УДК 537.612

СТРУКТУРА ОБЛАСТЕЙ ВЫСЫПАНИЯ ЭЛЕКТРОНОВ ВЫСОКОЙ ЭНЕРГИИ, ИНЖЕКТИРУЕМЫХ ТОЧЕЧНЫМ ИСТОЧНИКОМ В ГЕОМАГНИТНОЕ ПОЛЕ, ПРЕДСТАВЛЕННОЕ ПЕРВЫМИ ГАРМОНИКАМИ РЯДА ГАУССА

© 2020 г. Е. К. Колесников^{1, *}, Г. Н. Клюшников^{2, **}

¹Санкт-Петербургский государственный университет, г. Санкт-Петербург, Россия ²Петербургский институт ядерной физики им. Б.П. Константинова Национального исследовательского центра "Курчатовский институт" (ПИЯФ), г. Гатчина, Россия *e-mail: e.kolesnikov@spbu.ru **e-mail: g.klyushnikov@spbu.ru Поступила в редакцию 16.09.2019 г. После доработки 20.09.2019 г. Принята к публикации 23.01.2020 г.

Построены области "высыпания" на Землю высокоэнергетических электронов, инжектируемых в ОКП из точечного источника на геостационарной орбите. Геомагнитное поле моделируется суперпозицией первых четырех сферических гармоник ряда Гаусса. Проведено сравнение указанных областей с областями высыпания, построенными ранее для дипольной модели геомагнитного поля. Рассмотрен вопрос о возможном влиянии на конфигурацию областей высыпания поля, создаваемого магнитосферными токами.

DOI: 10.31857/S0016794020030098

1. ВВЕДЕНИЕ

В последние годы в связи с проблемой радиационного загрязнения ближнего космоса заряженными частицами высоких энергий техногенного происхождения большое значение приобрели залачи динамики в геомагнитном поле заряженных частиц высокой энергии, инжектируемых в околоземное космическое пространство (ОКП) на конечном расстоянии от Земли. Источниками указанных частиц, могут являться, в частности, вторичные частицы высоких энергий, генерируемые в материале активных и пассивных орбитальных объектов частицами первичного космического излучения. Потенциальными внутренними источниками частиц высокой энергии являются и космические ускорители высоких энергий, концепции которых разрабатывались как в нашей стране [Панасюк, 1995], так и за рубежом [Varley et al., 1990].

В настоящей работе продолжены исследования конфигурации "областей высыпания" на поверхность Земли электронов высоких энергий, инжектируемых в околоземное космическое пространство (ОКП) точечным источником, начатые в работе [Колесников, 2002]. В отличие от работы [Колесников, 2002], в которой для описания движения электронов в ОКП использовалась простейшая дипольная модель геомагнитного поля, в настоящей работе при построении областей высыпания геомагнитное поле моделируется первыми четырьмя гармониками ряда Гаусса.

2. ПОСТАНОВКА ЗАДАЧИ. АЛГОРИТМ ЧИСЛЕННОГО РЕШЕНИЯ

Рассмотрим точечный источник высокоэнергетических электронов, положение которого задается геоцентрическим расстоянием r, дополнением до широты θ и долготой ϕ в сферической системе координат с началом в центре Земли и полярной осью, совпадающей с географической осью Земли. Как и в [Колесников, 2002], будем определять направления инжекции ј, для которых соответствующая траектория электрона пересекает поверхность Земли, а также "области высыпания", образованные точками пересечения указанных траекторий электронов с поверхностью Земли. Высотой плотных слоев атмосферы, где становится существенным взаимодействие высокоэнергетических электронов с ядрами атомов атмосферы, будем пренебрегать.

n	т	g_n^m , 10 ⁻⁴ Гс	h_n^m , 10 ⁻⁴ Γc
1	0	-2944.2	0
	1	-150.1	479.7
2	0	-244.5	0
	1	301.3	-284.6
	2	167.7	-64.2
3	0	135.1	0
	1	-235.2	-11.5
	2	122.6	24.5
	3	58.2	-53.8
4	0	90.8	0
	1	81.4	28.3
	2	12.0	-18.9
	3	-33.5	18.1
	4	7.0	-33.0

Таблица 1. Значения коэффициентов g_n^m и h_n^m

Для решения поставленной задачи нам потребуется уравнение динамики одиночного электрона в магнитном поле Земли. Запишем это уравнение в виде

$$\frac{d^2\mathbf{r}}{dt^2} = -\frac{e}{m_0\gamma c}\mathbf{v}\times\nabla V,\tag{1}$$

где V — скалярный потенциал геомагнитного поля, **v** — скорость электрона, m_0 и e — соответствен-

но масса покоя и заряд электрона, $\gamma = \sqrt{1 - v^2/c^2} -$ лоренц-фактор, *с* – скорость света.

