УДК 550.388.2

ИНДЕКС СОЛНЕЧНОЙ АКТИВНОСТИ ДЛЯ ДОЛГОСРОЧНОГО ПРОГНОЗА КРИТИЧЕСКОЙ ЧАСТОТЫ *F*2-СЛОЯ

© 2019 г. М. Г. Деминов^{1,} *, Г. Ф. Деминова¹

¹Институт земного магнетизма, ионосферы и распространения радиоволн им. Н.В. Пушкова РАН (ИЗМИРАН), г. Москва, г. Троицк, Россия

> *e-mail: deminov@izmiran.ru Поступила в редакцию 25.05.2018 г. После доработки 25.05.2018 г. Принята к публикации 27.09.2018 г.

На основе сопоставления скользящих средних за 12 мес. солнечных индексов активности с ионосферным индексом солнечной активности IG_{12} за 1954–2014 гг. даны оценки относительных точностей солнечных индексов как индикаторов солнечной активности для медиан критической частоты F2-слоя за месяц. Эти солнечные индексы есть прежняя (R_{212}) и новая (R_{12}) версии относительного числа солнечных пятен; поток солнечного радиоизлучения на длине волны 10.7 см F_{12} , приведенный к шкале R_{212} , без учета (R_{F12}) и с учетом (R_{12}) дополнительной поправки к этому потоку для низкой солнечной активности. Интервал 1954–2014 гг. охватывает солнечные циклы 19–23 и неполный цикл 24. Получено, что в целом R_{12} точнее R_{212} , индексы R_{F12} и R_{12} точнее индексов R_{212} и R_{12} . Точности индексов R_{F12} и R_{12} совпадают для циклов 19–20. Для циклов 21–24 индекс R_{12} точнее индекса R_{F12} , и это преимущество индекса R_{f12} было особенно отчетливым в циклах 23–24. Индекс R_{f12} отличается от R_{F12} только введением новой дополнительной поправки для низкой солнечной активности. Эта аналитическая поправка была получена из условия минимума среднего отклонения R_{f12} от IG_{12} , что и обеспечило преимущества индекса R_{f12} как наиболее адекватного индикатора солнечной активности для медианы foF2 среди анализируемых солнечных индексов.

DOI: 10.1134/S0016794019020068

1. ВВЕДЕНИЕ

Широко используемые модели, такие как IRI [Bilitza, 2015] или NeQuick [Nava et al., 2008] содержат так называемые карты ITU-R для вычисления медианных за месяц значений критической частоты F2-слоя foF2. Эти карты основаны на пионерских работах [Jones and Gallet, 1962, 1965], в которых представлена специальная техника преобразования данных для получения пространственно-временной картины foF2.

Численные коэффициенты карт ITU-R, характеризующие суточные и географические вариации медиан *foF2* за мес., получены для каждого месяца года и двух уровней солнечной активности: $Rz_{12} = 0$ и $Rz_{12} = 100$. Величина Rz_{12} – среднее за 12 мес. значение относительного числа солнечных пятен, центрированное на данный месяц. Численные коэффициенты карт ITU-R для других значений Rz_{12} можно вычислять на основе линейной интерполяции при дополнительном условии насыщения: $Rz_{12} = 160$, если Rz_{12} больше 160 [ITU-R, 2012].

Карты ITU-R могут быть использованы для долгосрочного прогноза *foF2* на основе прогноза индекса Rz_{12} (см., например, [Zolesi and Cander, 2014]). Согласно рекомендациям ITU-R [1999], индекс Rz_{12} , или как альтернатива среднее за 12 месяцев значение потока солнечного радиоизлучения на длине волны 10.7 см (F_{12}) принят как предпочтительный индекс для использования в прогнозе медиан *foF2* и M(3000)F2 за месяц на всех временных масштабах, поскольку при использовании любого из этих двух индексов будет получен практически эквивалентный результат.

