ГЕНЕТИКА ЖИВОТНЫХ

УДК 575:595.763.79

ГЕНЕТИЧЕСКАЯ ИНТРОГРЕССИЯ В ПОПУЛЯЦИЯХ ДВУХ БЛИЗКИХ ВИДОВ Adalia frigida (Schneider, 1792) И Adalia bipunctata (Linnaeus, 1758) (Coleoptera: Coccinellidae) В ЗОНЕ СИМПАТРИИ

© 2023 г. Д. А. Романов^{1,} *, Е. В. Шайкевич¹, И. А. Захаров¹

¹Институт общей генетики им. Н.И. Вавилова Российской академии наук, Москва, 119333 Россия

*e-mail: dromanov_16@mail.ru Поступила в редакцию 22.06.2022 г. После доработки 15.09.2022 г. Принята к публикации 20.09.2022 г.

Изучено гаплотипическое разнообразие мтДНК циркумполярного вида божьих коровок Adalia frigida, собранных в Якутске и Салехарде. На основе анализа нуклеотидных последовательностей гена cox1 выявлено 18 митохондриальных гаплотипов, из них 14 новых. Из 18 гаплотипов A. frigida два (H32 и H9) являются наиболее распространенными. В районе Салехарда происходит перекрывание ареала A. frigida с ареалом другого близкого вида – A. bipunctata. Величина дивергенции по гену cox1между A. frigida и A. bipunctata достигает 4.1-4.3% и соответствует уровню различий, характерному для близких видов. Эти виды способны скрещиваться между собой, доля гибридных особей (A. frigida и A. bipunctata) в Салехарде составляет 56.5%. Гибридизация между A. frigida и A. bipunctata привела к взаимной митохондриальной интрогрессии, результатом которой стало приобретение гаплотипа H1 жуками A. frigida и гаплотипа H9 жуками A. bipunctata.

Ключевые слова: Adalia frigida, Adalia bipunctata, гибридизация, митохондриальная интрогрессия, полиморфизм мтДНК.

DOI: 10.31857/S0016675823040100, EDN: AWMQFP

Божьи коровки рода Adalia (Coleoptera: Coccinellidae) остаются популярным объектом для генетических (гибридологических и популяционных) исследований на протяжении уже почти 100 лет [1-6]. У представителей этого рода наиболее видное место среди таксономических признаков, по которым осуществляется определение видов, занимают окраска и рисунок различных частей тела головы, переднеспинки, надкрылий, нижней стороны тела и ног. Однако рисунок надкрылий и переднеспинки этих жуков, особенно A. bipunctata, характеризуется высоким разнообразием. У светлых форм A. bipunctata надкрылья красные, обычно с одним черным пятном на каждом, реже с несколькими; у темных форм надкрылья обычно черные с двумя-тремя красными пятнами на каждом. Переднеспинка у светлых форм беловатая, обычно с черным пятном М-образной или трапециевидной формы, у темных форм – черная, с желтоватыми боками. Низ тела и ноги черные. A. bipunctata – голарктический вид, обитающий в Западной Европе, Северной Африке, в России (европейская часть, Кавказ, Сибирь, Дальний Восток), в Передней Азии, Закавказье, Казахстане, Средней Азии, Афганистане, Монголии, Китае, Японии, Северной Америке [2, 7, 8].

По краям ареала *A. bipunctata* встречаются резко различающиеся по фенотипу формы: *A. b. revelierei*, *A. b. turanica* и *A. b. fasciatopunctata*, которые первоначально рассматривали в качестве самостоятельных видов [9]. Однако гибридологический анализ [2] и сравнительный анализ мтДНК (ген *cox1*) и ядерной ДНК (ITS2 – второй внутренний транскрибируемый спейсер кластера рибосомных генов) показали, что эти формы являются географическими разновидностями одного вида – *A. bipunctata* [10, 11].

Для характеристики разнообразия гаплотипов у божьих коровок рода *Adalia* на протяжении 20 лет используется средняя часть гена *cox1* [12]. По выбранному участку уже описано 23 митохондриальных гаплотипа у *A. bipunctata* [13, 14]. Самым распространенным у *A. bipunctata* является гаплотип H1 [10, 12, 15].

Среди жуков рода *Adalia* наиболее близким видом к *A. bipunctata* является *A. frigida* [16]. У этого вида каждое надкрылье с двумя поперечными черными перевязями; передняя перевязь состоит из трех, задняя — из двух черных пятен, которые нередко полностью сливаются. Иногда пятна имеют светлую кайму. Такой рисунок никогда не встречается в европейских популяциях *A. bipunctata*. Переднеспинка с М-образным черным пятном посередине и часто с одной черной точкой у каждого бокового края. Реже переднеспинка черная, с узкой белой каймой вдоль боков. Низ тела и ноги черные, усики коричневые, с затемненной вершиной. Вышеописанный узор на надкрыльях *А. frigida* характерен только для этого вида. Этот рисунок наследуется как простой хромосомный аллель и используется как диагностический признак вида. *А. frigida* – циркумполярный вид, обитающий на Скандинавском полуострове (Норвегия, Швеция), севере европейской части России, севере и востоке Сибири, на севере Приморского края, Сахалине, Итурупе, Кунашире и в Северной Америке [7, 9, 17, 18].

