УДК 523.62-72

РАЗЛИЧИЯ В ДИНАМИКЕ АСИММЕТРИЧНОЙ ЧАСТИ МАГНИТНОГО ВОЗМУЩЕНИЯ В ПЕРИОДЫ МАГНИТНЫХ БУРЬ, ИНДУЦИРОВАННЫХ РАЗНЫМИ МЕЖПЛАНЕТНЫМИ ИСТОЧНИКАМИ

© 2020 г. Л. А. Дремухина^{1, *}, Ю. И. Ермолаев^{2, **}, И. Г. Лодкина²

¹Институт земного магнетизма, ионосферы и распространения радиоволн им. Н.В. Пушкова РАН (ИЗМИРАН), г. Москва, Россия ²Институт космических исследований РАН (ИКИ РАН), г. Москва, Россия *e-mail: lidadrem@yandex.ru **e-mail: yermol@iki.rssi.ru Поступила в редакцию 14.03.2020 г. После доработки 28.04.2020 г. Принята к публикации 21.05.2020 г.

Анализируются различия в динамике асимметричной части геомагнитного возмущения на средних и низких широтах в интервалы магнитных бурь, инициированных разными межпланетными источниками. Для анализа используются значения индексов SYM-H, ASY-H и Dst из базы данных OMNI в периоды 58 интенсивных магнитных бурь с $-270 \le Dst_{min} \le -90$ нТл, зарегистрированных в 1995-2017 гг. и инициированных одной из структур солнечного ветра : области сжатия во взаимодействующих разно-скоростных потоках CIR; межпланетные CME (ICME), включающие магнитные облака МС и "поршни" Ејесtа; области сжатия Sheath перед ICME. Идентификация межпланетных источников проводилась на основе Каталога крупномасштабных структур солнечного ветра (см. сайт (ftp://ftp.iki.rssi.ru/pub/omni/)). Для анализа был использован двойной метод наложенных эпох с опорными моментами в начале бури и во время Dst_{min}. Показано, что при бурях, инициированных Sheath, значения ASY-H, в среднем, на 40% выше, чем для бурь остальных групп, а его максимум опережает наступление Dst_{min} на ~3 ч при Sheath-бурях и на 1–2 ч при МС-бурях, что может свидетельствовать о более интенсивном и неравномерном поступлении энергии в эти периоды. Предполагается, что такое поступление энергии может обеспечиваться потоком протонов с энергиями >10 МэВ, наблюдаемых на геостационарных КА GOES, возрастающим более чем на два порядка в интервалы Sheath-бурь по сравнению с бурями остальных групп.

DOI: 10.31857/S0016794020060036

1. ВВЕДЕНИЕ

Исследование магнитных бурь и связанных с ними процессов передачи энергии из солнечного ветра (СВ) в магнитосферу, ионосферу и верхнюю атмосферу Земли является важным для понимания физической картины солнечно-земных связей. Установлено, что магнитные бури развиваются при подходе к Земле возмущенных структур СВ, в которых может формироваться южная составляющая межпланетного магнитного поля (ММП) *Вz*. С поворотом *Вz* ММП к югу в результате процесса пересоединения межпланетного и геомагнитного полей происходит усиление поступления энергии СВ в магнитосферу и, как следствие этого, усиление имеющихся и генерация новых токовых систем, приводящих к возмущению спокойного геомагнитного поля [Dungey, 1961]. Несмотря на то, что общие связи между параметрами плазмы СВ и ММП и магнитосферной активностью за последние полвека достаточно

хорошо изучены [Russell et al., 1974; Burton et al., 1975; Perrault and Akasofu, 1978; Akasofu, 1983; Gonzalez et al., 1994; Gonzalez and Echer, 2005], остается не до конца ясным вопрос о зависимости геомагнитной возмущенности, в частности магнитных бурь, от типа их межпланетных источников (драйверов).

Согласно каталога крупномасштабных структур СВ [Ермолаев и др., 2009], в нем можно выделить геоэффективные (возмущенные) структуры двух видов: ICME (магнитные облака МС и "поршни" Ејесtа) и сжатые потоки СВ, включающие области сжатия между медленным и быстрым потоками СВ (CIR) и области компрессии Sheath перед быстрыми МС и Ејесtа. Эти типы СВ обладают геоэффективностью, так как могут включать в себя длительную южную *Bz* ММП [Gonzalez at al., 1999; Gosling and Pizzo, 1999; Сгооker, 2000; Bothmer, 2004]. Уже не подлежит сомнению, что различия межпланетных источников, приводящих к магнитным бурям, с разными физическими характеристиками, размерами и распределением параметров плазмы и ММП внутри них могут приводить к различию в магнитосферном отклике, в том числе в развитии магнитных бурь [Borovsky et al., 2006; Huttunen et al., 2006; Pulkkinen et al., 2007; Ермолаев и др., 2007, 2010, 2011; Николаева и др., 2012а, 2012б, 2017; Yermolaev et al., 2014; Despirak et al., 2018; Дремухина и др., 2019; Бороев и Васильев, 2020, и ссылки в них].