Рекомендованная связь между $R_{z_{12}}$ и F_{12} [ITU-R, 1999]:

$$F_{12} = 63.7 + 0.728Rz_{12} + 8.9 \times 10^{-4}Rz_{12}^2.$$
(1)

Уравнение (1) можно представить в эквивалентном виде

$$R_{\rm F12} = 33.52 \left(85.17 + F_{12}\right)^{1/2} - 408.99, \qquad (2)$$

где R_{F12} есть F_{12} в единицах измерения (в шкале) Rz_{12} . Индексы Rz_{12} и F_{12} можно считать эквивалентными индексами для долгосрочного прогноза ионосферы, если приближенно $R_{F12} = Rz_{12}$ для всего анализируемого интервала времени.

Рис. 1. Зависимости индексов Rf_{12} (сплошная линия) и R_{F12} (штриховая линия) от индекса F_{12} .

На основе анализа данных индексов солнечной активности было найдено, что взаимосвязь между индексами Rz и F сохранялась стабильной в течение приблизительно 25 лет до 2000 г., однако значительно изменилась после 2001 г. [Floyd et al., 2005; Lukianova and Mursula, 2011]. Это означает, что после 2001 г. была нарушена эквивалентность индексов R_{F12} и R_{Z12} , и необходим выбор одного из этих индексов как индикатора солнечной активности для медианы foF2. Другая причина необходимости пересмотра этих индексов связана с тем, что приведенный выше базовый индекс *Rz*₁₂ есть Версия 1.0 этого индекса. С 1 июля 2015 г. исходные данные о числе солнечных пятен заменены новой полностью переработанной серией данных (Версия 2) [Clette et al., 2014, 2015], и Версия 1.0 этого индекса больше не поддерживается. Новый индекс R₁₂ есть Версия 2.0 скользящего среднего за 12 месяцев международного числа солнечных пятен.

Целью данной работы был анализ солнечных индексов R_{F12} , Rz_{12} , Rf_{12} и Ri_{12} с целью выбора оптимального из них как индикатора солнечной активности для медианы *foF2* (новые индексы Rf_{12} и Ri_{12} определены ниже). Для этого солнечные индексы сопоставлены с ионосферным индексом солнечной активности IG_{12} . Ионосферный индекс IG_{12} получен на основе анализа и усреднения данных медиан *foF2* ряда ионосферных станций в полдень как замена индекса Rz_{12} в уравнении

где коэффициенты *а* и *b* вычисляются с помощью ITU-R карт для этих станций (Liu et al., 1983). Ионосферный индекс основан на данных измерений foF2, поэтому он точнее солнечных индексов для медианы foF2 [Liu et al., 1983]. Это учтено в современных версиях модели IRI: индекс IG_{12} является основным индексом солнечной активности для медианы foF2 [Bilitza, 2015]. Поэтому ионосферный индекс можно использовать для выбора наиболее адекватного из солнечных индексов в долгосрочном прогнозе foF2. Результаты решения этой задачи без учета новых солнечных индексов Rf_{12} и Ri_{12} были получены недавно [Деминов, 2016]. Ниже представлены результаты выбора солнечного индекса для медианы foF2 на основе более полного анализа. Этот анализ основан на сопоставлении солнечных и ионосферных индексов в интервале 1948-2014 гг., поскольку регулярные измерения F_{12} начались с 1948 г., а под-держка индекса Rz_{12} была прекращена в конце 2014 г.

2. ИНДЕКСЫ СОЛНЕЧНОЙ АКТИВНОСТИ

Для периодов продолжительной низкой солнечной активности поток солнечного радиоизлучения *F*_{10.7} перестает быть адекватным индикатором крайнего ультрафиолетового излучения Солнца [Chen et al., 2011] и солнечной активности для параметров ионосферы и атмосферы [Lühr and Xiong, 2010; Bilitza et al., 2012; Araujo-Pradere et al., 2013; Solomon et al., 2013; Emmert et al., 2014; Qian et al., 2014; Perna and Pezzopane, 2016]. Индекс R_{F12} дает завышенные значения foF2 для таких периодов, т.е. $R_{F12} > IG_{12}$ [Bilitza et al., 2012]. Одним из простейших способов устранения этого недостатка было использование условия: $R_{F12} = 0$, если *R*_{F12} < 10 [Деминов, 2016]. Другой предлагаемый нами способ основан на введении новой поправки к уравнению (2) для периода низкой солнечной активности:

$$Rf_{12} = 33.52(85.17 + F_{12})^{1/2} -$$

$$- 408.99 - 15\exp(-0.1(F_{12} - 65)),$$
(4)