Представим потенциал геомагнитного поля *V* в виде ряда Гаусса:

$$V = R_E \sum_{n=1}^{\infty} \left(\frac{R_E}{r}\right)^{n+1} \times \\ \times \sum_{m=0}^{n} \left(g_n^m \cos m\varphi + h_n^m \sin m\varphi\right) P_n^m (\cos \theta),$$
(2)

где R_E — радиус Земли, g_n^m и h_n^m — коэффициенты, определяемые по данным магнитных измерений, значения которых для эпохи 1965 г. [Акасофу, Че-пмен, 1974] приведены в табл. 1,

$$P_n^m(\cos\theta) = \begin{cases} \left[2\frac{(n-m)!}{(n+m)!}\right]^{\frac{1}{2}} P_{n,m}(\cos\theta), & 1 \le m \le n, \\ P_{n,m}(\cos\theta), & m = 0 \end{cases}$$

– многочлены Шмидта.

Многочлены Шмидта P_n^m выражаются, в свою очередь, через присоединенные многочлены Лежандра $P_{n,m}$ (см. табл. 2):

$$P_{n,m}(z) = \left(1-z^2\right)^{\frac{m}{2}} \frac{d^m}{dz^m} \left(\frac{1}{2^n n!} \frac{d^n}{dz^n} \left(z^2-1\right)^n\right).$$

Система (1) сводится к системе обыкновенных дифференциальных уравнений первого порядка

$$\begin{cases} \frac{d\mathbf{r}}{dt} = \mathbf{v} \\ \frac{d\mathbf{v}}{dt} = -\frac{e}{m_0 \gamma c} \mathbf{v} \times \nabla V. \end{cases}$$
(3)

Из (2) следуют выражения для компонент вектора $\mathbf{B} = -\nabla V$:

$$B_{r} = -R_{E} \sum_{n=1}^{\infty} \left(\frac{R_{E}}{r}\right)^{n+2} \times \\ \times \sum_{m=0}^{n} \left(g_{n}^{m} \cos m\varphi + h_{n}^{m} \sin m\varphi\right) P_{n}^{m} (\cos \theta), \\ B_{\theta} = -R_{E} \sum_{n=1}^{\infty} \left(\frac{R_{E}}{r}\right)^{n+2} \times \\ \times \sum_{m=0}^{n} \left(g_{n}^{m} \cos m\varphi + h_{n}^{m} \sin m\varphi\right) \frac{dP_{n}^{m} (\cos \theta)}{d\theta}, \\ B_{\varphi} = R_{E} \sum_{n=1}^{\infty} \left(\frac{R_{E}}{r}\right)^{n+2} \times \\ \times \sum_{m=0}^{n} \left(mg_{n}^{m} \sin m\varphi - mh_{n}^{m} \cos m\varphi\right) \frac{P_{n}^{m} (\cos \theta)}{\sin \theta}.$$

$$(4)$$

Систему (3) удобно представить в следующем удобном для численного интегрирования виде:

$$\begin{cases} \frac{dr}{dt} = v_r, \\ \frac{d\theta}{dt} = \frac{v_{\theta}}{r}, \\ \frac{d\phi}{dt} = \frac{v_{\phi}}{r\sin\theta}, \\ \frac{dv_r}{dt} = \frac{e\omega_r}{mc} + \frac{v_{\theta}^2 + v_{\phi}^2}{r}, \\ \frac{dv_{\theta}}{dt} = \frac{e\omega_{\theta}}{mc} - \frac{v_r v_{\theta}}{r} + \frac{v_{\phi}^2 \text{ctg}\theta}{r}, \\ \frac{dv_{\phi}}{dt} = \frac{e\omega_{\phi}}{mc} - \frac{v_r v_{\phi}}{r} + \frac{v_{\phi} v_{\theta} \text{ctg}\theta}{r}, \end{cases}$$
(5)

где $\omega_r = v_{\theta}B_{\phi} - v_{\phi}B_{\theta}, \quad \omega_{\theta} = B_r v_{\phi} - v_r B_{\phi}, \quad \omega_{\phi} = v_r B_{\theta} - v_{\theta}B_r.$