Различия в отклике магнитосферы на разные геоэффективные межпланетные источники обычно рассматриваются на основе анализа геомагнитных индексов, характеризующих интенсивность разных магнитосферных токовых систем. Чаще анализируются различия в зависимости между геоэффективными параметрами СВ и высокоширотными (AE, AU, AL) и низкоширотными (Dst, Kp) индексами для пар межпланетных источников, таких как СМЕ- и СІR-события [см., например, Borovsky et al., 2006; Plotnikov and Barkova, 2007; Longden et al., 2008; Boroev and Vasiliev, 2018; Вогоеч, 2019; Бороев и Васильев, 2020 и ссылки в них]. При этом используются разные критерии при определении источников магнитных бурь. Так в работе [Borovsky et al., 2006], в которой обсуждается 21 различие в магнитосферных проявлениях при MC- и CIR-бурях, такие как плотность и температура плазменного слоя, формирование новых радиационных поясов, степень искажения (вытягивания) дипольного геомагнитного поля в хвостовой части магнитосферы и т.п., к МС-бурям отнесены все бури, связанные со структурами MC, Ejecta и Sheath, а к CIRбурям — с рекуррентными высокоскоростными потоками. В работе [Plotnikov and Barkova, 2007] рассматриваются бури, инициированные только магнитными облаками МС и высокоскоростными потоками CIR, и получена линейная зависимость максимальных значений |Dst| и AE от электрического поля СВ (Еу) на главной фазе для СІR-бурь и нелинейная для МС-бурь. В отличие от упомянутой выше, в работе [Boroev, 2019] была получена линейная зависимость средних (за главную фазу) значений АЕ от среднего Еу как для CIR- так и для MC-бурь. При этом к MC были отнесены транзиентные события ICME, а к CIR – высокоскоростные потоки. В работе [Despirak et al., 2018] были проанализированы магнитосферные суббури разных видов, развивающиеся на широтах от авроральных ~70° и выше (так называемые "expanded"), и наблюдаемые на геомагнитных широтах >70° ("polar") и было установлено, что первые наблюдаются преимущественно в интервалы высокоскоростных потоков и областей сжатия CIR, а вторые — в интервалы медленных потоков и при пересечениях гелиосферного токового слоя. В работе [Дремухина и др., 2019]

были проанализированы четыре группы бурь с разными межпланетными источниками, определенными на основе каталога крупномасштабных структур CB [Ермолаев и др., 2009], и показано, что для всех групп бурь существуют заметные различия в динамике индексов геомагнитной активности, характеризующих разные широтные зоны земной поверхности (*Dst, ар, AE* и *PC*). При этом различия в абсолютных значениях геомагнитных индексов при развитии магнитных бурь, инициированных разными источниками, больше для низкоширотных индексов, в то время как динамика более разнообразна для высокоширотных индексов.

Кроме обычно используемых индексов АЕ, Dst, Kp в отдельных работах анализируются также долготно-асимметричный АЅУ-Н и симметричный *SYM-H*-индексы, введенные относительно недавно для описания среднеширотной возмущенности геомагнитного поля с высоким временным разрешением (1 или 5-минут) [Iyemori T., 1990]). Значения этих индексов определяются по одноминутным значениям компонент геомагнитного поля, полученных на 6-ти магнитных станциях, равномерно распределенных по долготе в интервале геомагнитных широт от -46.22° до 49.75° (включая 4 станции, по данным которых вычисляется индекс *Dst*). В физическом смысле индекс SYM-H аналогичен индексу Dst [Sugiura and Poros, 1971] и рассчитывается как среднее значение возмущений на всех 6-ти станциях, полученных после вычитания из них значений главного магнитного поля Земли и спокойной солнечно-суточной вариации Sq (которые определяются по 5 спокойным дням каждого месяца). Различие состоит в том, что индекс SYM-H имеет 1-минутное разрешение и определяется по данным другого набора станций. Аналогично индекс ASY-H подобен предложенной в работе [Kawasaki and Akasofu, 1971] среднечасовой DS-вариации и определяется как разность между максимальным и минимальным значениями возмущений, зарегистрированными на выбранных станциях, после вычитания из них симметричной части SYM-H. Таким образом, индексы SYM-H и ASY-H являются количественными характеристиками симметричной и несимметричной частей наблюдаемого среднеширотного магнитного возмущения.