где Rf_{12} есть F_{12} в шкале Rz_{12} с учетом этой поправки. Данная поправка несущественна для $F_{12} > 100$. Она была определена из условия минимума отклонений Rf_{12} от IG_{12} для периодов низкой солнечной активности в интервале 1954—2014 гг. Более наглядно это видно из данных на рис. 1, которые показывают, что Rf_{12} отличается R_{F12} только при низкой солнечной активности.

Связь между прежней (Rz_{12}) и новой (R_{12}) версиями относительного числа солнечных пятен по данным об этих индексах за 1948—1979 гг.:

$$foF2 = a + bRz_{12},\tag{3}$$

$$Ri_{12} = 0.708R_{12} - 0.3, (5)$$

ГЕОМАГНЕТИЗМ И АЭРОНОМИЯ том 59 № 2 2019

Рис. 2. Новая (*Ri*₁₂, сплошная линия) и прежняя (*Rz*₁₂, штриховая линия) версии относительного числа солнечных пятен и отклонения между ними (*dR*) в 1948–2014 гг. Цифры – номера солнечных циклов.

где Ri_{12} есть R_{12} в шкале Rz_{12} . На рисунке 2 приведены изменения индексов Rz_{12} и Ri_{12} для анализируемого интервала времени. Можно видеть, что в интервале 1948-1979 гг. индексы Rz₁₂ и Ri₁₂ практически совпадают (|dR| < 0.5, где $dR = Ri_{12} - Rz_{12}$). Это означает, что уравнение (4) получено для интервала, когда связь между индексами Rz_{12} и R_{12} практически не зависела от времени. Разница между индексами Rz₁₂ и Ri₁₂ стала зависеть от времени после 1980 г., и максимальная разница между ними наблюдалась в октябре 1988 г. (dR == -14.5) и в апреле 2002 г. (dR = 12.7). Ранее на основе анализа данных для интервала 1957-2014 гг. было получено уравнение регрессии $Rz_{12} = 0.7 Ri_{12}$ [Гуляева, 2016], которое почти не отличается от уравнения (5). В данном случае такое совпадение обусловлено компенсаций сильных положительных и отрицательных отклонений исходных данных от этого уравнения в интервале 1957–2014 гг. (см. рис. 2).

Предварительный анализ показал, что разница между солнечными и ионосферными индексами уменьшится, если дополнительно учесть условия насыщения для солнечных индексов:

$$R_i = R_{\text{max}},$$
если $R_i > R_{\text{max}},$ (6)

где R_j есть Rz_{12} , Ri_{12} , Rf_{12} или R_{F12} , значение R_{max} зависит от времени в годах

> R_{max} = 160 до 1965 г., R_{max} = 150 после 1965 г.

ГЕОМАГНЕТИЗМ И АЭРОНОМИЯ том 59 № 2 2019

Об эффективности введения условий насышения можно судить на примере данных солнечных и ионосферных индексов в максимуме солнечного цикла 19 в 1958 г. В 1958 г. максимальные значения *R*z₁₂ и *R*_{F12} были 201.3 и 200.5 соответственно, что было существенно больше максимальных значений $IG_{12} = 167.8$. Условия насыщения (6) существенно уменьшили разницу между ионосферным и солнечными индексами солнечной активности в максимуме 19-го солнечного цикла. Условия (6) были заметными и для максимумов 21 и 22 солнечных циклов. Отметим, что условия насыщения (6) для Rz_{12} не отличаются от современной [ITU-R, 2012] и прежней [ITU-R, 1999] рекомендаций ITU-R: $R_{\text{max}} = 160$ и $R_{\text{max}} = 150$. Ниже под $R_{z_{12}}$, Ri_{12} , Rf_{12} и R_{F12} будем понимать солнечные индексы, для которых учтены дополнительные условия (6).