Таксономическое положение A. frigida долгое время вызывало противоречивые заключения. Изначально описанный как отдельный вид A. frigida был лишен этого статуса американским энтомологом Ч.В. Лэнгом, который объединил его с A. bipunctata [19]. Этот взгляд на таксономическое положение A. frigida сохранился среди американских исследователей и в дальнейшем [20]. Таким образом, после объединения ранее описанного вида A. annectans c A. bipunctata [21] все разнообразие коровок рода Adalia в Северной Америке оказалось сведено к одному виду – *А. bipunctata*. В Европе же шли дискуссии о том, является ли A. frigida самостоятельным видом или же подвидом A. bipunctata. Я.Я. Лусис описал частичную репродуктивную изоляцию A. frigida и A. bipunctata, хотя ему удалось получить гибриды первого поколения, а нарушение процессов размножения он наблюдал лишь со второго поколения. Тем не менее он признал A. frigida самостоятельным видом [22]. Но некоторые исследователи рассматривали A. frigida в качестве подвида A. bipunctata [7, 17, 18, 23]. Проведенное ранее сравнение относительно небольшого количества образцов A. frigida c A. bi*рипстата* по генетическим маркерам (cox1 и ITS2) позволило предположить, что A. frigida имеет статус близкого к A. bipunctata вида [10, 11, 16].

Целями данного исследования было уточнение отношений между A. frigida и A. bipunctata, для чего было изучено разнообразие мтДНК A. frigida на территориях, где этот вид встречается совместно с A. bipunctata и где A. frigida является единственным представителем рода Adalia. Были проведены сборы жуков в Салехарде (2021 г.), в зоне совместного обитания A. frigida с A. bipunctata, и в Якутске (2015 г.), где встречается только A. frigida, и был выполнен анализ разнообразия последовательностей митохондриального гена cox1 собранных жуков A. frigida и A. bipunctata в сравнении с ранее полученными последовательностями A. frigida, A. bipunctata, A. tetraspilota, A. conglomerata и A. decempunctata. Также выполнена проверка зараженности A. frigida и A. bipunctata из Салехарда и Якутска симбиотическими бактериями Spiroplasma, Rickettsia и Wolbachia, которые широко распространены в европейских популяциях A. bipunctata.

МАТЕРИАЛЫ И МЕТОДЫ

В Якутске в 2015 г. было собрано 36 имаго A. frigida. В 2021 г. в Салехарде были собраны имаго A. frigida (23 экз.) и A. bipunctata (3 экз.). Определение видов кокцинеллид осуществляли визуально по характерному для каждого вида рисунку надкрылий жуков.

Выделение тотальной ДНК из имаго кокцинеллид проводили методом фенол-хлороформной экстракции по стандартному протоколу [24].

Реакцию амплификации с каждым препаратом ДНК проводили в объеме 25 мкл с использованием универсального набора Encyclo Plus PCR kit (Евроген, Россия, Москва) в соответствии с протоколом фирмы-производителя. Все ПЦР выполнялись на амплификаторе MiniAmp Plus (Applied Biosystems, США).

Для ПЦР на митохондриальный ген *cox1* применялись две пары праймеров: праймеры C1-iF (5'-GCTGGAATTTCATCAATTTTAGG-3') и C1-nR (5'-GGAAATCAATGAATAAATCCTGCT-3'), подобранные к мтДНК A. bipunctata, а также универсальные праймеры LCO1490 (5'-GGTCAA-САААТСАТАААGATATTGG-3') и HCO2198 (5'-TAAACTTCAGGGTGACCAAAAAATCA-3') [25]. Праймеры LCO1490 и HCO2198 амплифицируют фрагмент cox1 длиной 709 пн с позиции 20 по 728, а праймеры C1-jF и C1-nR амплифицируют фрагмент гена *cox1* длиной 737 пн с позиции 454 по 1190 (нумерация дана в соответствии с полной последовательностью митохондриального гена сох1 A. bipunctata – GenBank ID: AJ313070). Условия амплификации (с праймерами C1-jF и C1-nR): начальная денатурация – 4 мин при 94°С; затем 35 циклов: денатурация — $20 \,\mathrm{c}$ при $94^{\circ}\mathrm{C}$, отжиг — $20 \,\mathrm{c}$ при 58°С и полимеризация – 50 с при 72°С. ПЦР завершалась заключительной полимеризацией в течение 5 мин 72°С. Условия амплификации (с праймерами LCO1490 и HCO2198): начальная денатурация — 4 мин при 94°С; затем пять циклов: денатурация – 20 с при 94°С, отжиг – 20 с при 45°С и полимеризация — 45 с при 72° С; затем 30 циклов: денатурация – 20 с при 94°С, отжиг – 20 с при 55°С и полимеризация – 45 с при 72°С. ПЦР завершалась заключительной полимеризацией в течение 5 мин 72°С.

Определение зараженности божьих коровок *A. frigida* и *A. bipunctata* симбиотическими бактериями (*Spiroplasma*, *Rickettsia*, *Wolbachia*) проводили с помощью ПЦР со специфичными к генам бактерий праймерами. Для идентификации *Spiroplasma* по гену *dnaA* использовали праймеры Sp_ApDnaA_F1 (5'-ATTCTTCAGTA-ААААTGCTTGGA-3') и Sp_ApDnaA_R1 (5'-

	-			
Гаплотип	GenBank ID	Тип мтДНК	Количество имаго	Обозначение образцов
H1	AJ313070	A. bipunctata	2/36	Y-19, Y-33
H9	AJ313067	A. frigida	7/36	Y-5, Y-7, Y-10, Y-18, Y-27, Y-28, Y-36
H25	ON025622	A. frigida	1/36	Y-16
H28	ON564977	A. frigida	1/36	Y-35
H29	ON564978	A. frigida	2/36	Y-23, Y-24
H30	ON564979	A. frigida	1/36	Y-3
H32	ON564980	A. frigida	18/36	Y-1, Y-4, Y-6, Y-8, Y-9, Y-14, Y-15, Y-17, Y-20, Y-21, Y-22, Y-25, Y-26, Y-29, Y-30, Y-31, Y-32, Y-34
H33	ON564981	A. frigida	2/36	Y-11, Y-12
H34	ON564982	A. frigida	1/36	Y-2
H35	ON564983	A. frigida	1/36	Y-13