Индексы *SYM-H* и *ASY-H* чаще используются при анализе отдельных бурь без учета их межпланетного источника [Фельдштейн и др., 1993; Feldstein et al., 1994; Соловьев и др., 2005; Бархатов и др., 2008]. Авторы [Фельдштейн и др., 1993; Feldstein et al., 1994] на примере нескольких бурь пришли к выводу, что долготная асимметрия вариаций поля, наблюдаемых во время магнитных бурь (*ASY-H*), обусловлена эффектами продольных токов и величина *ASY-H* более чувствительна к вариациям геоэффективных параметров CB,

РАЗЛИЧИЯ В ДИНАМИКЕ АСИММЕТРИЧНОЙ ЧАСТИ

Sheath				МС			
дата	UT	<i>Dst</i> _{min} , нТл	длит. ГФ, ч	дата	UT	<i>Dst</i> _{min} , нТл	длит. ГФ, ч
06.11.1997	23	-110	6	18.10.1995	20	-127	4
26.05.2000	01	-147	8	21.04.1997	12	-107	12
19.09.2000	19	-201	5	13.11.1998	05	-131	17
12.11.2000	07	-95	6	22.09.1999	20	-173	4
11.04.2001	15	-271	9	29.10.2000	20	-126	8
18.04.2001	01	-114	6	22.04.2001	03	-102	13
17.08.2001	13	-105	9	01.09.2004	06	-129	17
30.09.2001	22	-148	11	07.01.2005	14	-93	13
21.10.2001	16	-187	6	29.05.2005	22	-113	16
28.10.2001	03	-157	9	12.06.2005	17	-106	8
24.11.2001	06	-221	11	14.12.2006	21	-162	11
23.03.2002	16	-100	18	25.04.2012	17	-120	12
01.08.2002	23	-102	7	07.01.2015	08	-99	4
17.01.2005	23	-103	10	08.09.2015	22	-98	15
15.05.2005	03	-247	6	15.10.2016	07	-103	11
24.08.2005	07	-184	5	27.05.2017	22	-125	10
05.08.2011	19	-115	9	08.09.2017	11	-124	7
Ejecta				CIR			
дата	UT	<i>Dst</i> _{min} , нТл	длит. ГФ, ч	дата	UT	<i>Dst</i> _{min} , нТл	длит. ГФ, ч
14.03.1995	23	-90	11	26.03.1995	06	-107	12
25.06.1998	11	-101	6	07.04.1995	02	-149	17
09.11.1998	00	-142	18	24.10.1996	21	-105	8
12.08.2000	20	-105	11	10.03.1998	10	-116	11
20.08.2002	17	-106	14	13.01.1999	11	-112	13
03.10.2002	11	-146	22	11.05.2002	11	-110	9
12.02.2004	10	-93	8	23.05.2002	17	-109	6
15.10.2012	01	-90	7	03.09.2002	19	-109	11
28.06.2013	14	-102	17	14.10.2002	04	-100	10
18.02.2014	16	-119	17	21.11.2002	02	-128	8
				31.08.2005	12	-122	8
				01.06.2013	01	-124	8
				07.10.2015	02	-124	21
				08.03.2016	16	-98	6

Таблица 1. Список магнитных бурь с $-271 < Dst_{min} < -90$ нТл с указанием даты, время UT начала главной фазы (ГФ), максимальной интенсивности *Dst_{min}* и длительности ГФ для 4-х типов межпланетных источников

особенно к *Bz* ММП, чем симметричная часть кольцевого тока. Статистически исследовались различия в отклике в *SYM-H* и *ASY-H* во время магнитных бурь, инициированных MC и Sheath-областями, в работах [Huttunen et al., 2006; Pulkkinen et al., 2007]. В них на основании поведения магнитных индексов *SYM-H* и *ASY-H* в периоды 28 бурь, (по 14 для каждого источника), зарегистрированных с 1997 по 2002 гг., авторы пришли к

выводу, что бури, вызванные Sheath-событиями, связаны с большей асимметричностью кольцевого тока, чем магнитные бури, вызванные MC-событиями. С использованием тех же данных в работе [Huttunen et al., 2006] было установлено, что области Sheath приводят к более сильной авроральной активности, в то время как драйверы типа MC вызывают более интенсивное развитие кольцевого тока. Однако, в работе [Бороев и Васильев, 2020] на основе корреляционного анализа связи индекса *ASY-H* с межпланетными параметрами в периоды бурь, индуцированных CIR и MC, сделан вывод, что тип межпланетного источника бури никак не влияет на динамику *ASY-H*.