1. СРАВНЕНИЕ ИОНОСФЕРНОГО И СОЛНЕЧНЫХ ИНДЕКСОВ

Выбор солнечного индекса для медианы *foF2* основан на оценках отклонений солнечных индексов от ионосферного индекса IG_{12} и поиске индекса, для которого эти отклонения минимальны. В табл. 1 приведены средние квадратические отклонения $\sigma(R_j, IG_{12})$ солнечных индексов от ионосферного индекса для солнечных циклов 19–23 и неполного цикла 24, где R_j есть $R_{z_{12}}, Ri_{12}$,

Солнечные циклы	$\sigma(Rz_{12}, IG_{12})$	$\sigma(Ri_{12}, IG_{12})$	$\sigma(R_{\rm F12}, IG_{12})$	$\sigma(Rf_{12}, IG_{12})$
19 (04.1954–10.1964)	5.0	5.0	5.2	5.2
20 (10.1964–06.1976)	7.4	7.4	4.7	4.7
21 (06.1976–09.1986)	7.0	6.9	5.1	4.5
22 (09.1986–05.1996)	7.1	6.2	5.7	4.8
23 (05.1996-12.2008)	15.0	10.9	8.7	5.7
24 (12.2008–11.2014)	12.3	11.4	7.8	4.7

Таблица 1. Средние квадратичные отклонения σ солнечных индексов Rz_{12} , Ri_{12} , R_{F12} и Rf_{12} от ионосферного индекса IG_{12} для 19–23-го солнечных циклов и неполного 24-го цикла

 R_{F12} или Rf_{12} . Из приведенных в таблице данных следует, что в цикле 19 солнечные индексы эквивалентны, поскольку практически совпадают значения $\sigma(R_j, IG_{12})$ для всех анализируемых солнечных индексов. Для циклов 21–24 выполнены условия

$$\sigma(Rz_{12}, IG_{12}) > \sigma(Ri_{12}, IG_{12}) >$$

$$(7)$$

> $\sigma(R_{F12}, IG_{12}) > \sigma(Rf_{12}, IG_{12})$. Они показывают, что индекс Rf_{12} является самым точным солнечным индексом для медианы *foF2* из анализируемых. Разница между точностями солнечных индексов была особенно существенной в последние десятилетия (в циклах 23–24), когда, на-

пример, отношение $\sigma(Rz_{12}, IG_{12})/\sigma(Rf_{12}, IG_{12}) \approx 2.6$. Точности нового Ri_{12} и старого Rz_{12} индексов, основанных на числе солнечных пятен, практически совпадают для циклов 19–21 (см. табл. 1 и рис. 2). Индекс Ri_{12} точнее Rz_{12} для 22–24-го циклов. Следовательно, в целом индекс Ri_{12} является более точным, чем Rz_{12} , индикатором солнечной активности для медианы *foF2*.

Индексы R_{F12} и Rf_{12} , основанные на солнечном радиоизлучении, точнее индексов Rz_{12} и Ri_{12} , основанных на числе солнечных пятен, для циклов 20–24. Точности индексов R_{F12} и Rf_{12} совпадают для циклов 19–20. Для циклов 21–24 индекс Rf_{12} точнее индекса R_{F12} , и это преимущество индекса Rf_{12} было особенно отчетливым в циклах 23–24. Индекс Rf_{12} отличается от R_{F12} только введением дополнительной поправки для низкой солнечной активности (см. уравнения (2), (4) и рис .1). Приведенные в таблице данные показывают, что введение этой поправки обеспечило преимущества индекса Rf_{12} как наиболее адекватного индикатора солнечной активности для медианы foF2 среди анализируемых солнечных индексов.

Некоторые детали отклонений солнечных индексов от ионосферного индекса видны из данных на рис. 3 и рис. 4. Из этих данных можно видеть, что Ri_{12} точнее Rz_{12} даже в деталях: оба сильных отклонения Ri_{12} от Rz_{12} (уменьшение до dR = -14.5 в 1988 г. и увеличение до dR = 12.7 в 2002 г. на рис. 2) обеспечили уменьшение |dRi| относительно |dRz| в эти периоды. В результате, dRz = 9.1 и dRi = -5.4 в октябре 1988 г., dRz = -33.8 и dRi = -21.1 в апреле 2002 г. (см. рис. 3). Тем не менее, отклонения dRi могут превышать 20, что не позволяет рекомендовать индекс Ri_{12} в качестве индикатора солнечной активности для медианы foF2 в последние десятилетия.

