УДК 551.510.523.98

РАСЧЕТ СКОРОСТИ ИОНИЗАЦИИ В АТМОСФЕРЕ В ПОЛЯРНОЙ ОБЛАСТИ ВО ВРЕМЯ СОЛНЕЧНЫХ ПРОТОННЫХ СОБЫТИЙ

© 2020 г. Е. А. Гинзбург^{1,} *, А. А. Криволуцкий², А. А. Куколева², И. Н. Мягкова^{2, 3}

¹Институт прикладной геофизики им. акад. Е.К. Федорова Росгидромета (ИПГ), г. Москва, Россия ²Центральная аэрологическая обсерватория (ЦАО), г. Долгопрудный, Россия

³Московский государственный университет им. М.В. Ломоносова, Научно-исследовательский институт ядерной физики им. Д.В. Скобельцына (НИИЯФ МГУ), г. Москва, Россия *e-mail: e_ginzburg@mail.ru Поступила в редакцию 16.03.2020 г. После доработки 23.04.2020 г. Принята к публикации 21.05.2020 г.

Представлены результаты сравнительного анализа потоков и спектров солнечных протонов, измеренных в сентябре 2017 г. на ИСЗ, имеющих разные орбиты, ЭЛЕКТРО-Л № 2, GOES 13 и МЕТЕОР-3 № 2, а также результатов моделирования скорости ионизации в полярной атмосфере на основе данных указанных экспериментов. Установлено, что спектры протонов по данным российских и американского космических аппаратов достаточно близки друг к другу и имеют экспоненциальный характер. Проведенные расчеты скорости ионизации полярной атмосферы по данным трех указанных экспериментов показали близкие результаты, за исключением малых высот.

DOI: 10.31857/S0016794020050077

1. ВВЕДЕНИЕ

Как известно, солнечные протоны (или протоны солнечных космических лучей — протоны СКЛ), ускоренные до высоких энергий в верхней части атмосферы Солнца во время солнечных вспышек, проникающие в атмосферу Земли в высоких широтах, т.е. в области полярных шапок, вызывают ее ионизацию и, таким образом запускают целую цепочку химических реакций, приводящих к временному изменению химического состава атмосферы.

Вклад протонов СКЛ в изменении химического состава атмосферы можно оценить исходя из теоретических оценок скоростей образования дополнительных окислов азота и водорода вследствие ионизации полярной атмосферы частицами (см. более подробно работу [Криволуцкий и Репнев, 2009]).

Впервые механизм воздействия протонов СКЛ плазмы на полярную атмосферу был сформулирован в работах [Porter et al., 1976; Solomon and Crutzen, 1981], которые, в свою очередь, появились благодаря результатам измерений стратосферного озона со спутника Nimbus-4 [Heath et al., 1977], обнаруживших разрушение озона в северной полярной области после сильной протонной вспышки на Солнце в августе 1972 г. Поскольку мониторинговых экспериментов по измерению скорости ионизации атмосферы Земли в настоящее время не проводится, моделирование указанных процессов в атмосфере Земли, основанное на экспериментальных данных о потоках и спектрах протонов СКЛ, полученных в экспериментах на космических аппаратах (КА) является актуальной задачей. Также на сегодняшний день актуально иметь возможность проводить такое моделирование, основываясь на данных исключительно российских КА.