Таким образом, вопрос о влиянии типа межпланетного источника бури на ее развитие до настоящего времени ясен не до конца.

Цель настоящей работы — установить возможные различия в развитии главной фазы магнитных бурь в зависимости от их межпланетного источника на основе среднеширотных индексов *SYM-H* и *ASY-H*, характеризующих симметричную и асимметричную части геомагнитных возмущений, а также проанализировать возможные причины таких различий. В работе мы используем классификацию возмущенных структур CB, основанную на данных Каталога (ftp://ftp.iki.rssi.ru/pub/omni/) и статьи [Ермолаев и др., 2009].

2. ДАННЫЕ И МЕТОД АНАЛИЗА

В таблице 1 приведен список используемых для анализа магнитных бурь, в котором указаны дата и время UT их начала, максимальная интенсивность *Dst*_{min} и длительность главных фаз. Таблица 1 состоит из двух частей, из которых верхняя содержит данные для бурь, инициированных Sheath- и MC-областями CB, а нижняя относится к Ejecta- и CIR-бурям.

Для анализа были использованы среднечасовые значения индексов ASY-H, SYM-H, Dst, и AL, B_{Z} ММП, а также потоков протонов с энергиями >10 МэВ (F), полученные по данным геостационарных KA GOES, представленные в базе данных OMNI (http://omniweb.gsfc.nasa.gov) [King and Papitashvili, 2004]. Среднечасовые значения АЅҮ-Н, SYM-Н и F были получены усреднением 5-мин данных. 58 отобранных для анализа интенсивных магнитных бурь с $-271 \le Dst_{min} \le -90$, зарегистрированных за период 1995-2017 гг., были разделены на четыре группы в зависимости от их межпланетного источника: области CIR; ICME, включающие MC и Ejecta; области сжатия Sheath. Сложные бури с многоступенчатой главной фазой, для которых трудно определяется их межпланетный источник, или он определяется как составной из нескольких типов СВ, из анализа были исключены (как правило, это интенсивные бури с $Dst_{min} \le -200$ нТл). Из-за небольшого числа соответствующих критериям отбора бурь в анализ было включено несколько бурь с Dst_{min} от -90 до -100 нТл и одна с $Dst_{min} = -271$ нТл. По той же причине при анализе не проводилось разделение на бури, инициированные событиями Sheath перед MC и Sheath перед Ejecta, и учет наличия или отсутствия внезапного начала SSC на предварительной фазе бури. Источник считался однозначно определенным, если магнитная буря начиналась в его интервале и ее главная фаза заканчивалась не ранее, чем за 2 часа до окончания интервала этого источника. В настоящей работе мы используем только *Dst*-индекс, не рассматривая отдельно, из-за ограниченного объема статьи, исправленный на вклад токов магнитопаузы индекс *Dst**, который, как правило, повторяет временной ход *Dst*. Как показано в работе [Yermolaev et al., 2010], результаты по динамике параметров не обнаруживают заметных различий при использовании *Dst* и *Dst**, хотя и отличаются по величине.

К выбранным данным был применен двойной метод наложенных эпох (ДМНЭ) с двумя опорными моментами в часы UT начала резкого понижения $Dst(t_0)$ и достижения $Dst_{min}(t_m)$ [Yermolaev et al., 2010]. Моменты начала и окончания главных фаз бурь определялись на основе динамики Dst. Нормализованная длительность главной фазы бури полагалась равной 8 ч, что соответствует средней длительности главной фазы для бурь, инициированных Sheath-событиями. Моменты t_0 и t_m всех временны́х рядов совмещались, а интервал между временами t₀ и t_m подразделялся на 7 под-интервалов. Во временных рядах с длительностью более 8 ч временная шкала сжималась до 8 ч, а в рядах с длительностью меньше 8 ч растягивалась. Проведенная процедура означает, что для реальных данных временная шкала в интервале времен $t_0 = 0$ и $t_m = 7$ изменилась линейным образом. Временные шкалы для данных до момента t₀ и после момента t_m оставались неизменными. Использование ДМНЭ позволило получить усредненную динамику анализируемых параметров для магнитных бурь, имеющих разные длительности главных фаз. Однако, так как используемый метод предполагает определенные допущения, можно говорить лишь о тенденциях в тех или иных временных вариациях исследуемых параметров.

3. РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЕ

Полученные результаты представлены ниже на 6 рисунках и обсуждаются в разделах 3.1–3.4.

3.1. Временные профили 5-мин индексов SYM-H и ASY-H и потоков протонов с энергиями >10 МэВ

На рисунке 1 представлены примеры типичных временны́х профилей 5-мин значений индексов *SYM-H* и *ASY-H* и потоков *F* в интервалы магнитных бурь 21.11.2002 г., 24.11.2001 г., 29.10.2000 г. и 12.02.1004 г., инициированных структурами CIR, Sheath, MC и Ејесtа, соответственно. Нижние панели представлены в логарифмическом масштабе. Вертикальные линии на каждом рисунке показывают момент Dst_{min}. Характер вариаций *SYM-H* и *ASY-H* для всех 4-х бурь похож, но во время Sheath-бури (рис. 16) вариации ASY-H имеют сильно изрезанный вид и их возрастание заметно опережает понижение SYM-H. Существенные различия можно видеть в вариациях потоков энергичных протонов: во время бури 24.11.2001 г., вызванной Sheath-структурой, этот поток почти на 4 порядка выше, чем во время остальных трех бурь. Незначительное возрастание потока протонов наблюдалось и во время бури 29.10.2000 г., инициированной МС. По нашим оценкам такие возрастания регистрировались в ~82% случаев (14 из 17) Sheath-бурь, в ~12% случаев (2 из 17) МС-бурь, в ~7% (1 из 14) СІК-бурь и отсутствовали при Ејесtа-бурях.

3.2. Временные профили индексов АЅУ-Н и ЅҮМ-Н

На рисунке 2 представлены временные профили среднечасовых индексов ASY-H и SYM-H, приведенные к одинаковой длительности главной фазы бури (8 ч). Серыми линиями показаны распределения для индивидуальных бурь, а черной жирной линией – профили ASY-H и SYM-H, усредненные по всем бурям в каждой группе согласно их межпланетным источникам: CIR, Sheath, MC и Ejecta. Вертикальными линиями отмечены моменты начала t₀ и окончания t_m главной фазы. По оси абсцисс отложено время эпохи t_э от момента t_0 . В целом динамика *АSY-H* и *SYM-H* индексов для всех групп бурь аналогична, за исключением того, что "средняя" Sheath-буря почти в полтора раза интенсивнее остальных по SYM-Н и по ASY-Н индексам. Нарастание асимметрии (индекса ASY-H) в течение главной фазы Sheath-бури происходит быстрее и заметно опережает рост поля симметричного тока по сравнению с бурями остальных групп. Интенсивность как асимметричной, так и симметричной частей магнитного поля кольцевого тока тесно связана с потоком энергии, поступающей в магнитосферу из СВ, который определяется величиной электрического поля CB Ey = vBz [Gonzalez et al., 1994; Kane, 2005]. Несмотря на то, что МС-структуры обладают более интенсивной Bz-составляющей ММП по сравнению с Sheath и близкими значениями скорости, поступление энергии в магнитосферу может усиливаться при Sheath-событиях за счет возрастания динамического давления и уровня флуктуаций плазмы СВ и ММП, и усиления ускорения и спорадической асимметричной инжекции энергичных ионов из плазменного слоя во внутреннюю магнитосферу.