Сравнение данных на рис. 3 и рис. 4 показывает, что индексы, основанные на солнечном радиоизлучении, действительно точнее индексов, основанных на числе солнечных пятен, и эта разница особенно существенна после 1990 г.: |dRf| < 10 и $|dR_{\rm F}| < 17$ для всех без исключения месяцев анализируемого интервала времени (см. рис. 4), |dRi| > 20, |dRz| > 30 в апреле 2002 г. (см. рис. 3). Индекс Rf_{12} точнее индекса $R_{\rm F12}$ из-за учета дополнительной поправки на низкую солнечную активность (см. уравнение (4)), что особенно важно для продолжительного периода низкой солнечной активности в 2008 г., когда в течение всего года 5 < dRf < 8 и 15 < $dR_{\rm F} < 17$.

Итак, индекс Rf_{12} можно рекомендовать в качестве индикатора солнечной активности для долгосрочного прогноза медианы *foF*2 за месяц.

4. ОБСУЖДЕНИЕ

Магнитное поле Солнца является основной причиной изменчивости солнечной активности. включая изменения этой активности с солнечным циклом [Svalgaard and Hansen, 2013; Balogh et al., 2014; Hathaway, 2015]. Это поле отчетливо уменьшалось в течение последних солнечных циклов и, по-видимому, будет продолжать уменьшаться, по крайней мере, до 2020 г. [Janardhan et al., 2015]. С уменьшением магнитного поля Солнца связывают уменьшение амплитуды солнечных циклов [Svalgaard and Hansen, 2013; Balogh et al., 2014; Hathaway, 2015]. Из данных на рис. 3 и рис. 4 можно видеть, что такие изменения максимумов циклов были достаточно отчетливыми и для ионосферного индекса: (IG₁₂)_{max} было примерно равно 152, 146 и 97 для циклов 22, 23 и 24. Значения $(Rf_{12})_{max}$ изменялись аналогично

Рис. 3. Изменения индексов Ri_{12} (сплошная линия), IG_{12} (штриховая линия) и отклонений солнечных индексов от ионосферного индекса (dRi и dRz) в циклах 19–24.

 $(IG_{12})_{\text{max}}$, и отношение $Cf = (Rf_{12})_{\text{max}}/(IG_{12})_{\text{max}}$ было почти постоянным для этих циклов: Cf = 0.99, 1.03, 1.04 для циклов 22, 23 и 24.

Отношение $C = (Rf_{12})_{max}/(Ri_{12})_{max}$ увеличивалось в течение этих циклов: C = 1.00, 1.18, 1.22 для циклов 22, 23 и 24. На основе качественного анализа было получено, что увеличение отношения Rf_{12}/Ri_{12} со временем связано с уменьшением крупномасштабного магнитного поля Солнца, т.е. наблюдаемые для последних солнечных циклов уменьшения значений максимумов солнечных циклов и увеличения отношения C обусловлены одной и той же причиной [Livingston et al., 2012; Svalgaard and Hansen, 2013]. Увеличение от-

ношения *C* при уменьшении магнитного поля Солнца, по-видимому, характерно именно для слабых солнечных циклов. Это позволило утверждать, что Солнце переходит в новый режим низкой активности, который не подкреплен достаточным набором экспериментальных данных, поскольку аналогичный режим, по-видимому, наблюдался более 100 лет назад [Svalgaard and Hansen, 2013]. Одним из следствий нового режима низкой активности Солнца явилось нарушение эквивалентности между индексами Rf_{12} и Ri_{12} для долгосрочного прогноза медианы foF2, что не позволило рекомендовать индекс Ri_{12} для такого прогноза (см. таблицу и данные на рис. 3 и рис. 4).

Рис. 4. Изменения индексов Rf_{12} (сплошная линия), IG_{12} (штриховая линия) и отклонений солнечных индексов от ионосферного индекса (dRf и dR_F) в циклах 19–24.

