощью ПДРФ-анализа 48 генов и частичного секвенирования 16 из них Rainieri et al. [27] подтвердили гомогенность дрожжей S. bavanus var. uvarum. Среди дрожжей S. bayanus var. bayanus авторами также была обнаружена "чистая" линия: штамм NBRC 1948, выделенный из испорченного бочкового пива в Европе. Этот штамм был предложен в качестве новой типовой культуры вида S. bayanus.

Более детальное молекулярное изучение выявило мозаичность генома штамма NBRC 1948. содержащего последовательности ичагит и второго вида S. baynus-типа, условно названного авторами S. lagerae, а также интрогрессивные субтеломерные фрагменты S. cerevisiae [31]. Родственные дрожжи S. eubayanus были описаны на изолятах из Аргентины, а позже обнаружены в Китае, США, Канаде, Австралии и Новой Зеландии [24, 32-35]. В Европе геном S. eubayanus обнаружен только у гибридных дрожжей S. pastorianus [36, 37]. Гибридологическим анализом показано, что гибриды S. bayanus var. bayanus × S. eubayanus обладают пониженной выживаемостью аскоспор: 55-62% [38]. Гибриды S. bayanus var. uvarum × S. eubayanus практически стерильны: 11% выживаемости аскоспор. В то же время во всех скрещиваниях наблюдалась рекомбинация родительских маркеров. Полногеномное секвенирование нескольких штаммов S. eubayanus обнаружило их большое сходство с холодоустойчивым родителем пивных дрожжей S. pastorianus [36, 37, 39]. Выявлено большое сходство генома штамма NBRC 1948 с типовой культурой S. eubayanus CBS 12357 и холодоустойчивым геномом пивного коммерческого штамма Weihenstephan 34/70 [13, 24]. Еще больше усложнило понимание таксономического статуса дрожжей S. bayanus обнаружение новозеландской популяции, штаммы которой по ряду молекулярных маркеров отличаются от S. bayanus var. bayanus, S. bayanus var. uvarum и S. eubayanus [20].

Цель исследования — изучение генетического родства дрожжей комплекса *S. bayanus*, включая

географически изолированную популяцию из Новой Зеландии и Австралии.

МАТЕРИАЛЫ И МЕТОДЫ

Среды и штаммы

Изучаемые штаммы дрожжей *S. bayanus* и их происхождение приведены в табл. 1. Дрожжи культивировали при 28°С на полной агаризованной среде YPD следующего состава (г/л): глюкоза – 20, пептон – 20, дрожжевой экстракт – 10, агар – 20.

Полимеразная цепная реакция (ПЦР)

Полимеразную цепную реакцию осуществляли на ДНК-амплификаторе "Bio-Rad" (США). Дрожжевую ДНК выделяли согласно Lõoke et al. [40]. Праймеры, использованные в работе, приведены в табл. 2. ПЦР проводили в 30 мкл буфера, содержащего 2.5 мМ MgCl₂, 0.1 мМ каждого dNTP, 50 пмоль каждого праймера, 2.5 единицы Тад-полимеразы (Синтол, Россия) и 20-200 нг ДНК. Для амплификации генов MET2, HIS3, FSY1 и FUN14 использовали следующую программу: начальная денатурация ДНК при 94°С в течение 3 мин; затем 30 циклов в режиме: денатурация в режиме $94^{\circ}C$ – 30 с, отжиг праймеров при 56° C – 30 с, синтез ДНК при 72°С – 60 с; конечная достройка при 72°С – 10 мин. Амплификацию межгенного спейсера IGS2 проводили в следующем режиме: начальная денатурация ДНК при 94°С в течение 4 мин; затем 25 циклов: денатурация при $94^{\circ}C - 60$ с, отжиг праймеров при $48^{\circ}C - 30$ с, синтез ДНК при $72^{\circ}C - 60$ с; конечная достройка при $72^{\circ}C - 10$ мин. Митохондриальный ген *СОХ2* амплифицировали по следующей программе: начальная денатурация ДНК при 94°С в течение 5 мин; затем 45 циклов в режиме: денатурация при 94°C – 40 с, отжиг праймеров при 45°C – 35 с, синтез ДНК при 72°C – 35 с; конечная достройка при 72°С – 10 мин. Продукты амплификации подвергали электрофорезу в 1%-ном агарозном геле при 60-65 В в 0.5× ТВЕ буфере (45 мМ трис, 10 мМ ЭДТА, 45 мМ борная кислота, рН 8.0) в течение 1-1.5 ч. Гель окрашивали бромистым этидием, промывали в дистиллированной воде и фотографировали в ультрафиолетовом свете на трансиллюминаторе Vilber Lourmat (Франция). В качестве маркера молекулярных масс использовали 1kb DNA Ladder (Fermentas, Литва).

Определение нуклеотидных последовательностей и филогенетический анализ

Амплифицированные фрагменты элюировали из геля с помощью набора GeneJET Gel Extraction Kit (Thermo Scientific, США), согласно протоколу фирмы-изготовителя. Нуклеотидные последовательности генов определяли по двум цепям с по-