3.3. Сопоставление Dst, ASY-H и SYM-H c Bz MMП и AL

На рисунках 3 и 4 приводится сопоставление усредненных значений Bz-составляющей ММП, как геоэффективного параметра CB, индекса AL, характеризующего авроральную возмущенность, и индексов Dst, ASY-H и SYM-H для тех же 4-х групп бурь, объединенных по их межпланетным источникам. CIR- и Sheath-события представлены на рис. 3, а МС- и Ејесtа-события на рис 4. Вертикальными штриховыми линиями отмечены моменты начала t_0 и окончания t_m главной фазы. Вертикальными отрезками показаны стандартные отклонения. На нижних панелях обоих рисунков приведены временные профили значений потоков протонов с энергиями E > 10 M эВ, регистрируемые на геосинхронных KA GOES в интервалы анализируемых бурь. Тонкими линиями показаны профили для индивидуальных бурь, а жирной черной линией – "средние" профили. Значения *Bz* ММП близки для выбранных наборов бурь, за исключением МС-событий, при которых он незначительно интенсивнее (на ~3 нТл). Тем не менее, при Sheath-бурях авроральная активность (индекс AL) начинает возрастать почти сразу с началом главной фазы бури и достигает более высоких значений по сравнению с другими бурями. Исключение составляют МС-бури, при которых рост AL происходит почти также как при Sheath. При практически одинаковых значениях $B_Z MM\Pi \sim 10 HT$ л (для MC-бурь несколько больших) индексы Dst, ASY-H и SYM-H при Sheath-coбытиях на ~40% превосходят их значения для трех остальных наборов бурь. Динамика индексов Dst и *SYM-H* практически идентична для всех бурь. Их максимальные значения наступают одновременно и близки по амплитуде. Это свидетельствует о том, что оба индекса характеризуют один и тот же физический процесс, но на разных временных масштабах, и согласно современным представлениям характеризуемое ими буревое возмущение (Dst) может быть представлено в виде суммы вкладов кольцевого тока DR, токового слоя хвоста магнитосферы DT и токов на магнитопаузе DCF [например, Калегаев, 2010].

Такой вывод отличается от полученного в работе [Соловьев и др., 2005], в которой рассматриваются интенсивные сложные бури 29, 30 октября и 20 ноября 2003 г. и сделан вывод, что *SYM-H* характеризует возмущенность геомагнитного поля на более высоких по сравнению с *Dst* широтах и его источником скорей всего является не кольцевой ток, а восточные токи на магнитопаузе и замыкающие их ионосферные токи DP2 токовой системы. Возможно, это справедливо для очень интенсивных бурь с *Dst* < -300 нТл, во время которых магнитопауза на дневной стороне приближается к Земле на близкие расстояния.

Рис. 1. Примеры временны́х профилей индексов *SYM-H* и *ASY-H* и потоков протонов с энергией >10 МэВ в интервалы магнитных бурь 21.11.2002 г. (*a*), 24.11.2001 г. (*б*), 29.10.2000 г. (*в*) и 12.02.2004 г. (*г*), инициированных структурами CIR, Sheath, МС и Ejecta.

Из нижних панелей рис. 3 и 4 следует, что потоки энергичных протонов F в интервалы Sheathбурь возрастают, в среднем, на несколько порядков (достигая значений ~ 10^3 р (см² с ср)⁻¹ и более). Более слабые возрастания потоков (в среднем, до ~10 р (см² с ср)⁻¹ регистрируются в интервалы

Рис. 2. Временны́е профили индексов *SYM-H* и *ASY-H* для индивидуальных бурь (серые линии) и после применения ДМНЭ (черная линия) для магнитных бурь, инициированных источниками CIR (*a*), Sheath (*b*), MC (*b*) и Ejecta (*c*).

МС- и CIR-бурь и отсутствуют при Ејесtа- бурях. Как было указано в разделе 3.1, возрастания F регистрировались в ~82%, ~12% и ~7% случаев Sheath-, МС- и CIR- бурь, соответственно. Регистрируемые во внутренней магнитосфере потоки энергичных протонов преимущественно в интервалы Sheath-бурь могут быть связаны с проникновением в магнитосферу СКЛ, ускоренных как во вспышке, так и в ударной волне и на неоднородностях быстро распространяющегося во фронте коронального выброса Sheath.

Сравнительная средняя динамика индекса ASY-H для всех типов бурь приведена на рис. 5, из которого хорошо видно, что ASY-H ведет себя поразному в зависимости от типа межпланетного источника бури. При Sheath-бурях ASY-H достигает своих максимальных значений и начинает уменьшаться при еще развивающемся кольцевом токе за ~3 ч до момента Dst_{min} . Отчасти это относится и к MC-бурям, но для них максимум ASY-H имеет пологий характер и спад значений ASY-H начинается приблизительно за ~1–2 ч до Dst_{min} .

совпадают. Подобное опережение в развитии асимметричной части по сравнению с симметричным кольцевым током было отмечено ранее [см. например, Feldstein et al., 1993; Бархатова, 2013 и ссылки в них], но без учета типа источника бури. Из проведенного нами анализа следует, что такое опережение зависит от типа межпланетного источника бури. По мнению авторов [Pullkkinen et al., 2007] в результате перестройки силовых линий геомагнитного поля (его сильного вытягивания) при скачках динамического давления СВ, характерных для Sheath-структур, ионы, дрейфующие к Земле из плазменного слоя, попадают в зону квазизахвата на незамкнутые силовые линии и не попадают на круговую орбиту кольцевого тока. Возможно, в результате этого формируются (или усиливаются) локальные токовые системы, в том числе частичный кольцевой ток, связанный с токами авроральной зоны системой продольных токов в вечерне-полуночном секторе. Этим объясняется и возрастание авроральной активности

При CIR- и Ejecta- бурях максимумы ASY-H и Dst

Рис. 3. Временны́е профили *Bz*-составляющей ММП, индексов *AL*, *Dst*, *SYM-H*, *ASY-H* и потока протонов с энергиями >10 МэВ для интервалов магнитных бурь, инициированных структурами CIR (*a*) и Sheath (*б*).