2. СРЕДСТВА ДЛЯ НАБЛЮДЕНИЯ ПРОТОНОВ СКЛ НА РОССИЙСКИХ КОСМИЧЕСКИХ АППАРАТАХ НА ПОЛЯРНОЙ И ГЕОСТАЦИОНАРНОЙ ОРБИТАХ

До настоящего времени при рассмотрении эффектов воздействия солнечных протонов на атмосферу Земли в качестве основных источников данных о потоках протонов СКЛ используются данные с американских спутников серии GOES. Также для солнечных протонных событий (СПС) 23-го цикла солнечной активности, происходивших с 2001 по 2005 гг., был предпринят ряд успешных попыток моделирования изменений в атмосфере и озоносфере Земли по данным солнечной обсерватории КОРОНАС-Ф (прибор

МКЛ – монитор солнечных космических лучей). КОРОНАС-Ф был выведен на круговую полярную орбиту 31.07.2001 г. Начальная высота орбиты спутника составляла 500 км, наклонение ~82.5°, период обращения ~95 мин. Научная информация о потоках энергичных частиц поступала с 14.07.2002 г. по 26.06.2005 г. В течение периода работы ИСЗ КОРОНАС-Ф высота его орбиты уменьшалась от 500 до 370 км. С помощью данных, полученных на КОРОНАС-Ф, были смоделированы изменения в озоносфере Земли из-за ионизации высокоширотной атмосферы солнечными протонами в ноябре 2001 г. в результате солнечного протонного события 4 ноября 2001 г. [Мягкова и Криволуцкий, 2017], а также серий солнечных протонных событий октября-ноября 2003 г. [Криволуцкий и др., 2004] и января 2005 [Мягкова и Криволуцкий, 2017].

К настоящему времени имеется довольно длинный и однородный ряд измерений потоков солнечных протонов на отечественных спутниках, в первую очередь на полярных спутниках МЕТЕОР на высотах ~800–900 км, а с 2011 г. – на геостационарных спутниках ЭЛЕКТРО. Большая часть измерений осуществляется в диапазоне энергий от нескольких МэВ до нескольких десятков МэВ, а в трех интегральных каналах черенковского счетчика на КА МЕТЕОР и ЭЛЕКТРО регистрируются протоны с энергиями более 600, 800 МэВ.

В таблице 1 приведены диапазоны энергий в МэВ в тех протонных каналах на КА МЕТЕОР и ЭЛЕКТРО и GOES, которые использовались в настоящей работе.

Из таблицы видно, что первые 3 канала на КА ЭЛЕКТРО полосовые. Полагая спектр в солнечных протонных событиях степенным с показателем |ү| > 1 можно с некоторой степенью точности простым сложением превратить полосовые каналы в "квазиинтегральные". На рисунке 1 показано, какую долю может составлять поток протонов

Таблица 1. Диапазоны энергий (МэВ) в протонных каналах на спутниках МЕТЕОР, ЭЛЕКТРО и GOES

METEOP-3 № 2	ЭЛЕКТРО-Л № 2	GOES 13
10-160	9–20	>10
>15	20-40	>30
>25	40-100	>50
>600	>600	>60
>800	_	>100

в полосе энергий от E_1 до $E_2 - J(E_1, E_2)$ от интегрального потока протонов с энергиями от E_1 до $\infty - J(\geq E_1)$ в зависимости от $|\gamma|$. Из приведенных на этом рисунке графиков следует, что в полосе энергий от 9 до 100 МэВ сосредоточено не менее 90% потока протонов с энергией более 9 МэВ даже при редко встречающемся жестком спектре с $|\gamma| = 1$. Поэтому такой канал в большинстве случаев можно рассматривать как интегральный. В противоположность этому, в канале 40-100 МэВ может содержаться не более 60-70% от интегрального потока протонов с энергией более 40 МэВ, т.е. информационные потери довольно велики. Поэтому этот канал принимал участие в формировании "квазиинтегральных" каналов с пороговыми энергиями 9 и 20 МэВ для ЭЛЕКТРО, но в качестве самостоятельного канала не рассматривался.

Очевидно, что канал 10—160 МэВ на КА МЕТЕОР можно рассматривать как интегральный с нижним порогом 10 МэВ даже с большим основанием, чем канал 9—100 МэВ на КА ЭЛЕКТРО.

3. СОЛНЕЧНЫЕ ПРОТОННЫЕ СОБЫТИЯ В СЕНТЯБРЕ 2017 г.