Положим $B_0 = M / R_E^3$ ($M = \sqrt{(g_1^0)^2 + (g_1^1)^2 + (h_1^1)^2} R_E^3 -$ модуль магнитного момента Земли). Перейдем в (5) к безразмерным переменным

$$b_r = \frac{B_r}{B_0}, \quad b_{\theta} = \frac{B_{\theta}}{B_0}, \quad b_{\varphi} = \frac{B_{\varphi}}{B_0}, \quad u_r = \frac{V_r}{c},$$

$$u_{\theta} = \frac{V_{\theta}}{c}, \quad u_{\varphi} = \frac{V_{\varphi}}{c}, \quad \rho = \frac{r}{R_E}, \quad \tau = \frac{ct}{R_E}.$$
(6)

ГЕОМАГНЕТИЗМ И АЭРОНОМИЯ том 60 № 3 2020

В переменных (6) система (5) принимает вид

$$\begin{cases} \frac{d\rho}{d\tau} = u_{r}, \\ \frac{d\theta}{d\tau} = \frac{u_{\theta}}{\rho}, \\ \frac{d\phi}{d\tau} = \frac{u_{\phi}}{\rho\sin\theta}, \end{cases}$$

$$\begin{cases} \frac{du_{r}}{d\tau} = K\Omega_{r} + \frac{u_{\theta}^{2} + u_{\phi}^{2}}{\rho}, \\ \frac{du_{\theta}}{d\tau} = K\Omega_{\theta} - \frac{u_{r}u_{\theta}}{\rho} + \frac{u_{\phi}^{2}\text{ctg}\theta}{\rho}, \\ \frac{du_{\phi}}{d\tau} = K\Omega_{\phi} - \frac{u_{r}u_{\phi}}{\rho} + \frac{u_{\phi}u_{\theta}\text{ctg}\theta}{\rho}. \end{cases}$$

$$(7)$$

где $\Omega_r = u_{\theta}b_{\phi} - u_{\phi}b_{\theta}$, $\Omega_{\theta} = u_{\phi}b_r - u_rb_{\phi}$, $\Omega_{\phi} = u_rb_{\theta} - u_{\theta}b_r$, $K = \operatorname{sign}(e)C_{st}^2/R_E^2$ – безразмерный коэффициент, $C_{st} = \sqrt{\frac{eM}{mvc}} = 1.11 \times 10^8/E_k$ см-штермеровская единица длины, E_k – кинетическая энергия электрона в ГэВ.

Пусть электроны, инжектируемые в околоземное космическое пространство из точечного источника, имеют фиксированное значение кинетической энергии E_k. Направление инжекции j задается углом і с направлением местной вертикали и углом q между проекцией ј на плоскость местного горизонта и местным азимутальным направлением. Выбор углов і и q осуществляется случайным образом в серии из 100000 испытаний с равномерным законом распределения в заданных промежутках $[i_{\min}, i_{\max}]$, $[q_{\min}, q_{\max}]$. Для каждого варианта выборки начальных значений углов і и q производится численное интегрирование уравнений движения (7) разностным методом Рунге-Кутты-Мерсона четвертого порядка с автоматическим выбором длины шага. Расчет траектории проводится до тех пор, пока не оказывается выполненным одно из следующих условий:

1) траектория электрона пересекает сферу радиусом R_E в точке с географическими координатами θ и ϕ , генерируя на поверхности Земли соответствующую точку области высыпания;

2) полная длина расчетного отрезка траектории превышает установленное предельное значение $L_{\text{max}} = 20R_E$; 3) электрон удаляется на геоцентрическое расстояние, превышающее критическое значение $r^* = 10R_E$, с достижением которого дальнейшее движение электрона сопровождается неограниченным монотонным ростом его радиальной координаты.

ГЕОМАГНЕТИЗМ И АЭРОНОМИЯ том 60 № 3 2020

Таблица 2.	Многочлены Лежандра <i>Р_{nm}</i> и их производ-
ные <i>Р</i> ' _{<i>nm</i>}	