TEH				Регистра	ционный номер в (GenBank	
i ieti	MIMIN		MET2	ESIH	FSYI	FUN14	COX2
 1KA			S. cerevisi	ae			
YNN29	15	Генетическая линия	Ι	I	I	I	I
от 2288С		Генетическая линия	NM_001183115	NM_001183621	I	NM_001178153	NC_001224
59 BKM	~-502	Виноград, Дальний Восток, Россия	I	I	I	I	Ι
N		-	S. bayanus var.	bayanus	-	-	
4 CBS 38	0	Пиво	AJ627635.1	JF786624.1	GCA_013180675.1	GCA_013180675.1	AF442211
⁵⁰ CBS 42	5	Яблочный сок, Швейцария	OP355544	JF786626	JF786693	JF786618	OP355555
CBS 42	4	Грушевый сок, Швейцария	FR774000	OP355535	OP355524	OP355516	OP355554
NBRC	1948	Испорченное пиво, Европа	JF786641.1	GCA_013180125.1	GCA_013180125.1	GCA_013180125.1	EF639726
CBS 37	8	Пиво, Европа	JF786659	OP355533	JF786695	JF786658	OP355553
			S. bayanus var.	uvarum			
CBS 39	5	Сок черной смородины <i>Ribes nigrum</i> , Нидер- ланды	AJ627638	OP355534	HE858456	KF892125	KX657742
CBS 70	01	Ручейник Mesophylax adopersus, Испания	GCA_019953615.1	GCA_019953615.1	GCA_019953615.1	GCA_019953615.1	KF530350
BKM Y	7–1146	Виноград, Мичуринск, Россия	GCA_013180055.1	GCA_013180055.1	GCA_013180055.1	GCA_013180055.1	GCA_013180055.1
CBS 37	7	Грушевое вино, Германия	GCA_013265775.1	GCA_013265775.1	GCA_013265775.1	GCA_013265775.1	GCA_013265775.1
M488		Виноград, Молдавия	GCA_013180195.1	GCA_013180195.1	GCA_013180195.1	GCA_013180195.1	GCA_013180195.1
BKM Y	7–361	Токайское вино, Словакия	GCA_013180345.1	GCA_013180345.1	GCA_013180345.1	GCA_013180345.1	GCA_013180345.1
BKM Y	~—508	Токайское вино, Словакия	GCA_013180255.1	GCA_013180255.1	GCA_013180255.1	GCA_013180255.1	GCA_013180255.1
PJS2.95	10	Бродящая мезга, Сансер, Франция	GCA_013179965.1	GCA_013179965.1	GCA_013179965.1	GCA_013179965.1	GCA_013179965.1
148.01		Экссудат вяза Ulmus pumila, Благовещенск, Россия	GCA_013265745.1	GCA_013265745.1	GCA_013265745.1	GCA_013265745.1	GCA_013265745.1
NCAIN	4 Y.00676	Алкогольный напиток, Венгрия	GCA_013180065.1	GCA_013180065.1	GCA_013180065.1	GCA_013180065.1	GCA_013180065.1
PYCC	7082	<i>Сунагіа</i> sp. на <i>Nothofagus dombeyi</i> , Патагония, Аргентина	OP355536	OP355525	OP355517	OP355509	OP355545
PYCC	7083	Кора <i>Nothofagus pumilli</i> o, Патагония, Арген- тина	OP355537	OP355526	OP355518	OP355510	OP355546
PYCC (5330	Плодовое тело <i>Сунагіа harioti</i> i, Патагония, Аргентина	JF786645	JF786630	JF786699	JF786622	OP355552

Таблица 1. Происхождение изученных штаммов Saccharomyces

ГЕНЕТИЧЕСКИ ИЗОЛИРОВАННАЯ ПОПУЛЯЦИЯ ДРОЖЖЕЙ

405

			Регистра	ционный номер в	GenBank	
		MET2	ESIH	FSYI	FUN14	COX2
UWO(PS) 99-808	Сокотечение бука <i>Nothofagus</i> sp., Патагония, Аргентина	OP355543	OP355532	JF786703	I	OP355551
		Новозеландская 1	популяция			
PYCC 6864	Cyttaria gunni на Nothofagus menziesii, Новая Зеландия	OP355538	OP355527	OP355519	OP355511	OP355547
PYCC 6865	Kopa Nothofagus cunninghamii, Тасмания, Австралия	OP355539	OP355528	OP355520	OP355512	I
PYCC 6867	Kopa <i>Nothofagus solandr</i> i var. <i>solandr</i> i, Новая Зеландия	OP355540	OP355529	OP355521	OP355513	OP355548
PYCC 6868	Kopa <i>Nothofagus solandr</i> i var. <i>solandr</i> i, Новая Зеландия	OP355541	OP355530	OP355522	OP355514	OP355549
PYCC 6869	Kopa Nothofagus solandri var. solandri, Новая Зеландия	OP355542	OP355531	OP355523	OP355515	OP355550
	-	S. eubayar	Snt	_	_	_
CBS 12357	Сущагіа hariotti, Аргентина	GCA_003327605.1	GCA_003327605.1	GCA_003327605.1	GCA_003327605.1	CP030961
PYCC 7084	<i>Cyttaria harioti</i> на <i>Nothofagus dombeyi</i> , Арген- тина	KF530488	KF530444	KF530380	KF530401	KF530338
PYCC 7085	Kopa Nothofagus antarctica, Apreнтина	KF530492	KF530448	KF530384	KF530405	KF530341
PYCC 7087	Почва под Nothofagus pumilio, Аргентина	KF530495	KF530451	KF530387	KF530408	Ι
PYCC 7088	Почва под <i>Nothofagus pumili</i> o, Аргентина	KF530496	KF530452	KF530388	KF530409	KF530345
PYCC 7089	Почва под Nothofagus oblique, Аргентина	KF530497	KF530453	KF530389	KF530410	KF530346
yHKS210	Kopa Fagus grandifolia, Висконсин, США	KF530498	KF530454	KF530390	KF530411	KF530347
yHKS211	Kopa Fagus grandifolia, Висконсин, США	KF530499	KF530455	KF530391	KF530412	KF530348
yHKS212	Кора Асег saccharum, Висконсин, США	KF530500	KF530456	KF530392	KF530413	KF530349
Примечание. BKM ФГБУН ВННИИВ Technology and Evalt lection (Лиссабон, П stitut des Sciences De ka", НИЦ "Kypчarc	– Всероссийская коллекция микроорганизмо иВ "Магарач" РАН (Ялта, Россия); CBS – Тh ation (Токио, Япония); NCAIM – National Collecti ортугалия); UWO (PS) – Culture Collection of the L a Vigne et du Vin (ISVV) (Вильнав-д'Орнон, Франц в Vigne et du Vin (ISVV) (Вильнав-д'Орнон, Франц овский институт" (Москва, Россия). Соответств	в (Пушино, Россия) the Westerdijk Fungal ion of Agricultural and Department of Biology, имя). Остальные штам имя некоторых номер	, М – Коллекция м Biodiversity Institute Industrial Microorgani University of Western AMb из коллекции лаб ов коллекций: РУСС	икроорганизмов ви (Утрехт, Нидерлан sms (Будапешт, Венг Опtагіо (Онтарио, Ка боратории молекуляр С 7082 = CRUB 1586	ноделия "Marapay" ды); NBRC/IFO – лия); PYCC – Рогиде инада); PJS2.95 – шта оной генетики дрожж ; РҮСС 7083 = CRU	(KMB "Marapay"), National Institute of tese Yeast Culture Col- мм из коллекции In- ей "ГосНИИгенети- В 1778.

ГЕНЕТИКА

том 59

Nº 4

2023

406

Таблица 1. Продолжение

БОРОВКОВА и др.