По данным с упомянутых выше КА были рассмотрены солнечные протонные события (СПС) начала сентября 2017 г.

Мощный очень резкий всплеск солнечной активности в начале сентября 2017 г. (на спаде 24-го цикла солнечной активности СА) был связан с быстрым развитием на видимом диске большой группы пятен АО 12673 [Yang et al., 2017]. За период с 4 по 11 сентября 2017 г. произошло 4 вспышки Х-класса, в том числе самая мощная в 24-м цикле вспышка 6 сентября – класса (по GOES) X9.3, 27 вспышек класса М и многочисленные вспышки С-класса. Все эти вспышки происходили на западной половине диска Солнца, в результате чего параметры потоков солнечных протонов слабо зависели от гелиодолготы вспышки. По данным коронографа LASCO, установленном на спутнике SOHO, не менее трех вспышек (класс М5.5 4 сентября, класс Х9.3 6 сентября и класс Х8.2 10 сентября) сопровождались мощными корональными выбросами масс типа "гало".

Авторами настоящей работы был проведен сравнительный анализ временны́х изменений и спектров потоков протонов в этих событиях (рис. 2 и 3). Общее СПС состояло из четырех следующих одно за другим протонных событий. Времена, когда были достигнуты максимальные значения потоков в каждом из событий, показаны стрелками на нижнем графике на рис. 2.

Как видно из рис. 2, после вспышки 4 сентября класса М5.5 существенно сильнее возросли потоки младших каналов во всех трех экспериментах.

Рис. 1. Отношение части спектра протонов в полосе энергий от E_1 до $E_2 - J(E_1, E_2)$ к интегральному потоку протонов $J(>E_1)$ в зависимости от показателя спектра.

Это означает, что у первого СПС (оно отмечено на рис. 2 римской цифрой I) энергетический спектр протонов был очень мягким – индекс интегрального степенного энергетического спектра $J(>E) \propto E^{-\gamma}$, который рассчитывается из отношения потоков с E > 10 и 100 МэВ при $\gamma = = lg[J(>10)/J(>100)]$, оказывается $\gamma \sim 3.0$.

В последующие дни поток протонов при E > 10 M эВ оставался повышенным, а 6 сентября на фоне этого потока произошло увеличение потока протонов более высоких энергий -Ep > 50 и 100 МэВ – где $J(>50) \sim 2$ рfu и $J(>100) \sim 0.6$ pfu. Из этого следует, что это СПС, второе по счету в данной серии (на рис. 2 отмечено римской цифрой II), характеризовалось довольно жестким спектром протонов. Оценка по потокам протонов в двух указанных выше энергетических каналах (>50 и >100 МэВ) дает спектральный показатель $\gamma \sim 1.7$ [Chertok, 2018].

Источник СПС, отмеченного на рис. 2 римской цифрой III, начавшегося около полуночи с 7 на 8 сентября, не столь очевиден, как у двух предыдущих СПС. Вероятно, что им явилась вспышка класса МЗ.9, произошедшая в этой же АО 12673. Сказать о спектре этого СПС что-то определенное затруднительно, поскольку одновременно с протонами от вспышки примерно в это же время до орбиты Земли долетел КВМ, связанный с упомянутой ранее вспышкой класса X9.3 6 сентября, вызвал магнитную бурю Dst = -124 нТл и характерный рост потоков протонов с энергиями 10–30 МэВ, ускорившихся на ударной волне. Но поскольку в данном СПС наблюдались и протоны с энергиями 100 МэВ, то считать КВМ полностью ответственным за данное возрастание, скорее всего, ошибочно.