Таблица 1. Митохондриальные гаплотипы A. frigida из Якутска

ACACATTTACTTCATGCTATTGA-3'), позволяющие амплифицировать фрагмент длиной 447 пн. Обнаружение Rickettsia осуществляли с применением праймеров RicF141 (5'-TCGGTTCTCTTTC-GGCATTTTA-3') и RicR548 (5'-GCATATTTAT-САССGСТТСАТТ-3'), специфичных к последовательности гена gltA. Размер ПЦР-продукта составляет 407 пн. Поиск Wolbachia по гену fbpA проводили с праймерами fbpA-F1ms (5'-GCT-GCTCCACTTGGTATGAT-3') и fbpA-R1ms (5'-ССАССАБААААААСТАСТАТТС-3'), амплифицирующими фрагмент длиной 509 пн. Условия амплификации (для всех праймеров на бактерии): начальная денатурация — 4 мин при 94°С; затем 35 циклов: денатурация – 20 с при 94°С, отжиг – 20 с при 57°С и полимеризация – 35 с при 72°С. ПЦР завершалась заключительной полимеризацией в течение 5 мин 72°С.

Анализ результатов ПЦР осуществляли методом электрофореза в 1.5%-ном агарозном геле. Элюцию фрагментов ДНК из геля проводили с использованием набора для выделения ДНК из агарозных гелей Cleanup Mini (Евроген, Москва) в соответствии с инструкциями фирмы-производителя. Очищенные фрагменты ДНК передавали в компанию Евроген для секвенирования.

Хроматограммы нуклеотидных последовательностей фрагмента митохондриального гена *cox1* анализировали с помощью комплекта программ DNASTAR Lasergene 6 [26, 27]. Последовательности, полученные в результате секвенирования, зарегистрированы в базе данных GenBank под номерами ON025611–ON025630 и ON564976–ON564983.

Расчет генетических дистанций (по модели Кимуры) и создание филогенетических деревьев (методом Neighbor-Joining, эволюционная модель Кимуры) проводили в программе MEGA6 v6.0 [28]. Для построения дендрограммы представителей рода *Adalia* по митохондриальному гену *cox1* использовали базу данных GenBank. Из нее были выбраны все последовательности подходящего размера, общее число которых достигло 125. Затем провели отсев идентичных последовательностей: из группы одинаковых оставляли одну с сохранением упоминания о географическом происхождении отсеянных последовательностей. Количество оставшихся последовательностей уменьшилось до 33.

РЕЗУЛЬТАТЫ

Для изучения гаплотипического разнообразия мтДНК божьих коровок *A. frigida* и *A. bipunctata* были определены нуклеотидные последовательности средней части гена *cox1*. Все полученные новые последовательности были сравнены с ранее описанными 23 гаплотипами *A. bipunctata*.

У 36 имаго *A. frigida* из Якутска было обнаружено 10 митохондриальных гаплотипов, из них восемь новых (табл. 1). Поскольку некоторые гаплотипы, характерные для *A. frigida*, встречаются также и у *A. bipunctata*, для обозначения новых гаплотипов *A. frigida* была продолжена нумерация, использующаяся для обозначений гаплотипов *A. bipunctata*.

Наиболее распространенными гаплотипами у коровок в Якутске оказались H32, обнаруженный у 18 особей, и H9, найденный у семи особей. Последовательности H9 образуют отдельный кластер внутри группы гаплотипов *A. frigida* (рис. 1). Гаплотип H9, первоначально описанный у *A. bipunctata*, может свидетельствовать о митохондриальной интрогрессии от *A. frigida* к *A. bipunctata*, так как часто встречается именно у *A. frigida* (табл. 1). Интрогрессия митохондриальных геномов носи-

Рис. 1. Дендрограмма сходства нуклеотидных последовательностей фрагмента гена *cox1* длиной 610 пн (с позиции 506 по 1115) божьих коровок *A. frigida*, собранных в Якутске (Y-1–Y-36), и *A. bipunctata*, представленных последовательностями 10 митохондриальных гаплотипов (GenBank ID: AJ313060–AJ313070). События митохондриальной интрогрессии у *A. frigida* обозначены черными треугольниками, у *A. bipunctata* – черным кружком. Последовательность гена *cox1 A. decempunctata* использована в качестве внешней группы.

ла взаимный характер, о чем свидетельствует обнаружение в Якутске двух имаго *A. frigida* с гаплотипом H1, который является самым распространенным гаплотипом *A. bipunctata* (рис. 1). В Салехарде было собрано 26 имаго божьих коровок, ДНК была выделена из 23 из них, из которых 20 фенотипически (по рисунку надкрыльев) соответствовали *А. frigida*, а три – *А. bipunctata*.

Рис. 2. Дендрограмма сходства нуклеотидных последовательностей фрагмента гена *cox1* длиной 610 пн (с позиции 506 по 1115) божьих коровок *A. bipunctata* и *A. frigida*. Коровки, собранные в Салехарде (S-1–S-23), обозначены как *A. frigida* и *A. bipunctata* в соответствии с фенотипом. На дендрограмме также представлены последовательности 10 митохондриальных гаплотипов *A. bipunctata* (GenBank ID: AJ313060–AJ313070). События митохондриальной интрогрессии у *A. frigida* обозначены черными треугольниками, у *A. bipunctata* – черными кружками. Последовательность гена *cox1 A. decempunctata* использована в качестве внешней группы.