Ген или район амплификации	Последовательность праймера (5'-3')	Размер амплифицированного фрагмента, пн
	NTS2: AACGGTGCTTTCTGGTAG	1200
ІС82 рДНК	ETS1: TGTCTTCAACTGCTTT	1300
PGV1	FSY11: GGATCYTCRACAAGCGTTTCTC	10.47
FSYI	FSY12: AAGGCAAACAYGTAAAGCAAAG	1247
	MET21: CGAAAACGCTCCAAGAGCTGG	415
ME12	415 MET22: GACCACGATATGCACCAGGCAG	
HIS3	HIS31: ATGTCAGAGCAAAAGGCCCTA	570
	HIS32: CATGAGAACACCCTTTGTGGA	579
COX2	COX21: GGTATTTTAGAATTACATGA	564
	COX22: ATTTATTGTTCRTTTAATCA	
FUN14	FUN14D: TATTAAGCTGGGAGTGCCCTT	
	FUN14R: TTATTGGCGTTTAGGCTTGA	429

Таблица 2. Использованные в работе праймеры [12, 32]

мощью прямого секвенирования по методу Сенгера на автоматическом секвенаторе Applied Biosystems 3730 (США). Поиск гомологии с известными нуклеотидными последовательностями проводили с помощью программы BLAST в базе данных GenBank (http://www.ncbi.nlm.nih.gov/genbank/). Множественные выравнивания изученных нуклеотидных и аминокислотных последовательностей проводили с помощью программы BioEdit (http://www.mbio.ncsu.edu/BioEdit/bioedit.html). Филогенетические деревья строили методом объединения соседей (Neighbor-Joining) в программе MEGA7 [41].

ПДРФ-анализ ПЦР-амплифицированных IGS2-участков рДНК

Рестрикционный анализ осуществляли с помощью эндонуклеазы AluI (Fermentas) в течение 12 ч при 37°С. Разделение фрагментов рестрикции проводили в 2.5%-ном агарозном геле при 50-60 В в 0.5× ТВЕ-буфере в течение 2.5–3 ч. Гель окрашивали бромистым этидием (0.5 мкг/мл) в течение 2–3 ч, затем промывали в дистиллированной воде и фотографировали в ультрафиолетовом свете на трансиллюминаторе Vilber Lourmat (Франция). В качестве маркера молекулярных масс использовали 100bp DNA Ladder (Fermentas).

ГЕНЕТИКА том 59 № 4 2023

Молекулярное кариотипирование и Саузерн-гибридизация

Выделение хромосомной ДНК проводили как описано ранее [15]. Для разделения хромосомной ДНК использовали аппарат CHEF-DR III (Bio-Rad. США). Образны помешали в шели 1%-ного агарозного геля. Для разделения хромосомных полос использовали два режима кариотипирования: 1) 200 В, в течение 15 ч при времени переключения полей 60 с и 9 ч при времени переключения полей 90 с; 2) 200 В, в течение 24 ч при времени переключения полей 15-40 с. В качестве буфера использовали 0.5× ТВЕ, охлажденный до 14°С. Штамм Saccharomyces cerevisiae YNN 295 (Bio-Rad), имеющий известный порядок и размеры хромосом, служил кариотипическим стандартом. После электрофореза гель окрашивали бромистым этидием в течение 2-3 ч, затем промывали в дистиллированной воде в течение 2 ч и фотографировали в УФ-свете. Использовали 1%-ную агарозу.

Хромосомную ДНК переносили на нитроцеллюлозную мембрану, используя аппарат Vacuum blotter (Bio-Rad). ДНК фиксировали на мембране путем отжига при 80°С в течение 2 ч. В качестве зонда использовали ПЦР-амплифицированный ген *ACT1* дрожжей *S. cerevisiae* S288C. Метку вводили нерадиоактивным методом с использованием dUTP, меченного дигоксигенином (dig-II-dUTP) из набора DIG High Prime DNA Labeling and Detection Starter Kit I (Roche, Швейцария), согласно инструкции производителя. Гибридизацию и

БОРОВКОВА и др.

7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 Μ 4 5 6 1 2 3 I. F. Int. Part I. F. F. P. Isthe пн 1031 -700→ 600 → 500 → 400 → 300→ S. cerevisiae S. bavanus var. S. bavanus var. S. bavanus S. eubavanus NZ bayanus uvarum

Рис. 1. ПДРФ-анализ амплифицированных фрагментов межгенного спейсера IGS2 дрожжей комплекса *Saccharomyces bayanus* с помощью эндонуклеазы *AluI. S. cerevisiae* (контроль): *1* – S288C, *2* – BKM Y–502; *S. bayanus* var. *bayanus*: *3* – CBS 380, *4* – CBS 378, *5* – CBS 424, *6* – CBS 425, *7* – NBRC 1948; *S. bayanus* var. *uvarum*: *8* – BKM Y–1146, *9* – M488, *10* – NCAIM Y.00677, *11* – PJS 2.95, *12* – 148.01, *13* – UWO(PS) 99-808, *14* – M300; Новозеландская (NZ) популяция дрожжей *S. bayanus*: *15* – PYCC 6864, *16* – PYCC 6865, *17* – PYCC 6867, *18* – PYCC 6868, *19* – PYCC 6869; *S. eubayanus*: *20* – CBS 12357, *21* – PYCC 7085, *22* – yHKS 210. М – маркер молекулярных масс. 100 bp DNA Ladder (Fermentas, Литва).

проявление гибридизационных полос также проводили по инструкции указанной фирмы.

Гибридологический анализ

Дрожжи скрещивали на полной агаризованной среде YPD: спорообразование индуцировали на ацетатной среде (Γ/π): CH₃COONa – 10, KCl – 5, агар — 20. Спонтанные ауксотрофные мутации lys и ura отбирали на селективных средах, содержащих соответственно DL-аминоадипиновую и 5'-фтороротовую кислоты [42, 43]. Гибридизацию проводили методом "спора на спору" с использованием микроманипулятора или массовым скрещиванием спор на полной среде с последующим отбором гибридов на минимальных селективных средах. Состав минимальной среды (г/л): дрожжевая азотная основа без аминокислот (фирмы "Difco", США) – 6.7, глюкоза – 20, агар – 20. Аскоспоры изолировали с помощью микроманипулятора, предварительно разрушив оболочки асков ферментативным препаратом из желудка виноградных улиток *Helix pomatia*.

РЕЗУЛЬТАТЫ

С помощью различных молекулярных методов и гибридологиического анализа мы изучили генетическое родство 33 штаммов комплекса *S. bayanus*. Штаммы выделены из ферментационных процессов и различных природных источников в разных регионах мира: Россия, Нидерланды, Швейцария, Испания, Германия, Франция, Словакия, Венгрия, Молдавия, Аргентина, США, Австралия и Новая Зеландия (табл. 1).