Рис. 4. То же, что на рис. 3, для магнитных бурь, инициированных МС и Ejecta.

_____ 48 ________,ч

36

24

12

 t_m

0.01

 $\dot{0}$ t_0 12

 t_m

 AL, HT_{Π}

Dst, YM-H, ASY-H, нТл

F, (cm² c cp)⁻¹

0.01

 $\dot{0}$ t_0 _____ 48 ________,ч

24

36

Рис. 5. Усредненная динамика индекса ASY-H для четырех групп магнитных бурь с источниками Sheath (сплошная черная линия), МС (линия с кружками). CIR (штриховая линия) и Ејеста (серая линия).

раньше начала главной фазы бури, и отражение его в динамике индекса ASY-H.

3.4. Относительные вклады ASY-H и SYM-H

Для оценки динамики в ходе бури относительного вклада асимметричной части в симметричный кольцевой ток для всех наборов бурь были рассчитаны отношения R = |ASY-H|/|SYM-H| за 5 ч, предшествующих минимуму Dst_{min}. Результаты представлены на рис. 6, где по оси абсцисс отложено время в часах, отсчитываемое от Dst_{min} (время $t_{\rm m}$) назад.

Оценки показали, что для всех бурь число точек со значениями R > 1, составляет ~(49-57)% (значения *R* приведены на рис. 6 в правом нижнем углу каждой панели. Аналогичные оценки, проведенные в работе [Huttunen et al., 2006] с использованием 14 Sheath- и 14 МС-бурь, показали, что во время MC-бурь преимущественно R < 1(83% событий), в то время как в интервалы

Рис. 6. Распределения отношения |ASY-H|/|SYM-H| во время главных фаз магнитных бурь с источниками CIR (a), Sheath (δ), MC (β) и Ejecta (ϵ). На оси абсцисс отложено время в часах, предшествующее минимуму Dst_{min} (время t_m).

737

Sheath-бурь преимущественно R > 1 (68% событий). Расхождение между результатами можно объяснить как недостаточной статистикой. так и особенностями идентификации межпланетных источников магнитных бурь. Несмотря на то, что по нашим оценкам соотношение между асимметричной и симметричной частями буревого магнитного возмущения практически не зависит от типа бури, из рис. 6 следует, что имеются различия в динамике этого соотношения. Для более интенсивных бурь, инициированных Sheath и МС, количество точек с R > 1 начинает возрастать за 3 ч до максимума бури, а для бурь, инициированных CIR и Ejecta, это происходит на два часа позже, почти в максимуме бури. Такая динамика R = |ASY-H|/|SYM-H| отражает динамику ASY-H.

4. ЗАКЛЮЧЕНИЕ

В работе проведен анализ динамики индексов SYM-Н и ASY-Н, определяющих степень симметрии и асимметрии геомагнитного возмущения на средних широтах, для 58 интенсивных магнитных бурь с $-271 < Dst_{min} < -90$ нТл, зарегистрированных за 1995–2017 гг., инициированных разными межпланетными источниками. При анализе был использован двойной МНЭ с опорными временами в моменты начала главной фазы бури и минимума Dst_{min}. В качестве источников магнитных бурь рассматривались следующие крупномасштабные типы солнечного ветра: CIR (14 событий); Sheath перед MC и Ejecta, объединенные в одну группу (17 событий); МС (17 событий) и Ejecta (10 событий). В результате анализа было установлено следующее.

Для всех групп магнитных бурь, независимо от их межпланетного источника, индекс *SYM-H* ведет себя аналогично индексу *Dst*, их максимумы наступают одновременно, а амплитуды имеют близкие значения, что свидетельствует о едином источнике магнитных возмущений, характеризуемых этими индексами.