Оказалось, что среди *А. frigida* 10 имаго имеют мтДНК своего вида, тогда как у других 10 имаго мтДНК соответствует мтДНК *А. bipunctata* (рис. 2). МтДНК всех трех особей *А. bipunctata* из Салехарда соответствует *А. frigida* (рис. 2).

Среди 20 имаго *A. frigida* из Салехарда было выявлено 11 митохондриальных гаплотипов, из них семь новых. У трех особей *A. bipunctata* обнаружены два новых гаплотипа: H27 и H38 (табл. 2).

Гаплотип	GenBank ID	Тип мтДНК	Количество имаго	Обозначение образцов
H1	AJ313070	A. bipunctata	8/23	S-1, S-2, S-9, S-14, S-16, S-17, S-19, S-21
Н9	AJ313067	A. frigida	2/23	S-8, S-10
H19	KY765912	A. bipunctata	1/23	S-20
H24	ON025621	A. bipunctata	1/23	S-11
H25	ON025622	A. frigida	1/23	S-12
H26	ON025613	A. frigida	1/23	S-3
H27	ON564976	A. frigida	1/23	S-23
H31	ON025615	A. frigida	1/23	S-5
H36	ON025614	A. frigida	1/23	S-4
H37	ON025623	A. frigida	1/23	S-13
H38	ON025616 ON025617 ON025628	A. frigida	5/23	S-6, S-7, S-15 , S-18, S-22

Таблица 2. Митохондриальные гаплотипы *А. frigida* и *А. bipunctata* из Салехарда

Примечание. Полужирным шрифтом выделены образцы, фенотипически соответствующие A. bipunctata.

Образец S-4 отличается от образца S-10 единственной нуклеотидной заменой A225G, которая находится вне участка, выбранного для построения дендрограммы, поэтому на рис. 2 они идентичны, а в табл. 2 отнесены к разным гаплотипам (H36 и H9 соответственно). Последовательность гена *cox1* образца S-12 оказалась идентична полученной ранее последовательности *cox1 A. frigida* (JQ757049) из Архангельска [16], этот гаплотип обозначен как H25 (табл. 1). На рис. 1 и 2 последовательность JQ757049 отсутствует из-за недостаточной длины секвенированного участка (не хватает 61 пн для выравнивания с остальными последовательностями).

Мы рассчитали значения генетических дистанций между 17 гаплотипами, выявленными у *A. frigida* в Якутске и Салехарде (табл. 3). Различие между часто встречающимися гаплотипами мтДНК *A. frigida* (H9 и H32) и *A. bipunctata* (H1) составляет 4.1 и 4.3%. Разнообразие мтДНК *A. frigida* можно разделить на два кластера, один из которых образован гаплотипами H25–H35, другой образован гаплотипами H9–H38. Различие между гаплотипами внутри первого и второго кластеров составляет 0.2–1.9 и 0.2–0.3% соответственно. Различие между кластерами составляет от 2.3 до 3.1%.

Поскольку в многочисленных исследованиях для идентификации видов используется 5'-область гена *cox1*, мы выбрали восемь различающихся между собой образцов *A. frigida* из Салехарда (№ 1, 3, 4, 5, 6, 10, 11, 13) (рис. 2) для проведения сравнительного анализа со всеми зарегистрированными в международной базе данных GenBank последовательностями божьих коровок рода *Adalia* (рис. 3).

ГЕНЕТИКА том 59 № 4 2023

Топология дендрограммы, построенной по 5'-области гена *cox1* (рис. 3), соответствует дендрограммам, построенным по средней части этого гена (рис. 1 и 2). Гаплотипы *A. bipunctata*, сходные с H1–H8, образуют один кластер, объединяющий варианты мтДНК собственно *A. bipunctata*. Множество гаплотипов *A. bipunctata* из Финляндии, Германии, Китая, Канады и США кластеризуются с мтДНК *A. frigida*. Последовательности 5'-области *cox1 A. frigida*, так же как и на рис. 1 и 2, разделяются на два кластера, что подтверждает достоверность такой топологии. Отдельно группируются гаплотипы, сходные с H10, а также последовательность *A. bipunctata* из Оулу, Финляндия, зарегистрированная под номером MZ659941.

Проведенный поиск симбионтов у 20 имаго *A. frigida* и трех имаго *A. bipunctata*, собранных в Салехарде, позволил выявить зараженность бактерией *Spiroplasma* у двух имаго *A. frigida* (S-5 и S-19). В Якутске *Spiroplasma* была найдена у трех имаго *A. frigida* (Y-11, Y-14 и Y-31). Бактерии *Rickettsia* и *Wolbachia* не были обнаружены.

ОБСУЖДЕНИЕ

Скрещивания двух разных видов могут привести к митохондриальной интрогрессии — замене собственной митохондриальной ДНК (мтДНК) у одного вида на мтДНК другого вида. С развитием молекулярно-генетических методов анализа количество работ, посвященных событиям интрогрессий, стало неуклонно расти [29]. Такие процессы происходят не только между разными видами [30–32], но и между близкими родами [33].