n	т	$P_{nm}(\cos\theta)$	$P_{nm}'(\cos\theta)$
1	0	cosθ	$-\sin\theta$
1	1	sin 0	$\cos \theta$
2	0	$3\cos 2\theta + 1$	$3\sin 2\theta$
_		4	2
2	1	$\frac{3\sin 2\theta}{2}$	$3\cos 2\theta$
2	2	$\frac{2}{2}$	3 sin 2A
2	2	$\frac{3(1-\cos 2\theta)}{2}$	5 511 20
3	0	$\frac{2}{5\cos 3\theta + 3\cos \theta}$	$-3(5\sin 3\theta + \sin \theta)$
		8	<u>- 5 (5 sin 50 + sin 0)</u> 8
3	1	$3(\sin\theta + 5\sin 3\theta)$	$3(\cos\theta + 15\cos 3\theta)$
		$\frac{e(\sin \theta + \theta \sin \theta \theta)}{8}$	8
3	2	$15(\cos\theta - \cos 3\theta)$	$15(3\sin 3\theta - \sin \theta)$
		4	4
3	3	$15(3\sin\theta - \sin 3\theta)$	$45(\cos\theta-\cos3\theta)$
		4	4
4	0	$\frac{35\cos 4\theta + 20\cos 2\theta + 9}{2}$	$\frac{-5(7\sin 4\theta + 2\sin 2\theta)}{2}$
		64	16
4	1	$5(2\sin 2\theta + 7\sin 4\theta)$	$\frac{5(\cos 2\theta + 7\cos 4\theta)}{2}$
	•	16	4
4	2	$\frac{15(3+4\cos 2\theta-7\cos 4\theta)}{15(3+4\cos 2\theta-7\cos 4\theta)}$	$\frac{15(7\sin 4\theta - 2\sin 2\theta)}{15(7\sin 4\theta - 2\sin 2\theta)}$
4	2	16	4
4	3	$\frac{105(2\sin 2\theta - \sin 4\theta)}{2}$	$\frac{105(\cos 2\theta - \cos 4\theta)}{2}$
4	4	8	$\frac{2}{105(2 \pm 20)}$
+	+	$\frac{105(3-4\cos 2\theta+\cos 4\theta)}{9}$	$\frac{105(2\sin 2\theta - \sin 4\theta)}{2}$
		8	2

3. ОСНОВНЫЕ РЕЗУЛЬТАТЫ РАСЧЕТОВ

С использованием описанного алгоритма были построены области высыпания на земную поверхность электронов с энергиями 15, 30 и 60 ГэВ в случае нахождения инжектора на геостационарной орбите в точке с нулевой географической широтой и географической долготой 21°. Расчеты проведены для случаев представления геомагнитного поля первой (дипольной) гармоникой и первыми четырьмя гармониками ряда Гаусса. Результаты расчетов представлены на рис. 1–3.

На рисунке 1 показаны области высыпания электронов с энергией $E_k = 15 \ \Gamma \Rightarrow B \ для \ n = 1$ (рис. 1*a*) и n = 4 (рис. 1*б*). Как видно на рис. 1*a*, область высыпания для n = 1 представляет собой участок земной поверхности, локализованный в диапазоне широт $\lambda \in [-49^\circ, 59^\circ]$ и долгот $\varphi \in [18^\circ, 360^\circ]$. В случае аппроксимации геомагнитного поля первыми четырьмя гармониками ряда Гаусса

Рис. 1. Области высыпания электронов с энергией 15 ГэВ: (a) – вид областей для n = 4, (b) – вид областей для n = 1.

Рис. 2. Области высыпания электронов с энергией 30 ГэВ: (a) – вид областей для n = 4, (b) – вид областей для n = 1.

(рис. 16), области высыпания локализованы в диапазоне широт $\lambda \in [-53^\circ, 57^\circ]$ и долгот $\phi \in [33^\circ, 349^\circ]$.

На рисунке 2 представлены области высыпания для $E_k = 30$ ГэВ. Как видно на рис. 2*a*, при *n* = 1 для электронов рассматриваемой энергии область высыпания оказывается локализованной в диапазонах широт [-61°,67°] и долгот [-6°,350°]. При аппроксимации геомагнитного поля первыми четырьмя сферическими гармониками область высыпания локализована в близких диапазонах широт [-67°,79°] и долгот [-6°,346°] (рис. 2*б*).

На рисунке 3 представлены области высыпания для $E_k = 60$ ГэВ. Для n = 1 (рис. 3a) область высыпания локализована в диапазонах широт [$-72^\circ, 79^\circ$] и долгот [$-20^\circ, 203^\circ$]. В случае же n = 4 область высыпания находится на широтах $\lambda \in \in [-67^\circ, 76^\circ]$, и долготах $\varphi \in [-20^\circ, 232^\circ]$.

На рисунках 1–3 видно, что конфигурации областей высыпания электронов при n = 1 и n = 4 качественно являются весьма близкими. Основные отличия указанных областей состоят в следующем. С переходом от случая n = 1 к случаю n = 4 происходит незначительное изменение формы областейвысыпания, а также поворот на малый угол против часовой стрелки. При n = 4 в строении областей высыпания прослеживается четко выраженная асимметрия (отделение "верхней" компоненты при $E_k = 15$ ГэВ, увеличение "нижней" части области при $E_k = 30$ ГэВ).