Новый режим низкой солнечной активности привел также к необходимости перехода от индекса R_{F12} к индексу Rf_{12} , т.е. введения дополнительной поправки к индексу R_{F12} на период низкой солнечной активности (см. уравнения (2) и (4)). Индекс $F_{10.7}$ перестает быть оптимальным индикатором солнечной активности для долгосрочного прогноза медианы *foF2* в периоды продолжительной низкой солнечной активности [Bilitza et al., 2012], и введение дополнительной поправки к индексу R_{F12} позволило в значительной степени нивелировать этот недостаток $F_{10.7}$.

196

Другой вариант учета особенностей низкой солнечной активности для ионосферы связан с использованием солнечных индексов MgII или Lyman- α [Solomon et al., 2013; Perna and Pezzopane, 2016; Sezen et al., 2018]. Так, на основе анализа данных *foF2* на средних широтах было найдено, что MgII является более точным, чем $F_{10.7}$, индикатором солнечной активности для *foF2* в периоды низкой солнечной активности [Perna and Pezzopane, 2016]. Проверка эффективности

использования MgII для ионосферы в периоды высокой солнечной активности может быть предметом будущих исследований.

Возможно, что более точный путь устранения данного недостатка индекса $F_{10.7}$ связан с введением дополнительного индекса солнечной активности, например, использованного в модели нейтральной атмосферы JB2008 [Воwman et al., 2008]. В этой модели в качестве индикатора среднего уровня солнечной активности для параметров термосферы использован индекс

где

$$F_{\rm s} = F_{10}W + S_{10}(1 - W), \qquad (8)$$

$$W = \left(F_{10}/240\right)^{1/4},$$

 F_{10} — среднее за 81 день значение индекса $F_{10.7}$; S_{10} — среднее за 81 день значение потока солнечного излучения на 26—34 нм, приведенное к шкале $F_{10.7}$. Из этого уравнения видно, что при высокой солнечной активности индекс $F_{\rm s}$ почти целиком определяется потоком солнечного радиоизлучения F_{10} . Уменьшение солнечной активности приводит к увеличению относительного вклада S_{10} в $F_{\rm s}$. Тем не менее, относительный вклад S_{10} в $F_{\rm s}$ не превышает 30% даже для экстремально низкой солнечной активности, когда $F_{10} = 64$. Следовательно, в модели ЈВ2008 учтено, что поток солнечного радиоизлучения является достаточно адекватным индикатором среднего уровня солнечной активности для параметров термосферы при средней и высокой солнечной активности, и только для низкой солнечной активности необходим дополнительный учет другого индекса солнечной активности, в данном случае, индекса S_{10} . Уравнение (8) является скорее качественным для продолжительных периодов низкой солнечной активности и показывает только один из возможных вариантов учета особенностей вклада солнечного ультрафиолетового излучения в параметры термосферы. Оценки эффективности введе-

ния такого типа комбинированных индексов в задачах долгосрочного прогноза ионосферы требуют специального рассмотрения и выходят за рамки данной работы.

5. ЗАКЛЮЧЕНИЕ

На основе сопоставления скользящих средних за 12 мес. солнечных индексов активности с ионосферным индексом солнечной активности IG_{12} за 1954—2014 гг. даны оценки относительных точностей солнечных индексов как индикаторов солнечной активности для медиан критической частоты F2-слоя за месяц. Эти солнечные индексы есть прежняя (Rz_{12}) и новая (Ri_{12}) версии относительного числа солнечных пятен; поток солнечного радиоизлучения на длине волны 10.7 см F_{12} , приведенный к шкале Rz_{12} , без учета (R_{F12}) и с учетом (Rf_{12}) дополнительной поправки к этому потоку для низкой солнечной активности. Интервал 1954-2014 гг. охватывает 19-23-й солнечные циклы и неполный цикл 24. Получены следующие выводы:

1. Индексы Rz_{12} и Ri_{12} практически эквивалентны для циклов 19–21. Индекс Ri_{12} точнее Rz_{12} для циклов 22–24. Следовательно, в целом индекс Ri_{12} является более точным, чем Rz_{12} , индикатором солнечной активности для медианы foF2.