Таблица	13. Значения	з генетиче	ских дис	хтанций м	тежду по	следовал	гельност	тим имв	идднохо	альных	гаплоти	пов, обі	наружен	IHEIX $\mathbf{y} \mathbf{A}$. frigida		
Š	Гаплотип	1	2	3	4	5	9	7	8	6	10	11	12	13	14	15	16
1	HI																
7	H24	0.002															
3	H25	0.037	0.039														
4	H26	0.039	0.041	0.002													
5	H27	0.036	0.037	0.013	0.014												
9	H28	0.039	0.041	0.013	0.014	0.006											
7	H29	0.044	0.046	0.014	0.016	0.010	0.006										
8	H30	0.043	0.044	0.013	0.014	0.006	0.003	0.006									
6	H31	0.048	0.049	0.018	0.019	0.011	0.008	0.011	0.005								
10	H32	0.043	0.044	0.013	0.014	0.008	0.005	0.005	0.002	0.006							
11	H33	0.044	0.046	0.014	0.016	0.010	0.006	0.006	0.003	0.008	0.002						
12	H34	0.044	0.046	0.014	0.016	0.010	0.006	0.006	0.003	0.008	0.002	0.003					
13	H35	0.046	0.048	0.016	0.018	0.011	0.008	0.008	0.005	0.010	0.003	0.005	0.005				
14	6H	0.041	0.043	0.026	0.024	0.026	0.023	0.027	0.026	0.027	0.026	0.027	0.027	0.029			
15	H36	0.041	0.043	0.026	0.024	0.026	0.023	0.027	0.026	0.027	0.026	0.027	0.027	0.029	0.000		
16	H37	0.043	0.044	0.027	0.026	0.027	0.024	0.029	0.027	0.029	0.027	0.029	0.029	0.031	0.002	0.002	
17	H38	0.043	0.044	0.027	0.026	0.027	0.024	0.029	0.027	0.029	0.027	0.029	0.029	0.031	0.002	0.002	0.003
Примеча	иние. Размер а	нализируе	мого участ	тка состав	тяет 633 п	IH.											

2023

<u>№</u> 4

ГЕНЕТИКА том 59

0.02

Рис. 3. Дендрограмма сходства нуклеотидных последовательностей фрагмента гена *cox1* длиной 537 пн (с позиции 85 по 621) божьих коровок рода *Adalia*. Коровки, собранные в Салехарде, отмечены черными ромбами. Последовательности, взятые из базы данных GenBank, приведены с указанием их регистрационных номеров и стран, в которых они были отмечены, а также с указанной авторами видовой принадлежностью. Квадратные скобки объединяют группы гаплотипов, относящихся к *A. bipunctata* и *A. frigida*. Последовательность гена *cox1 Harmonia quadripunctata* использована в качестве внешней группы.

В лабораторных условиях Я.Я. Лусис получал гибриды от скрещивания *A. bipunctata* с *A. frigida* [2, 22]. По нашим данным (результаты не пред-

ставлены) фенотип *A. frigida*, имеющий характерный для этого вида рисунок из двух полос на надкрыльях, является рецессивным по отношению к

Страна	Город	Всего образцов	Из них Н9	Источник
Англия	Кембридж	3	2	[12]
Норвегия	Альта	26	4	[13]
Дания	Рибе	2	1	[12]
Германия	Билефельд	16	3	[12]
	Архангельск	20	4	[35]
Doooug	Санкт-Петербург	4	2	[12]
ГОССИЯ	Санкт-Петербург	34	1	[15]
	Москва	22	1	[12]
Армения	Ереван	12	2	[10]

Таблица 4. Распространенность и частота встречаемости гаплотипа H9 y A. bipunctata

обычным рисункам A. bipunctata и определяется аллелем того же гена, что и другие рисунки надкрылий. Проведенный нами сравнительный анализ мтДНК (рис. 1, 2) выявил множество случаев, когда у одного вида обнаруживается мтДНК другого вида. Это указывает на то, что гибридизация между этими видами происходит и в природных популяциях. Коровки A. bipunctata ведут относительно оседлый образ жизни, мигрируя по небольшой территории в поисках пищи либо мест для зимовки [3]. Коровки А. frigida, вероятно, ведут себя сходным образом. Поскольку гаплотип Н9, соответствующий мтДНК A. frigida, был обнаружен в ряде мест, где A. frigida не встречается: в Англии, Дании, Германии, России (Москва, Санкт-Петербург), Армении (табл. 4), а гаплотип Н1 был найден в Якутске, где не обитает A. bipunctata, их носителями могли быть лишь потомки от межвидовых гибридов. Это свидетельствует о возникновении взаимной митохондриальной интрогрессии. Для объяснения широкого распространения гаплотипа Н9 можно предположить, что paнee A. frigida обитал на обширной территории, где неоднократно происходила гибридизация двух видов, либо что *А. bipunctata* приобрел гаплотип H9 однократно, а затем носители этого гаплотипа расселились очень широко по современному ареалу вида.

Хотя A. frigida сравнительно недавно считался циркумполярным видом, мы предполагаем, что к настоящему времени ареал этого вида значительно сократился. Во время сборов кокцинеллид на севере Норвегии в 2016 г. И.А. Захаровым был обнаружен только один вид — A. bipunctata [5]. A. frigida отмечался на севере Швеции как редкий вид божьих коровок и был внесен в список Красной книги Швеции в 2000–2005 гг. С 2010 г. A. frigida перестал упоминаться в Красной книге Швеции, которая переиздается каждые 5 лет [34]. В Архангельске A. frigida присутствовал еще в 2005 г., но уже с 2010 г. там удается найти лишь A. bipunctata [16, 35]. Я.Я. Лусис со ссылкой на американские работы 1903-1910 гг. указывает, что A. frigida в Ceверной Америке распространяется на юг до Огайо, Канзаса, Миссури и Небраски [2]. Однако в Канаде и в США (Аляска) в ходе выполнения работ по проектам, направленным на изучение биоразнообразия членистоногих [36, 37], вид A. frigida, в отличие от A. bipunctata (рис. 3), не был отмечен. К сожалению, американские исследователи часто считали A. frigida синонимом A. bipunctata [20]. Так что отсутствие упоминания о A. frigida и выявление множества митохондриальных гаплотипов этого вида у А. bipunctata в Северной Америке может означать как исчезновение A. frigida и интрогрессию мтДНК этого вида, так и объединение A. frigida с A. bipunctata при сборах. В Европе ареал A. frigida сокращается, вероятно, в связи с глобальным потеплением. Та же причина способствует продвижению A. bipunctata в северном и северо-восточном направлениях. Обживая новые территории, жуки A. bipunctata скрещиваются с A. frigida, что приводит к поглощению вида A. frigida более активным в условиях потепления A. bipunctata. A. frigida пока сохранился на севере России и в Сибири, но значительная часть оставшегося ареала представляет собой зону гибридизации с A. bipunctata.