ПДРФ-анализ ПЦР-амплифицированных IGS2-участков рДНК

У изученных штаммов S. bayanus были проведены амплификация IGS2-участка рДНК и последующий ПДРФ-анализ с помощью рестриктазы AluI. На рис. 1 представлены ПДРФ-паттерны некоторых штаммов. С помощью этого молекулярного маркера можно четко дифференцировать виды S. cerevisiae и S. bayanus, а также внутривидовые популяции последнего (рис. 1, дорожки 1, 2 и 3-22 соответственно). По сходству AluI-профилей изученные штаммы S. bayanus разделились на четыре группы. Идентичные паттерны имели штаммы S. bayanus var. bayanus (CBS 378, CBS 424, CBS 425, NBRC 1948) и S. eubavanus (дорожки 4-7 и 20-22 соответственно). Вторую группу составили штаммы S. bayanus var. uvarum, имеющие три AluI-фрагмента размером 610, 520 и 170 пн (дорожки 8–14). В третью группу вошли пять штаммов *S. bayanus*, изолированных в Австралии (Тасмания) и Новой Зеландии (далее новозеландская популяция, NZ), у которых средний фрагмент был несколько меньшего размера: 500 пн (дорожки 15-19). Четвертая группа представлена типовой культурой S. bayanus var. bayanus CBS 380, в AluI-профиле которой объединены фрагменты, характерные для S. bayanus var. bayanus и S. bayanus var. ичагит (дорожка 3).

Мультигенный филогенетический анализ

Для установления филогенетического родства изученных штаммов мы провели сравнительный анализ нуклеотидных последовательностей трех ядерных (*FSY1*, *HIS3*, *MET2*) и двух митохондриальных (*FUN14*, *COX2*) генов.

Рис. 2. Филогенетические деревья, построенные по нуклеотидным последовательностям ядерных (*FSY1*, *HIS3*, *MET2*) (*a*) и митохондриальных (*FUN14*, *COX2*) (*б*) генов дрожжей комплекса *Saccharomyces bayanus*. Приводятся значения бутстрепа >70%. Шкала соответствует пяти нуклеотидным заменам на 1000 нуклеотидных позиций. NZ – новозеландская популяция дрожжей *S. bayanus*.

На филогенетическом дереве, построенном по нуклеотилным последовательностям генов FSY1. HIS3 и MET2, со 100%-ной статистической поддержкой выделяются два кластера (рис. 2, а). Первый включает два подкластера: S. bavanus var. *иvarum* и новозеландские штаммы S. bavanus, нуклеотидные последовательности которых отличаются 17-56 заменами. Наибольшие различия отмечены по последовательностям гена FSY1. Внутри каждого подкластера штаммы, как правило, имели идентичные последовательности или различались одной-восьмью заменами. К первому кластеру примыкает S. bayanus var. bayanus CBS 425, выделенный из яблочного сока в Швейцарии. Второй кластер также разделен на два подкластеpa: S. eubayanus и S. bayanus var. bayanus.

По последовательностям митохондриальных генов *FUN14* и *COX2* штаммы *S. bayanus* var. *bayanus* попали в два разных кластера: три штамма (CBS 424, CBS 425, NBRC 1948) вошли в один кластер с дрожжами *S. eubayanus*, а два (CBS 378 и CBS 380) с *S. bayanus* var. *uvarum* (рис. 2,*б*). Третий кластер сформировали штаммы новозеландской популяции.

На рис. 3 представлено филогенетическое дерево, построенное по нуклеотидным последовательностям ядерных и митохондриальных генов. Следует отметить, что штаммы новозеландской популяции на всех трех филогенетических дере-

ГЕНЕТИКА том 59 № 4 2023

вьях формируют отдельный кластер со статистической поддержкой 99–100%. Эти штаммы значительно отличаются от *S. bayanus* var. *uvarum* по нуклеотидным последовательностям всех пяти проанализированных генов: 55–56 замен (*FSY1*), 16–18 (*MET2*), 24–26 (*HIS3*), 21 замена (*FUN14*) и 43–46 (*COX2*). Различий с дрожжами *S. eubayanus* и *S. bayanus* var. *bayanus* было значительно больше.

Молекулярное кариотипирование и Саузерн-гибридизация

Виды *S. cerevisiae* и *S. bayanus* имеют неколлинеарные кариотипы. В геноме последних дрожжей имеется три реципрокные транслокации, затрагивающие хромосомы XV/VIII, IV/II и X/VI [7, 44]. Последняя транслокация характерна для дрожжей *S. bayanus* var. *uvarum* и отсутствует у штаммов *S. bayanus* var. *uvarum* и отсутствует у штаммов *S. bayanus* var. *bayanus* и *S. eubayanus* [7, 39]. Следует отметить, что молекулярное кариотипирование штаммов *S. bayanus* из новозеландской популяции ранее не проводилось.

Мы сравнили молекулярные кариотипы 33 изученных штаммов. Кариотипы некоторых из них представлены на рис. 4,*а*. Идентификацию отдельных хромосомных полос проводили по кариотипу стандартного штамма *S. cerevisiae* YNN 295, имеющего известные размеры и порядок хромо-

Рис. 3. Филогенетический анализ ядерных (*FSY1, HIS3, MET2*) и митохондриальных (*FUN14, COX2*) генов дрожжей комплекса *Saccharomyces bayanus*. Приводятся значения бутстрепа >70%. Шкала соответствует пяти нуклеотидным заменам на 1000 нуклеотидных позиций. NZ – новозеландская популяция дрожжей *S. bayanus*.

сом (рис. 4, а, дорожка 1). Новозеландские штаммы имеют сходные кариотипические профили. незначительный полиморфизм размеров отмечен только для хромосомных полос размером 2200-770 тпн (дорожки 12-15). Эти штаммы имеют в своем кариотипе три хромосомные полосы размером 245–370 тпн, вместо двух у S. bavanus var. uvarum (дорожки 10 и 11). Молекулярные кариотипы S. eubayanus также характеризовались наличием хромосомы VI размером около 290 тпн (рис. 4,*a*, дорожки 7—9). Три штамма S. bayanus var. bayanus (CBS 380, CBS 424 и CBS 425) характеризовались тремя хромосомными полосами размером 245-370 тпн, тогда как у CBS 378 и NBRC 1948 имеется соответственно две и одна хромосомные полосы (дорожки 2-4, 5 и 6). Согласно интенсивности свечения указанные полосы штаммов CBS 378 и NBRC 1948, по-видимому, содержат несколько хромосом. Действительно, с помощью одноступенчатого режима кариотипирования удалось разделить на две хромосомы нижнюю полосу штамма NBRC 1948 и хромосомную полосу размером около 370 тпн у штамма CBS 378 (рисунок не приводится).