Имея ввиду, что на высоте инжекции существенный вклад в геомагнитное поле может давать поле магнитосферных токов, для выяснения влияния этого поля на конфигурацию областей высыпания мы провели расчеты областей высыпания в поле, аппроксимируемом эмпирической моделью Цыганенко-87 для эпохи 1965 г. [Цыга-

Рис. 3. Области высыпания электронов с энергией 60 ГэВ: (a) – вид областей для n = 4, (b) – вид областей для n = 1.

ненко и др., 1987], учитывающей вклад в геомагнитное поле поля внешних источников для различных значений глобального планетарного индекса геомагнитной активности K_p. Результаты расчетов показали, что даже при максимальном значении геомагнитного индекса $K_n = 5$ учет поля внешних источников в рассматриваемой задаче не оказывает существенного влияния на конфигурацию областей высыпания электронов с рассматриваемыми высокими значениями энергии 15-60 ГэВ. Физическое объяснение этому явлению состоит в том, что на больших расстояниях от Земли (порядка радиуса геостационарной орбиты), на которых существенным является вклад в геомагнитное поле поля внешних источников. полное геомагнитное поле является слабым и практически не оказывает влияния на траектории инжектируемых электронов высокой энергии. На этих расстояниях, как показывают данные численного моделирования, траектории являются практически прямолинейными. Заметное воздействие геомагнитного поля на траектории начинается с расстояний, значительно меньших радиуса геостационарной орбиты (порядка 2-3 радиусов Земли), на которых основной вклад в геомагнитное поле дает поле внутренних источников.

4. ЗАКЛЮЧЕНИЕ

Установлено, что конфигурации областей высыпания на поверхность Земли электронов высокой энергии, инжектируемых в геомагнитное поле из точечного источника, расположенного на геостационарной орбите, для дипольной модели геомагнитного поля и для геомагнитного поля, представленного суммой первых четырех сферических гармоник ряда Гаусса, являются близкими. Эффект высших гармоник проявляется в определенном изменении формы областейвысыпания, а также в усилении их асимметрии относительно экватора, связанном, в частности, с их поворотомнамалый угол против часовой стрелки. Кроме того, переход от дипольной моделигеомагнитного поля к его аппроксимации первыми гармониками ряда Гаусса приводит к определенному изменению диапазонов широт и долгот, в которых локализованы области высыпания.

С использованием эмпирической модели геомагнитного поля Цыганенко-87 [Цыганенко и др., 1987], учитывающей вклад в геомагнитное поле поля внешних источников, показано, что поле внешних источников в рассматриваемой задаче не оказывает существенного влияния на конфигурацию областей высыпания электронов с рассматриваемыми высокими значениями энергии 15–60 ГэВ.

ФИНАНСИРОВАНИЕ РАБОТЫ

Работа выполнена при поддержке Российского фонда фундаментальных исследований, проект № 18-01-00657, а также при технической поддержке Ресурсного Центра "Вычислительный центр СПбГУ".

СПИСОК ЛИТЕРАТУРЫ

— Акасофу С.И., Чепмен С. Солнечно-земная физика. Ч. 1. М.: Мир, 382 с. 1974.

- Колесников Е.К. Структура областей высыпания электронов высокой энергии, инжектируемых в дипольное магнитное поле Земли точечным источником // Геомагнетизм и аэрономия. Т. 42. № 5. С. 624–630. 2002.

— Колесников Е.К. Влияние авроральных потоков электронов на динамику техногенных микрочастиц в полярной ионосфере // Геомагнетизм и аэрономия. Т. 41. № 2. С. 238–242. 2001.

– Панасюк В.С. Ускорители заряженных частиц из "тролль-проекта" – возможные инструменты для космических исследований // Космич. исслед. Т. 33. № 5. С. 468–473. 1995.

- Сергеев В.А., Цыганенко Н.А. Магнитосфера Земли. М.: Наука. 174 с. 1980.

— Цыганенко Н.А., Усманов А.В., Папиташвили В.О. и др. Пакет программ для расчётов геомагнитного поля и связанных с ним координатных систем. М.: Межведомственный Геофизический Комитет при Президиуме АН СССР. 58 с. 1987. - Lemaitre G., Vallatra M.S. On Compton's latitude effect of cosmic radiation // Phys. Rev. V. 43. № 2. P. 87–91. 1933.

- *Stormer C*. The Polar Aurora. London-New-York: Oxford University press. 437 p. 1955.

- Vallatra M.S. On the allowed cone of cosmic radiation // Phys. Rev. V. 50. \mathbb{N} 6. P. 493–504. 1936.

- Varley R., Hohlfeld R.G., Sansri G., Lovelace G., Cercignani C. Particle accelerators in high earth orbit // Nuovo Cim. B. V. 105. № 1. P. 23–29. 1990.