Салехард находится как раз в зоне гибридизации этих видов божьих коровок. Несмотря на то что *A. frigida* численно преобладает над *A. bipunctata* (в соотношении 23 : 3), половина особей *A. frigida* имеет мтДНК *A. bipunctata*, а у всех собранных здесь имаго *A. bipunctata* найдена мтДНК *A. frigida*, что свидетельствует об активно идущей гибридизации. Доля гибридов составляет 56.5% от числа особей *A. frigida* и *A. bipunctata*. В Якутске, находящемся вне зоны гибридизации, частота митохондриальной интрогрессии у *A. frigida* невелика – 5.5%. Очевидно, что два имаго *A. frigida*, у которых был найден гаплотип H1, представляют собой потомков от скрещивания с самками *A. frigida* из южнее расположенной гибридной зоны.

Анализируя дендрограммы (рис. 1–3), мы отмечаем разделение разнообразия гаплотипов A. frigida на два кластера. Учитывая, что один кластер (гаплотипы H25-H35) достигает наибольшего разнообразия и наибольшей частоты распространения в Якутске, а другие входящие в него гаплотипы (с учетом данных по *A. bipunctata*) найдены в Китае, Канаде и США, можно предположить, что он характеризует полиморфизм мтДНК сибирских популяций A. frigida. Второй кластер, образуемый гаплотипами Н9, Н36, Н37 и Н38, наоборот, более разнообразен в Салехарде, что позволяет предполагать его европейское происхождение. Однако контакты между европейскими и сибирскими популяциями A. frigida привели к обобществлению гаплотипов из обоих кластеров и дальнейшему распространению их на новые территории. Дивергенция между нуклеотидными последовательностями гаплотипов из этих кластеров, достигающая 2.3-3.1%, находится между средними значениями генетических расстояний (%), рассчитанных для полиморфизма внутри вида (0.89 ± 0.16) и для полиморфизма между близнецовыми видами и подвидами (3.78 ± 1.18) [38]. Такие значения вполне могут характеризовать разницу между отдаленными популяциями одного вида.

Вопрос о таксономическом статусе A. frigida и *А. bipunctata* дискутировался долгое время. Величина дивергенции по митохондриальному гену cox1 у этих коровок достигает 4.1-4.3%, что характеризует уровень различий между подвидами либо близкими видами [38]. Способность A. frigida и A. bipunctata скрещиваться между собой и то, что их потомки (или часть из них) фертильны, указывает на подвидовой уровень. Однако в последнее время количество свидетельств межвидовых и межродовых гибридизаций неуклонно растет [30, 31, 33], что несколько снижает требования к строгой репродуктивной изоляции между разными видами. Другим близким к A. bipunctata видом является A. tetraspilota. встречающийся в Узбекистане, Индии, Непале [2]. Этот вид репродуктивно изолирован от A. bipunctata [2], а величина дивергенции между A. tetraspilota и A. bipunctata по последовательностям cox1 (6.2%) и ITS2 (1.8%) сходна с наблюдаемой для A. frigida и A. bipunctata (4.9 и 1.8% соответственно) [16]. Это позволяет предположить, что генетические расстояния, отмечаемые для пар A. bipunctata-A. frigida и A. bipunctata—A. tetraspilota, отражают видовой уровень дивергенции для коровок рода Adalia.

У А. bipunctata известен еще один случай митохондриальной интрогрессии от неизвестного близкого вида божьих коровок, который привел к появлению гаплотипа H10. Величина дивергенции гаплотипа H10 от гаплотипов, типичных для A. bipunctata, составляет 6.7% [16]. Гаплотип H10 распространился на значительной части ареала A. bipunctata – от Германии до Бурятии (Россия) [16], родственные ему гаплотипы присутствуют также в США и Канаде (рис. 3). Тем не менее у *A. frigida* этого гаплотипа не обнаружено. Предполагается, что *A. bipunctata* приобрел этот гаплотип уже после дивергенции с *A. frigida* от пока неизвестного, возможно исчезнувшего, вида [16].

Работа выполнена при поддержке гранта РНФ 22-24-00435.

Все применимые международные, национальные и/или институциональные принципы ухода и использования животных были соблюдены.

Авторы заявляют, что у них нет конфликта интересов.