Хромосомные ДНК изученных штаммов были перенесены на нитроцеллюлозную мембрану для последующей Саузерн-гибридизации с зондом АСТІ (хромосома VI) дрожжей S. cerevisiae (рис. 4, δ). У всех изученных штаммов S. eubayanus, новозеландской популяции и трех штаммов S. bayanus var. bayanus (CBS 380, CBS 424 и CBS 425) зонд ACTI гибридизовался к хромосомной полосе размером около 290 тпн, соответствующей хромосоме VI кариотипического стандарта S. cerevisiae YNN 295 (рис. 2, δ , дорожка I). У штамма S. bayanus var. bayanus CBS 378 выявлено два гибридизационных сигнала: var. bayanus-типа и var. uvarum-типа (рис. 4, δ , дорожка 5). У NBRC 1948 и всех изученных штаммов S. bayanus var. uvarum обнаружен только один гибридизационный сигнал в районе хромосомы размером около 580 тпн (рис. 4, δ , дорожки 6, 10 и 11).

Таким образом, реципрокная транслокация между хромосомами VI и X характерна только для *S. bayanus* var. *uvarum* и отсутствует у штаммов новозеландской популяции и *S. eubayanus*. Среди дрожжей *S. bayanus* var. *bayanus* встречаются штаммы обоих типов.

Для определения генетического родства новозеландских и остальных популяций комплекса *S. bayanus* мы провели гибридологический анализ.

Рис. 4. Пульс-электрофорез (*a*) и Саузерн-гибридизация (*б*) хромосомной ДНК дрожжей комплекса Saccharomyces bayanus с зондом ACT1 дрожжей S. cerevisiae. S. bayanus var. bayanus: 2 – CBS 380, 3 – CBS 424, 4 – CBS 425, 5 – CBS 378, 6 – NBRC 1948; S. eubayanus: 7 – CBS 12357, 8 – yHKS210, 9 – PYCC 7086; S. bayanus var. uvarum: 10 – CBS 7001, 11 – CBS 395; новозеландская популяция S. bayanus: 12 – PYCC 6864, 13 – PYCC 6867, 14 – PYCC 6868, 15 – PYCC 6869. Нумерация и размеры хромосом приводятся согласно стандартному штамму S. cerevisiae YNN295 (дорожка 1).

Гибридологический анализ

Были созданы гомозиготные моноспоровые линии штаммов РҮСС 6867, РҮСС 6868, РҮСС 6869 (Новая Зеландия) и NBRC 1948 (*S. bayanus* var. *bayanus*) с высокой выживаемостью аскоспор: 83.3— 91.7%. Несколько пониженную выживаемость аскоспор имела только моноспоровая культура новозеландского штамма РҮСС 6868: 53.6%. Моноспоровые культуры были маркированы ауксотрофными мутациями *lys* и *ura*. В скрещиваниях использовали ранее полученные ауксотрофные мутанты штаммов CBS 424, CBS 7001, NCAIM Y.00677, UWO(PS) 99-808 и CBS 12357 [7, 38, 45].

Все полученные гибриды спорулировали и были пригодны для тетрадного анализа. Результаты гибридологического анализа представлены в табл. 3. Внутрипопуляционные гибриды РҮСС 6867 × РҮСС 6869 характеризовались 68.1%-ной выживаемостью аскоспор и регулярным мейотическим расшеплением контрольных ауксотрофных маркеров. С другой стороны, межпопуляционные гибриды новозеландских штаммов с S. bayanus var. bayanus (CBS 424, NBRC 1948), S. bayanus var. uvarum (CBS 7001, NCAIM Y.00677, UWO(PS) 99-808) и S. eubayanus (CBS 12357) обладали низкой выживаемостью аскоспор: 6.2-23.3%. Несмотря на полустерильность межпопуляционных гибридов, во всех гибридных комбинациях наблюдалась рекомбинация родительских маркеров (табл. 3). Заслуживает внимания гибрид S. bayanus var. bayanus (NBRC 1948) × S. bayanus var. uvarum (CBS 7001), имеющий достаточно высокую выживаемость аскоспор: 54.3% (табл. 3). Следует отметить, что ранее изученные нами гибриды штам-

ГЕНЕТИКА том 59 № 4 2023

мов CBS 380, CBS 424 и CBS 425 (*S. bayanus* var. *bayanus*) и CBS 7001 (*S. bayanus* var. *uvarum*) характеризовались пониженной выживаемостью спор: 9–39% [7, 14, 38].

Мы суммировали результаты гибридологического анализа генетических популяций комплекса S. bayanus, полученные в настоящей работе, и ранее опубликованные данные [7, 14, 16, 38, 46]. По выживаемости гибридных аскоспор изученные популяции можно разделить на две группы (рис. 5). Выживаемость аскоспор гибридов S. bayanus var. bayanus \times S. eubayanus составила 55-62%, что сопоставимо с фертильностью гибридов при скрещивании разных штаммов S. bayanus var. bayanus: 64%. Новозеландские штаммы образовывали низко фертильные гибриды со всеми генетическими популяциями: 6.2-23.3%. Низкую выживаемость аскоспор также имели гибриды S. bayanus var. uvarum с S. bayanus var. bayanus и S. eubayanus: 9-39 и 2.5-11% (рис. 5). Исключением является достаточно фертильный гибрид CBS 7001 × NBRC 1948: 54.5%. Следует отметить, что гибриды штамма NBRC 1948 со штаммами новозеландской популяции. S. bayanus var. bayanus и S. eubayanus характеризовались низкой выживаемостью аскоспор: 17.1-23.4% (рис. 5).

ОБСУЖДЕНИЕ

Проведенное исследование подтвердило сложное строение комплекса *S. bayanus*, включающего, по крайней мере, четыре генетические популяции: *S. bayanus* var. *bayanus*, *S. bayanus* var. *uvarum*, *S. eubayanus* и новозеландская. Выживаемость ас-

БОРОВКОВА и др.