2. Точности всех анализируемых солнечных индексов практически совпадают для цикла 19. Индексы R_{F12} и Rf_{12} точнее индексов Rz_{12} и Ri_{12} для циклов 20–24. Следовательно, в целом, индексы, основанные на потоке солнечного радиоизлучения, точнее индексов, основанных на числе солнечных пятен.

3. Точности индексов R_{F12} и Rf_{12} совпадают для циклов 19—20. Для циклов 21—24 индекс Rf_{12} точнее индекса R_{F12} , и это преимущество индекса Rf_{12} было особенно отчетливым в циклах 23, 24. 4. Индекс Rf_{12} отличается от R_{F12} только введением новой дополнительной поправки для низкой солнечной активности. Эта аналитическая поправка была получена из условия минимума среднего отклонения Rf_{12} от IG_{12} , что и обеспечило преимущества индекса Rf_{12} как наиболее адекватного индикатора солнечной активности для медианы foF2 среди анализируемых солнечных индексов.

5. Индекс Ri_{12} (и, тем более, часто используемый индекс Rz_{12}) не может быть рекомендован для вычисления медианы *foF2* для низких солнечных циклов 23 и 24, особенно в максимумах этих циклов.

Данные об индексах солнечной активности были взяты с сайтов http://sidc.oma.be/silco (WDC-SILSO, Royal Observatory of Belgium, Brussels) и http://www.ukssdc.ac.uk/wdcc1 (World Data Center for Solar-Terrestrial Physics, Chilton).

Работа частично поддержана Российским фондом фундаментальных исследований (грант № 17-05-00427) и Программой № 28 Президиума РАН.

СПИСОК ЛИТЕРАТУРЫ

— Гуляева Т.Л. Модификация индексов солнечной активности в международных справочных моделях ионосферы IRI и IRI-Plas в связи с пересмотром ряда чисел солнечных пятен //Солнечно-земная физика. Т. 2. № 3. С. 59–68. 2016.

– Деминов М.Г. Индекс солнечной активности для долгосрочного прогноза ионосферы // Космич. исслед. Т. 54. № 1. С. 3–9. 2016.

- Araujo-Pradere E.A., Buresova D., Fuller-Rowell D.J., Fuller-Rowell T.J. Initial results of the evaluation of IRI hmF2 performance for minima 22–23 and 23–24 // Adv. Space Res. V. 51. No 4. P. 630–638. 2013.

- Balogh A., Hudson H.S., Petrovay K., von Steiger R. Introduction to the solar activity cycle: Overview of causes and consequences // Space Sci. Rev. V. 186. \mathbb{N} 1. P. 1–15. 2014.

- Bilitza D., Brown S.A., Wang M.Y., Souza J.R., Roddy P.A. Measurements and IRI model predictions during the recent solar minimum // J. Atmos. Solar-Terr. Phys. V. 86. P. 99– 106. 2012.

- Bilitza D. The International Reference Ionosphere - Status 2013 // Adv. Space Res. V. 55. № 8. P. 1914–1927. 2015.

– Bowman B.R., Tobiska W.K., Marcos F.A., Huang C.Y., Lin C.S., Burke W.J. A new empirical thermospheric density model JB2008 using new solar and geomagnetic indices // AIAA/AAS Astrodynamics Specialist Conference, AIAA 2008-6438. 2008.

- Chen Y., Liu L., Wan W. Does the F10.7 index correctly describe solar EUV flux during the deep solar minimum of 2007–2009? // J. Geophys. Res. V. 116, A04304. . 2011. doi 10.1029/2010JA016301

- *Clette F., Svalgaard L., Vaquero J.M., Cliver E.W.* Revisiting the sunspot number: a 400-year perspective on the solar cycle // Space Sci. Rev. V. 186. P. 35–103. 2014.