СПИСОК ЛИТЕРАТУРЫ

- Лус Я.Я. О наследовании окраски и рисунка у божьих коровок Adalia bipunctata L. и Adalia decempunctata L. // Изв. Бюро по генетике. 1928. Т. 6. С. 89–163.
- 2. Лусис (Лус) Я.Я. Таксономические отношения и географическое распространение форм жуков рода *Adalia* Mulsant // Уч. записки Латв. гос. ун-та: Проблемы генетики и эволюции. 1973. Т. 184. № 1. С. 5–128.
- 3. Сергиевский С.О., Захаров И.А. Изучение генетического полиморфизма популяций двуточечной божьей коровки Adalia bipunctata (L.) Ленинградской области. II. Состав популяции города Ленинграда // Генетика. 1983. № 4. С. 635–640.
- Honek A., Martinková Z., Pekár S. Temporal stability of morph frequency in central European populations of Adalia bipunctata and A. decempunctata (Coleoptera: Coccinellidae) // Eur. J. Entomol. 2005. V. 102. P. 437–442.

https://doi.org/10.14411/eje.2005.062

- Захаров И.А., Рубанович А.В. Экологическая генетика жуков рода Adalia: популяции A. bipunctata Норвегии и Кольского полуострова // Экол. генетика. 2018. Т. 16. № 1. С. 49–52. https://doi.org/10.17816/ecogen16149-52
- 6. Шайкевич Е.В., Захаров И.А., Хонек А. Экологическая генетика жуков рода Adalia: изменчивость и симбиотические бактерии в европейских популяциях десятиточечной божьей коровки Adalia decempunctata // Экол. генетика. 2019. Т. 17. № 4. С. 37–45. https://doi.org/10.17816/ecogen17437-45
- Кузнецов В.Н. Сем. Соссіпеllidae Божьи коровки // Определитель насекомых Дальнего Востока СССР.
 Т. 3. Жесткокрылые, или жуки. Ч. 2. Л.: Наука, 1991. С. 333–376.
- Никитский Н.Б., Украинский А.С. Божьи коровки (Coleoptera, Coccinellidae) Московской области // Энтомол. обозрение. 2016. Т. 45. № 3. С. 555–582. https://doi.org/10.1134/S0013873816060051
- 9. *Якобсон Г.Г.* Жуки России и Западной Европы. Вып. XIII. Петроград: Девриен, 1916. С. 981–984.
- Захаров И.А., Шайкевич Е.В. Молекулярно-генетическое изучение географических форм жуков Ada-

lia bipunctata и *A. frigida* // Экол. генетика. 2014. T. 12. № 3. С. 52–59. https://doi.org/10.17816/ecogen12352-59

- Shaikevich E.V., Zakharov I.A. Biodiversity in geographically remote natural populations of Adalia ladybirds (Coleoptera: Coccinellidae) // Beetles: Biodiversity, Ecology and Role in the Environment. N.Y.: Nova Sci. Publ., Inc., 2015. P. 205–227.
- 12. Schulenburg J.H.G., Hurst G.D.D., Tetzlaff D. et al. History of infection with different male-killing bacteria in the two-spot ladybird beetle Adalia bipunctata revealed through mitochondrial DNA sequence analysis // Genetics. 2002. V. 160. № 3. P. 1075–1086. https://doi.org/10.1093/genetics/160.3.1075
- 13. Паленко М.В., Андрианов Б.В., Романов Д.А., Захаров И.А. Географический клинальный полиморфизм распределения митохондриальных гаплотипов Adalia bipunctata Linnaeus, 1758 (Coleoptera: Coccinellidae) Норвегии // Генетика. 2018. Т. 54. № 4. С. 456–461.
- Shaikevich E.V., Romanov D.A., Zakharov I.A. The diversity of Wolbachia in a single Adalia bipunctata (Coleoptera: Coccinellidae) population: Correlations with host phylogeny and male-killing // Symbiosis. 2021. V. 85. № 2. P. 249–257. https://doi.org/10.1007/s13199-021-00808-x
- 15. Захаров И.А., Шайкевич Е.В. Полиморфизм мтДНК в петербургской популяции Adalia bipunctata и его связь с зараженностью симбиотической бактерией Spiroplasma // Экол. генетика. 2011. Т. 9. № 1. С. 27–31.
- 16. Zakharov I.A., Shaikevich E.V. Comparative study of mtDNA in species of the genus Adalia (Coleoptera: Coccinellidae) and origin of ancient mitochondrial haplotypes in the gene pool of Adalia bipunctata // Eur. J. Entomol. 2013. V. 110. № 3. P. 427–433. https://doi.org/10.14411/eje.2013.057
- 17. *Кузнецов В.Н., Прощалыкин М.Ю*. К фауне жуковкокцинеллид (Coleoptera, Coccinellidae) Курильских островов // Евразиатский энтомол. журн. 2006. Т. 5. № 4. С. 264–270.
- 18. *Кузнецов В.Н., Прощалыкин М.Ю.* Фауна жуковкокцинеллид (Coleoptera, Coccinellidae) острова Сахалин // Евразиатский энтомол. журн. 2007. Т. 6. № 1. С. 39–50.
- Leng C.W. Notes on Coccinellidae. II // J. N.Y. Entomol. Soc. 1903. V. 11. P. 193–213.
- Belicek J. Coccinellidae of Western Canada and Alaska with analyses of the transmontane zoogeographic relationships between the fauna of British Columbia and Alberta (Insecta: Coleoptera: Coccinellidae) // Quaestiones Entomologicae. 1976. V. 12. P. 283–409.
- Palmer M.A. Some notes on heredity in the coccinellid genus Adalia Mulsant // Ann. Entomol. Soc. Amer. 1911. V. 4. P. 283–302.
- 22. Лусис (Лус) Я.Я. О систематическом положении Adalia frigida Schneider (Coleoptera, Coccinellidae) // Генетико-селекционные исследования в Латвийской ССР: Тез. докл. конф. Рига: Зинатне, 1976. С. 3–6.
- Iablokoff-Khnzorian S.M. Les coccinelles. Coléoptères–Coccinellidae. Paris: Société nouvelle des Editions Boubée, 1982. 568 p.