Таблица 3. Анализ гибридов генетических популяций комплекса *S. bayanus*: новозеландская (РҮСС 6867, РҮСС 6869), *S. bayanus* var. *bayanus* (CBS 424, NBRC 1948), *S. bayanus* var. *uvarum* (CBS 7001, NCAIM Y.00677, UWO(PS) 99-808 и РҮСС 7083) и *S. eubayanus* (CBS 12357)

Происхождение гибридов и их генотипы	Число изолированных тетрад	Жизнеспособность аскоспор, %	Мейотическое расщепление гибридов
6867 × 6869 ura/lys	36	68.1	3P:12N:4T*
6867 × 7001 ura/lys	136	11.4	11 ura LYS : 24 URA lys : 22 URA LYS : 5 ura lys
6867 × 00677 ura/lys	105	6.2	1 ura LYS : 12 URA lys : 9 URA LYS : 4 ura lys
6867 × 99-808 ura/lys	101	23.3	10 ura LYS: 19 URA lys: 37 URA LYS: 28 ura lys
6867 × 424 ADE/ade	35	18.6	10 ADE : 16 ade
6869 × 1948 <i>lys/ura</i>	29	19.0	6 ura LYS : 6 URA lys : 3 URA LYS : 7 ura lys
6867 × 12357 ura/lys	118	19.5	14 ura LYS: 34 URA lys: 31 URA LYS: 13 ura lys
7083×12357 ura/lys	20	2.5	2 URA lys
1948 × 7001 <i>LYS/lys</i>	35	54.3	44 LYS : 32 lys
1948 × 424 <i>ADE/ade</i>	31	23.4	17 ADE : 12 ade
1948 × 12357 ura/lys	19	17.1	2 ura LYS : 4 URA lys : 5 URA LYS : 2 ura lys

* Соотношение тетрад родительского (Р), неродительского (N) дитипов и тетратипа (Т).

коспор существенно зависела от родительских комбинаций и составила 55—62% у гибридов *S. bayanus* var. *bayanus* × *S. eubayanus*, 9—39% у *S. bayanus* var. *bayanus* × *S. bayanus* var. *uvarum* и 2.5—11% у *S. bayanus* var. *uvarum* × *S. eubayanus* (рис. 5). Результаты гибридологического и молекулярного анализов свидетельствуют о генетической дивергенции штаммов новозеландской популяции, которые значительно отличаются по всем пяти изученным молекулярным маркерам и образуют полустерильные гибриды с представителями остальных популяций: 6.2–23.3% (рис. 5). Независимо от выживаемости аскоспор у всех изученных гибридов наблюдалось регулярное мейотическое расщеп-

Рис. 5. Суммарные результаты гибридологического анализа генетических популяций комплекса *Saccharomyces bayanus* ([7, 14–18, 38, 46]; настоящее исследование).

ление контрольных маркеров, включая двойные ауксотрофы. Внутрипопуляционные скрещивания были фертильны и также характеризовались мейотической рекомбинацией контрольных маркеров. Проведенный нами ранее гибридологический анализ более 100 штаммов S. bavanus var. uvar*ит*, выделенных из различных ферментационных и природных источников в разных регионах мира (Западной, Центральной и Восточной Европы, Дальневосточной и Юго-восточной Азии, Северной и Южной Америки, Гавайских островов), выявил высокую выживаемость гибридных аскоспор: 89-100% [1, 15-18, 46]. Дрожжи S. eubayanus также обнаружены в разных регионах мира: Аргентине, Чили, США, Канаде, Китае, Австралии и Новой Зеландии [24, 32–35]. С другой стороны, все известные штаммы дрожжей S. bayanus var. bayanus были выделены исключительно в Европе, в основном из пивоварения [7, 13].

С помощью ПДРФ-анализа межгенного спейсера IGS2 рДНК можно четко дифференцировать *S. bayanus* var. *uvarum* и новозеландские изоляты от штаммов *S. bayanus* var. *bayanus* и *S. eubayanus*, имеющих идентичные *Alu*I-паттерны. Сравнительный анализ ядерных и митохондриальных генов также выявил более близкое генетическое родство последних двух популяций. Характерная для *S. bayanus* var. *uvarum* реципрокная транслокация, затрагивающая хромосомы VI и X, отсутствует у штаммов S. bayanus var. bayanus, S. eubayanus и новозеландской популяции. Исключением являются выделенные из пивоварения штаммы S. bayanus var. bayanus NBRC 1948 и CBS 378, у которых также имеется указанная реципрокная транслокация. Следует отметить, что гибрид штамма NBRC 1948 с S. bayanus var. uvarum CBS 7001 имел 54%-ную выживаемость аскоспор, тогда как гибрид NBRC 1948 × S. bayanus var. bayanus CBS 424 был полустерильным: 23.4%. По-видимому, европейская популяция S. bayanus var. bayanus является связующим звеном между S. eubayanus и S. bayanus var. uvarum.

Таким образом, между *S. bayanus* var. *bayanus*, *S. bayanus* var. *uvarum*, *S. eubayanus* и новозеландской популяциями нет полной межвидовой постзиготической изоляции. Согласно полученным генетическим и молекулярным данным указанные таксоны относятся к одному биологическому виду, обладая дивергенцией геномов на уровне таксономических разновидностей.

Исследование выполнено в рамках государственного задания АААА-А20-120093090015-2.

Настоящая статья не содержит каких-либо исследований с использованием в качестве объекта животных.

Настоящая статья не содержит каких-либо исследований с участием в качестве объекта людей.

Авторы заявляют, что у них нет конфликта интересов.

СПИСОК ЛИТЕРАТУРЫ

- 1. Наумов Г.И., Наумова Е.С., Мартыненко Н.Н., Маснёф-Помаред И. Таксономия, экология и генетика дрожжей Saccharomyces bayanus – нового объекта в науке и практике // Микробиология. 2011. T. 80. № 6. C. 723–730.
- 2. Vaughan-Martini A., Martini A. Saccharomyces Meyen ex Reess (1870) // The Yeast, a Taxonomic Study / Eds Kurtzman C.P., Fell J.W., Boekhout T. 5th ed. Amsterdam: Elsevier, 2011. V. 2. P. 733-746. https://doi.org/10.1016/B978-0-444-52149-1.00061-6

- 3. Naumov G.I., James S.A., Naumova E.S. et al. Three new species in the Saccharomyces sensu stricto complex: Saccharomyces cariocanus, Saccharomyces kudriavzevii and Saccharomyces mikatae // Int. J. Syst. Evol. Microbiol. 2000. V. 50. P. 1931-1942. https://doi.org/10.1099/00207713-50-5-1931
- 4. Kurtzman C.P. Phylogenetic circumscription of Saccharomyces, Kluyveromyces and other members of the Saccharomycetaceae, and the proposal of the new genera Lachancea, Nakaseomyces, Naumovia, Vandervatozyma and Zygotorulaspora // FEMS Yeast Res. 2003. V. 4. P. 233-245. https://doi.org/10.1016/S1567-1356(03)00175-2
- 5. Wang S.A., Bai F.Y. Saccharomyces arboricolus sp. nov., a yeast species from tree bark // Int. J. Syst. Evol. Microbiol. 2008. V. 58. P. 510-514. https://doi.org/10.1099/ijs.0.65331-0
- 6. Naseeb S., James S.A., Alsammar H. et al. Saccharomyces jurei sp. nov., isolation and genetic identification of a novel yeast species from Quercus robur // Int. J. Syst. Evol. Microbiol. 2017. V. 67. P. 2046-2052. https://doi.org/10.1099/ijsem.0.002013
- 7. Naumova E.S., Naumov G.I., Masneuf-Pomarede I. et al. Molecular genetic study of introgression between Saccharomyces bayanus and S. cerevisiae // Yeast. 2005. V. 22. P. 1099–1115. https://doi.org/10.1002/yea.1298
- 8. Peris D., Pérez-Torrado R., Hittinger C.T. et al. On the origins and industrial applications of Saccharomyces cerevisiae × Saccharomyces kudriavzevii hybrids // Yeast. 2018. V. 35. P. 51-69. Epub 2017 Dec 6. https://doi.org/10.1002/yea.3283
- 9. Morard M., Benavent-Gil Y., Ortiz-Tovar G. et al. Genome structure reveals the diversity of mating mechanisms in Saccharomyces cerevisiae × Saccharomyces kudriavzevii hybrids, and the genomic instability that promotes phenotypic diversity // Microbial. Genomics. 2020. V. 6(3). P. e000333. https://doi.org/10.1099/mgen.0.000333
- 10. Lopandic K. Saccharomyces interspecies hybrids as model organisms for studying yeast adaptation to stressful environments // Yeast. 2018. V. 35. P. 21-38. https://doi.org/10.1002/yea.3294