- Clette F., Cliver E.W., Lefèvre L., Svalgaard L., Vaquero J.M. Revision of the Sunspot Number(s) // Space Weather. V. 13. 2015. doi 10.1002/2015SW001264

 Emmert J.T., McDonald S.E., Drob D.P., Meier R.R., Lean J.L., Picone J.M. Attribution of interminima changes in the global thermosphere and ionosphere // J. Geophys. Res. – Space. V. 119. P. 6657–6688. 2014. doi 10.1002/ 2013JA019484

- Floyd L., Newmark J., Cook J., Herring L., McMullin D. Solar EUV and UV spectral irradiances and solar indices // J. Atmos. Solar-Terr. Phys. V. 67 \mathbb{N} 1–2. P. 3–15. 2005.

- Hathaway D.H. The Solar Cycle. Living Rev. //Solar Phys. 12(4). 2015. doi 10.1007/lrsp-2015-4

– ITU-R. Choice of indices for long-term ionospheric predictions // Recommendation ITU-R P. 371-8, International Telecommunication Union, Geneva. 1999.

– ITU-R. ITU-R reference ionospheric characteristics // Recommendation ITU-R P.1239-3, International Tele-communication Union, Geneva. 2012.

- Janardhan P., Bisoi S.K., Ananthakrishnan S., Tokumaru M., Fujiki K., Jose L., Sridharan R. A 20 year decline in solar photospheric magnetic fields: Inner-heliospheric signatures and possible implications // J. Geophys. Res. – Space. V. 120. P. 5306–5317. 2015. doi 10.1002/2015JA021123

– Jones W.B., Gallet R.M. The representation of diurnal and geographic variations of ionospheric data by numerical methods // ITU Telecommun. J. V. 29. P. 129–147. 1962.

– Jones W.B., Gallet R.M. The representation of diurnal and geographic variations of ionospheric data by numerical methods, 2. Control of instability // ITU Telecommun. J. V. 32. P. 18–28. 1965.

- Liu R., Smith P., King J. A new solar index which leads to improved foF2 predictions using the CCIR atlas // Telecommun. J. V. 50. No 8. P. 408-414. 1983. - Livingston W., Penn M.J., Svalgaard L. Decreasing sunspot magnetic fields explain unique 10.7 cm radio flux // Astrophys. J. Lett. V. 757: L8. 2012. doi 10.1088/2041-8205/757/1/L8

– Lukianova R., Mursula K. Changed relation between sunspot numbers, solar UV/EUV radiation and TSI during the declining phase of solar cycle 23 // J. Atmos. Solar-Terr. Phys. V. 73. № 2. P. 235–240. 2011.

– Lühr H., Xiong C. IRI-2007 model overestimates electron density during the 23/24 solar minimum // Geophys. Res. Lett. V. 37, L23101. 2010. doi 10.1029/2010GL045430

- Nava B., Coisson P., Radicella S.M. A new version of the NeQuick ionosphere electron density model // J. Atmos. Solar-Terr. Phys. V. 70. № 15. P. 1856–1862. 2008.

- Perna L., Pezzopane M. foF2 vs Solar Indices for the Rome station: looking for the best general relation which is able to describe the anomalous minimum between cycles 23 and 24 // J. Atmos. Solar-Terr. Phys. V. 148. P. 13–21. 2016.

- *Qian L., Solomon S.C., Roble R.G.* Secular changes in the thermosphere and ionosphere between two quiet Sun periods // J. Geophys. Res. - Space. V. 119. P. 2255-2262. 2014. doi 10.1002/2013JA019438

 Sezen U., Gulyaeva T.L., Arikan F. Performance of solar proxy options of IRI-Plas model for equinox seasons // J. Geophys. Res. – Space. V. 123. P. 1441–1456. 2018. doi 10.1002/2017JA024994

- Solomon S.C., Qian L., Burns A.G. The anomalous ionosphere between solar cycles 23 and 24 // J. Geophys. Res. -Space. V. 118. P. 6524–6535. 2013. doi 10.1002/jgra.50561

- Svalgaard L., Hansen W.W. Solar activity – past, present, future // J. Space Weather Space Clim. V. 3, A24. 2013. doi 10.1051/swsc/2013046

- Zolesi B., Cander L.R. Ionospheric prediction and forecasting. Berlin, Heidelberg: Springer-Verlag, 240 p. 2014.