- 24. Sambrook J., Fritsch E.F., Maniatis T. Molecular Cloning: A Laboratory Manual. N.Y.: Cold Spring Harbor Lab. Press, 1989. 1626 p.
- 25. *Folmer O., Black M., Hoeh W. et al.* DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates // Mol. Mar. Biol. Biotechnol. 1994. V. 3. P. 294–299.
- 26. Clewley J.P. Macintosh sequence analysis software. DNASTAR's Lasergene // Mol. Biotechnol. 1995. V. 3. P. 221–224. https://doi.org/10.1007/BF02789332
- 27. Burland T.G. DNASTAR's Lasergene sequence analysis software // Methods Mol. Biol. 2000. V. 132. P. 71–91. https://doi.org/10.1385/1-59259-192-2:71
- 28. Tamura K., Stecher G., Peterson D. et al. MEGA6: Molecular Evolutionary Genetics Analysis Version 6.0 // Mol. Biol. Evol. 2013. V. 30. № 12. P. 2725–2729. https://doi.org/10.1093/molbev/mst197
- 29. *Toews D.P.L., Brelsford A.* The biogeography of mitochondrial and nuclear discordance in animals // Mol. Ecol. 2012. V. 21. № 16. P. 3907–3930. https://doi.org/10.1111/j.1365-294X.2012.05664.x
- Dias C., Lima K.A., Araripe J. et al. Mitochondrial introgression obscures phylogenetic relationships among manakins of the genus Lepidothrix // Mol. Phylogenet. Evol. 2018. V. 126. P. 314–320. https://doi.org/10.1016/j.ympev.2018.04.017
- Crottini A., Orozco-terWengel P., Rabemananjara F.C.E. et al. Mitochondrial introgression, color pattern variation, and severe demographic bottlenecks in three species of Malagasy poison frogs, genus Mantella // Genes. 2019. V. 10. № 4. P. 317:1-25. https://doi.org/10.3390/genes10040317
- Horoiwa M., Mandagi I.F., Sutra N. et al. Mitochondrial introgression by ancient admixture between two distant lacustrine fishes in Sulawesi Island // PLoS One. 2021. V. 16. № 6. e0245316. https://doi.org/10.1371/journal.pone.0245316
- 33. Shapoval N.A., Yakovlev R.V., Kuftina G.N. et al. Identification of natural hybrids between Ahlbergia frivaldszkyi (Lederer, 1853) and Callophrys rubi (Linnaeus, 1758) (Lepidoptera, Lycaenidae) using mitochondrial and nuclear markers // Insects. 2021. V. 12. P. 1124:1–16. https://doi.org/10.3390/insects12121124
- Artfakta. Naturvård. Polarnyckelpiga. 2022. https://artfakta.se/naturvard/taxon/adalia-frigida-105674
- 35. Шайкевич Е.В., Ившина Е.В., Захаров И.А. Полиморфизм митохондриальной ДНК и распространение цитоплазматических симбионтов в популяциях двуточечной божьей коровки Adalia bipunctata // Генетика. 2012. Т. 48. № 5. С. 666-671.
- 36. Woodcock T.S., Boyle E.E., Roughley R.E. et al. The diversity and biogeography of the Coleoptera of Churchill: insights from DNA barcoding // BMC Biology. 2013. V. 13. P. 40:1–15. https://doi.org/10.1186/1472-6785-13-40
- 37. *Sikes D.S., Bowser M., Morton J.M. et al.* Building a DNA barcode library of Alaska's non-marine arthropods. Fairbanks: Univ. Alaska Museum, 2017. 38 p. https://doi.org/10.1139/gen-2015-0203
- 38. *Картавцев Ю.Ф.* Генетическая дивергенция видов и других таксонов, географическое видообразование и генетическая парадигма неодарвинизма в действии // Успехи соврем. биологии. 2013. Т. 133. № 5. С. 419–451.

Genetic Introgression in Populations of Two Related Species Adalia frigida (Schneider, 1792) and Adalia bipunctata (Linnaeus, 1758) (Coleoptera: Coccinellidae) in the Zone of Sympatry

D. A. Romanov^{a, *}, E. V. Shaikevich^a, and I. A. Zakharov^a

^aVavilov Institute of General Genetics Russian Academy of Sciences, Moscow, 119333 Russia *e-mail: dromanov_16@mail.ru

The haplotype diversity of mtDNA of the circumpolar species of ladybirds *Adalia frigida* collected in Yakutsk and Salekhard was studied. Based on the analysis of the nucleotide sequences of the *cox1* gene, 18 mitochondrial haplotypes were identified, of which 14 were new. Of the 18 haplotypes of *A. frigida*, two (H32 and H9) are the most common. In the Salekhard region, the range of *A. frigida* overlaps with that of another closely related species, *A. bipunctata*. The value of divergence in the *cox1* gene between *A. frigida* and *A. bipunctata* reaches 4.1–4.3% and corresponds to the level of differences characteristic of closely related species. These species are able to interbreed, the share of hybrid individuals (*A. frigida* and *A. bipunctata*) in Salekhard is 56.5%. Hybridization between *A. frigida* and *A. bipunctata* led to mutual mitochondrial introgression, which resulted in the acquisition of the H1 haplotype by the *A. frigida* beetles and the H9 haplotype by the *A. bipunctata* beetles.

Keywords: Adalia frigida, Adalia bipunctata, hybridization, mitochondrial introgression, mtDNA polymorphism.