- 11. Bendixsen D.P., Frazão J.G., Stelkens R. Saccharomyces yeast hybrids on the rise // Yeast. 2022. V. 39. P. 40–54. https://doi.org/10.1002/yea.3684
- 12. Nguyen H.-V., Gaillardin C. Two subgroups within the Saccharomyces bayanus species evidenced by PCR amplification and restriction polymorphism of the nontranscribed spacer 2 in the ribosomal DNA unit // Syst. Appl. Microbiol. 1997. V. 20. P. 286-294. https://doi.org/10.1016/S0723-2020(97)80075-6
- 13. Pérez-Través L., Lopes C.A., Ouerol A., Barrio E. On the complexity of the Saccharomyces bayanus taxon: Hybridization and potential hybrid speciation // PLoS One. 2014. V. 9(4). P. e93729. https://doi.org/10.1371/journal.pone.0093729
- 14. Наумов Г.И. Новая разновидность S. bayanus var. *uvarum*, установленная генетическим анализом // Микробиология. 2000. Т. 69. № 2. С. 410-414.
- 15. Naumov G.I., Naumova E.S., Gaillardin C. Genetic and karyotypic identification of wine Saccharomyces bavanus veasts isolated in France and Italy // Syst. Appl. Microbiol. 1993. V. 16. P. 274-279. https://doi.org/10.1016/S0723-2020(11)80480-7
- 16. Naumov G.I., Masneuf I., Naumova E.S. et al. Association of S. bayanus var. uvarum with some French wines: Genetic analysis of yeast populations // Res. Microbiol. 2000. V. 151. P. 683-691. https://doi.org/10.1016/S0923-2508(00)90131-1
- 17. Naumov G.I., Naumova E.S., Aigle M. et al. Genetic reidentification of the pectinolytic yeast strain SCPP as Saccharomyces bayanus var. uvarum // Appl. Microbiol. Biotechnol. 2001. V. 55. P. 108-111. https://doi.org/10.1007/s002530000480
- 18. Naumov G.I., Nguven H.-V., Naumova E.S. et al. Genetic identification of Saccharomyces bavanus var. uvarum, a cider-fermenting yeast // Int. J. Food. Microbiol. 2001. V. 65. P. 163-171. https://doi.org/10.1016/S0168-1605(00)00515-8
- 19. Masneuf-Pomarede I., Le Jeune C., Durrens P. et al. Molecular typing of wine yeast strains Saccharomyces bayanus var. uvarum using microsatellite markers // System. Appl. Microbiol. 2007. V. 30. P. 75-82. https://doi.org/10.1016/j.syapm.2006.02.006
- 20. Almeida P., Goncalves C., Teixeira S. et al. A gondwanan imprint on global diversity and domestication of wine and cider yeast Saccharomyces uvarum // Nat. Commun. 2014. V. 5. P. 4044-4055. https://doi.org/10.1038/ncomms5044
- 21. Zhang H., Richards K.D., Wilson S. et al. Genetic characterization of strains of Saccharomyces uvarum from New Zealand wineries // Food Microbiol. 2015. V. 46. P. 92-99.

https://doi.org/10.1016/j.fm.2014.07.016

- 22. Rodríguez, M.E., Pérez-Través L., Sangorrín M.P. et al. Saccharomyces uvarum is responsible for the traditional fermentation of apple chicha in Patagonia // FEMS Yeast Res. 2017. V. 17(1). P. fow109. https://doi.org/10.1093/femsyr/fow109
- 23. McCarthy G.C., Morgan S.C., Martiniuk J.T. et al. An indigenous Saccharomyces uvarum population with high genetic diversity dominates uninoculated Char-

ГЕНЕТИКА том 59 Nº 4 2023 donnay fermentations at a Canadian winery // PLoS One. 2021. V. 16(2). P. e0225615. https://doi.org/10.1371/journal.pone.0225615

- Libkind D., Hittinger C.T., Valério E. et al. Microbe domestication and the identification of the wild genetic stock of lager-brewing yeast // Proc. Natl Acad. Sci. USA. 2011. V. 108. P. 14539–14544. https://doi.org/10.1073/pnas.1105430108
- Pulvirenti A., Nguyen H.V., Caggia C. et al. Saccharomyces uvarum, a proper species within Saccharomyces sensu stricto // FEMS Microbiol. Lett. 2000. V. 192. P. 191–196. https://doi.org/10.1111/j.1574-6968.2000.tb09381.x
- Nguyen H.V., Gaillardin C. Evolutionary relationships between the former species Saccharomyces uvarum and the hybrids Saccharomyces bayanus and Saccharomyces pastorianus; reinstatement of Saccharomyces uvarum (Beijerinck) as a distinct species // FEMS Yeast Res. 2005. V. 5. P. 471–483. https://doi.org/10.1016/j.femsyr.2004.12.004
- Rainieri S., Kodama Y., Kaneko Y. et al. Pure and mixed genetic lines of Saccharomyces bayanus and Saccharomyces pastorianus and their contribution to the lager brewing strain genome // Appl. Environ. Microbiol. 2006. V. 72. P. 3968–3974. https://doi.org/10.1128/AEM.02769-05
- Nguyen H.-V., Lepingle A., Gaillardin C. Molecular typing demonstrates homogeneity of Saccharomyces uvarum strains and reveals the existence of hybrids between S. uvarum and S. cerevisiae, including the S. bayanus type strain CBS 380 // System. Appl. Microbiol. 2000. V. 23. P. 71–85.