Наиболее мощным в этой серии оказалось последнее, четвертое СПС, которое началось 10 сентября (на рис. 2 отмечено римской цифрой IV). Его источником стала длительная вспышка класса X8.2, произошедшая вблизи западного лимба, куда за это время переместилась активная область АО 12673. Характеристики и параметры этого СПС типичны для мощных западных протонных вспышек. Поток протонов начальной быстрой компоненты в этом случае достиг $J(>10) \sim 1000$ pfu. После небольшого последующего увеличения он медленно спадал в течение пяти-семи (в зависимости от энергии протонов) дней. Поток быстрой компоненты в каналах E > 50 и 100 МэВ также был значительным J(>50) ~ 130 pfu и J(>100) ~ 40 pfu. Это указывает на то, что его энергетический спектр был несколько жестче, чем во втором СПС, и имел показатель степени у ~ 1.4 [Chertok, 2018].

Рис. 2. Временной ход потоков протонов СКЛ во время протонных событий в сентябре 2017 г. по результатам измерений на спутниках ЭЛЕКТРО-Л № 2, МЕТЕОР-З № 2 и GOES 13.

Из представленных на нижних графиках рис. 3 спектров протонов в моменты времени T_1 и T_2 (моменты достижения максимальных значений потоков протонов наибольших энергий во 2-м и 4-м) видно, что показания приборов с трех КА согласуются между собой — все точки хорошо ло-

жатся на степенные спектры с показателями жесткости спектров γ_1 и γ_2 , близкими к приведенными в статье [Chertok, 2018].

Таким образом, можно считать вполне оправданным рассчитывать скорость ионизации возду-

ГЕОМАГНЕТИЗМ И АЭРОНОМИЯ том 60 № 5 2020

Рис. 3. Временной ход потоков протонов СКЛ во время протонных событий в сентябре 2017 г. По данным отдельных каналов на спутниках ЭЛЕКТРО-Л № 2, МЕТЕОР-3 № 2 и GOES13 (верхний график) и спектры протонов в моменты времени T_1 и T_2 (нижние графики). На верхнем графике эти моменты показаны вертикальными пунктирными линиями.

ха в полярных областях отдельно по данным каждого из спутников с последующим сравнением результатов расчетов.

4. РЕЗУЛЬТАТЫ РАСЧЕТОВ СКОРОСТЕЙ ИОНООБРАЗОВАНИЯ В ПОЛЯРНОЙ АТМОСФЕРЕ ПОД ДЕЙСТВИЕМ ПРОТОНОВ СКЛ В СЕНТЯБРЕ 2017 г.

Для расчетов скорости ионизации была использована методика, описанная в работе [Vitt and Jackman, 1996].

Результаты расчетов представлены на рис. 4 в виде контуров скорости ионизации в координатах время—высота над поверхностью Земли.

Видно хорошее согласие и по временному ходу скорости ионизации, раздельно рассчитанной по данным каждого из трех KA, и по распределению по высоте скорости ионизации в каждый момент времени.

Из рисунка 4 хорошо видно, что при моделировании скорости ионизации по данным всех трех экспериментов прослеживаются четыре максимума на высоте ~60 км, и наиболее значимым, как и ожидалось, является четвертый — отклик на наиболее мощное СПС данной серии.

Для более уверенной оценки, в том числе и количественной, результатов расчета скорости ионизации, мы стали строить зависимости скорости ионизации от высоты для каждого момента времени и временной ход скорости ионизации для каждой высоты. Примеры таких построений приведены на рис. 5 и 6 соответственно. Моменты времени T_1 и T_2 на этих рисунках те же, что и

Рис. 4. Контуры скорости ионизации, рассчитанные по данным со спутников ЭЛЕКТРО, МЕТЕОР и GOES. На нижней панели приведен временной ход потоков СКЛ по данным GOES13 (геостационарная орбита) для верификации результатов расчетов.

на рис. 3. Видно хорошее совпадение высотных распределений скорости ионизации в максимумах потоков протонов с наибольшими энергиями во 2-м и 4-м протонных событиях. То же самое можно сказать и о временном ходе скорости ионизации на высоте 64 км — близкой к высоте, где скорость ионизации достигает наибольших значений. Расхождению расчетов по данным

Рис. 5. Высотный ход скорости ионизации в моменты времени T_1 и T_2 по данным измерений протонов на спутниках ЭЛЕКТРО, МЕТЕОР и GOES.