https://doi.org/10.1016/S0723-2020(00)80048-X

- Rainieri S., Zambonelli C., Hallsworth J.E. et al. Saccharomyces uvarum, a distinct group within Saccharomyces sensu stricto // FEMS Microbiol. Lett. 1999. V. 177. P. 177–185. https://doi.org/10.1111/j.1574-6968.1999.tb13729.x
- Bon E., Neuvéglise C., Casaregola S. et al. Genomic exploration of the hemiascomycetous yeasts: 5. Saccharomyces bayanus var. uvarum // FEBS Lett. 2000. V. 487. P. 37–41.
 https://doi.org/10.1016/s0014.5702(00)02276.6

https://doi.org/10.1016/s0014-5793(00)02276-6

- Nguyen H.-V., Legras J.L., Neuvéglise C., Gaillardin C. Deciphering the hybridisation history leading to the Lager lineage based on the mosaic genomes of Saccharomyces bayanus strains NBRC 1948 and CBS 380 // PLoS One. 2011. V. 6(10). P. e25821. https://doi.org/10.1371/journal.pone.0025821
- Bing J., Han P.J., Liu W.Q. et al. Evidence for a Far East Asian origin of lager beer yeast // Curr. Biol. 2014. V. 24. P. 380–381. https://doi.org/10.1016/j.cub.2014.04.031
- 33. Peris D., Langdon Q.K., Moriarty R.V. et al. Complex ancestries of lager-brewing hybrids were shaped by standing variation in the wild yeast Saccharomyces

eubayanus // PLoS Genet. 2016. V. 12. P. 1–20. https://doi.org/10.1371/journal.pgen.1006155

- 34. Gayevskiy V, Goddard M.R. Saccharomyces eubayanus and Saccharomyces arboricola reside in North Island native New Zealand forests // Environ. Microbiol. 2016. V. 18. P. 1137–1147. https://doi.org/10.1111/1462-2920.13107
- 35. Nespolo R.F., Villarroel C.A., Oporto C.I. et al. An outof-patagonia migration explains the worldwide diversity and distribution of Saccharomyces eubayanus lineages // PLoS Genetics. 2020. V. 16(5). e1008777. https://doi.org/10.1371/journal.pgen.1008777
- Baker E., Wang B., Bellora N. et al. The genome sequence of Saccharomyces eubayanus and the domestication of Lager-brewing yeasts // Mol. Biol. Evol. 2015. V. 32(11). P. 2818–2831. https://doi.org/10.1093/molbev/msv168
- 37. Hebly M., Brickwedde A., Bolat I. et al. S. cerevisiae × × S. eubayanus interspecific hybrid, the best of both worlds and beyond // FEMS Yeast Res. 2015. V. 15. № 3. P. fov005.

https://doi.org/10.1093/femsyr/fov005

- 38. Наумов Г.И. Генетическое родство и биологический статус индустриально важных дрожжей Saccharomyces eubayanus Sampaio et al. // ДАН. 2017. V. 473(5). P. 622–625. https://doi.org/10.7868/S0869565217110263
- Sampaio J.P. Microbe Profile: Saccharomyces eubayanus, the missing link to lager beer yeasts // Microbiology. 2018. V. 164. P. 1069–1071. https://doi.org/10.1099/mic.0.000677
- Lõoke M., Kristjuhan K., Kristjuhan A. Extraction of genomic DNA from yeasts for PCR based applications // Biotechniques. 2011. V. 50. P. 325–328. https://doi.org/10.2144/000113672
- 41. *Kumar S., Stecher G., Tamura K.* MEGA7: Molecular Evolutionary Genetics Analysis Version 7.0 for Bigger Datasets // Mol. Biol. Evol. 2016. V. 33. № 7. P. 1870–1874.

https://doi.org/10.1093/molbev/msw054

- Boek J., La Croute D., Fink G.R. A positive selection for mutants lacking orotidine-5'-phosphate decarboxilase activity // Mol. Gen. Genet. 1984. V. 197. P. 345–346.
- Sherman F., Fink G.R., Hicks J.B. Laboratory course manual for methods in yeasts genetics // Methods in Yeast Genetics: A Gold Spring Harbor Laboratory Course Manual. N.Y.: Gold Spring Harbor Lab., 1986. P. 50–51.
- Fischer G., James S.A., Roberts I.N. et al. Chromosomal evolution in Saccharomyces // Nature. 2000. V. 405. P. 451–454.
- Kaneko Y., Banno I. Isolation and genetic characterization of auxotrophic mutants in Saccharomyces bayanus // IFO Res. Comm. 1989. V. 14. P. 104–110.
- 46. *Наумов Г.И., Газдиев Д.О., Наумова Е.С.* Обнаружение биологического вида *Saccharomyces bayanus* в Дальневосточной Азии // Микробиология. 2003. Т. 72. № 6. С. 834–839.

ГЕНЕТИКА том 59 № 4 2023

БОРОВКОВА и др.

Genetically Isolated Population of Saccharomyces bayanus in New Zealand and Australia

A. N. Borovkova^{a, b}, G. I. Naumov^a, A. V. Shnyreva^b, and E. S. Naumova^{a, *}

^aNational Research Center "Kurchatov Institute", Kurchatov Complex for Genetic Research (GosNIIgenetika), Moscow, 123098 Russia ^bMoscow State University, Moscow, 119234 Russia *e-mail: lena_naumova@yahoo.com

The genetic relatedness of yeasts in the *Saccharomyces bayanus* complex has been studied using the methods of molecular and classical genetics. A divergent population of *S. bayanus* has been found in New Zealand and Australia. The *S. bayanus* complex includes four genetic populations: *S. bayanus* var. *bayanus*, *S. bayanus* var. *uvarum*, *S. eubayanus* and New Zealand population. The strains of the New Zealand population differ significantly in the nucleotide sequences of nuclear (*FSY1*, *HIS3*, *MET2*) and mitochondrial (*FUN14*, *COX2*) genes and form semi-sterile hybrids with other populations: viability of ascospores is 6.2–23.3%. There is no complete interspecific postzygotic isolation between *S. bayanus* var. *bayanus*, *S. bayanus* var. *uvarum*, *S. eubayanus*, and New Zealand populations: all hybrids showed regular meiotic segregation of control auxotrophic markers. According to the results obtained, four genetic populations belong to the same biological species with genomic divergence at the level of taxonomic varieties.

Keywords: *Saccharomyces bayanus* complex, *S. bayanus* var. *bayanus*, *S. bayanus* var. *uvarum*, *S. eubayanus*, New Zealand population, genetic hybridization and phylogenetic analyses, molecular karyotyping.