Рис. 6. Временной ход скорости ионизациина высоте *H* = 64 км по данным измерений протонов на спутниках ЭЛЕКТРО, МЕТЕОР и GOES.

ЭЛЕКТРО и МЕТЕОР с кривой, полученной по данным GOES после 8-го и 14-го сентября 2017, то есть в периоды, когда потоки протонов СКЛ были малы или отсутствовали, связаны с различием фонового счета приборов в указанных экспериментах.

5. ЗАКЛЮЧЕНИЕ

В настоящей работе представлены результаты расчетов скорости ионизации в полярной атмосфере, вызванной солнечными протонами в период мощных протонных событий первой декады сентября 2017 г., выполненные по данным с различных искусственных спутников Земли, имеющих разные орбиты — ЭЛЕКТРО-Л № 2, GOES 13 и МЕТЕОР-З № 2. Показано, что и экспериментальные данные о протонах и спектрах солнечных протонов и результаты моделирования скорости ионизации по данным всех трех экспериментов удовлетворительно согласуются между собой.

Таким образом, можно сделать предварительное заключение, что отечественные данные спутника METEOP можно использовать для расчетов скорости ионизации в полярной атмосфере и для последующих расчетов фотохимических процессов с использованием трехмерной глобальной транспортной фотохимической модели тропосферы и средней атмосферы.

ФИНАНСИРОВАНИЕ РАБОТЫ

Исследование солнечных протонных событий И.Н. Мягковой выполнено при поддержке гранта Российского научного фонда (проект № 16-17-00098-П).

СПИСОК ЛИТЕРАТУРЫ

- Криволуцкий А.А., Куминов А.А., Вьюшкова Т.Ю., Кузнецов С.Н., Мягкова И.Н. Изменения в озоносфере Земли, вызванные ионизацией высокоширотной атмосферы солнечными протонами в октябре 2003 г. // Космич. исслед. V. 42. № 6. С. 653–662. 2004.

- Криволуцкий А.А., Репнев А.И. Воздействие космических факторов на озоносферу Земли. М.: ГЕОС. 384 с. 2009.

– Мягкова И.Н., Криволуцкий А.А. Мониторинг солнечных протонных событий на высотах до 1000 км –

данные российских космических экспериментов. Эффекты солнечных протонов в озоносфере Земли // Геомагнетизм и аэрономия. Т. 57. № 6. С. 724–735. 2017.

- Heath D.F., Kruger A.J., Crutzen P.J. Solar proton event: influence on stratospheric ozone // Science. V. 197. P. 886-889. 1977.

- *Chertok I.M.* Diagnostic analysis of the solar proton flares of September 2017 by their radio bursts // Geomagn. Aeronomy. V. 58. № 4. P. 457–463. 2018. https://doi.org/10.1134/S0016793218040035

- Porter Y.S., Jackman C., Green A.F.S. Efficiences for pro-

duction of atomic nitrogen and oxygen by relativistic proton impact in air // J. Chem. Phys. V. 65. P. 154–167. 1976.

- Solomon S., Crutzen P. Analysis of the August 1972 solar proton event including chlorine chemistry // J. Geophys. Res. V. 86. P. 347–351. 1981.

- Vitt F.M., Jackman C.H. A comparison of sources of odd nitrogen production from 1974 through 1993 in the Earth's middle atmosphere as calculated using a two-dimensional model //J. Geophys. Res. V. 101. № D3. P.6729–6739. 1996.

- Yang S., Zhang J., Zhu X., Song Q. Block-induced complex structures building the flare-productive solar active region 12673 // Astrophys. J. Lett. V. 849. № 2. ID L21. 2017.