Динамика индекса *АSY-H*, характеризующего асимметричную часть средне- и низкоширотного геомагнитного возмущения, зависит от типа межпланетного источника магнитной бури. Рост индекса ASY-H опережает понижение Dst индекса и достигает максимума на ~3 ч раньше Dst_{min} при Sheath-событиях и на ~1-2 ч раньше при МС-событиях, в то время как при CIR- и Ejecta-событиях время максимума индекса ASY-H совпадает с Dst_{min}. Такая динамика индекса ASY-H может быть результатом сильного вытягивания силовых линий геомагнитного поля при скачках динамического давления CB, характерного для Sheathструктур, и в меньшей степени для МС, при котором ионы, дрейфующие к Земле из плазменного слоя, попадают в зону квазизахвата на незамкнутые силовые линии и не участвуют в формировании кольцевого тока, а формируют частичный кольцевой ток, связанный продольными токами вечерне-полуночного сектора с токами авроральной зоны. При этом возрастание авроральной активности происходит раньше начала главной фазы бури, что отражается в динамике индекса *ASY-H*.

Значения индекса ASY-H в интервалы магнитных бурь, инициированных Sheath-событиями, в среднем, на ~40% превышают его значения в интервалы бурь от трех других межпланетных источников при аналогичных геоэффективных условиях в СВ, что свидетельствует о более интенсивном поступлении энергии во внутреннюю магнитосферу при бурях, инициированных Sheath-событиями. Такое поступление может быть следствием усиленного ускорения ионов в плазменном слое магнитосферы на неоднородностях проникающей в магнитосферу плазмы Sheath-структур, и неравномерной по долготе инжекции ускоренных ионов во внутреннюю магнитосферу. Это подтверждается возрастаниями потоков энергичных протонов, регистрируемых преимущественно в интервалы Sheath-индуцированных бурь.

Распределения отношения R = |ASY-H|/|SYM-H|, характеризующего относительные вклады асимметричной и симметричной частей возмущения, в предшествующий максимуму бури 5-часовой интервал, не зависит от типа межпланетного источника бури и имеет значения R > 1 и R < 1 приблизительно равное число часов.

Однако в динамике *R* имеются различия в зависимости от типа бури: при более интенсивных бурях, инициированных Sheath и MC, количество точек с R > 1 начинает возрастать за 3 ч до максимума бури, а для бурь, инициированных CIR и Ејесtа, это происходит на два часа позже, перед максимумом бури. Этот результат отличается от полученного в работе [Huttunen et al., 2006] для аналогичной оценки отношения R = |ASY-H|/|SYM-H| для Sheath- и MC-бурь, которое для MC-бурь преимущественно R < 1, а для Sheath-бурь преимущественно R > 1. Возможно, что такое расхождение связано с разным подходом при отборе бурь по их источникам.

Резкие возрастания (до двух и более порядков) потоков протонов с энергией >10 МэВ регистрировались на КА GOES в интервалы, соответствующие в ~82% случаев Sheath-бурям, в ~12% случаев МС-бурям, в ~7% случаев CIR-бурь и отсутствовали в интервалы Ејесtа-бурь, что свидетельствует о более интенсивном ускорении ионов и их инжекции из плазменного слоя во внутреннюю магнитосферу преимущественно при подходе к Земле Sheath-структур CB, для которых характерен высокий уровень флуктуаций магнитного поля и плазменных параметров. Полученные результаты показывают, что при развитии главной фазы магнитной бури, когда имеется значительная асимметрия кольцевого тока, динамика индекса *ASY-H* обнаруживает заметные различия в зависимости от типа межпланетного источника бури: инжекция частиц в кольцевой ток при подходе к Земле Sheath-структур начинается раньше и имеет более неравномерный вид, чем для остальных межпланетных драйверов.

5. БЛАГОДАРНОСТИ

Авторы выражают благодарность анонимному рецензенту за полезные замечания, позволившие улучшить качество статьи. Авторы также выражают благодарность за возможность использования базы данных OMNI (http://omniweb.gsfc.nasa.gov).

ФИНАНСИРОВАНИЕ РАБОТЫ

Работа поддержана Российским фондом фундаментальных исследований, проект № 19-02-00177а.

СПИСОК ЛИТЕРАТУРЫ

– Бархатов Н.А., Левитин А.Е., Церковнюк О.М. Анализ связи индексов, характеризующих симметричный SYM и асимметричный ASY кольцевой ток, с индексами активности авроральных электроструй AE (AU, AL) // Геомагнетизм и аэрономия. Т. 48. № 4. С. 520–525. 2008.

– Бархатова О.М. Нелинейная связь авроральных (AU, AL) и среднеширотных (SYM-H и ASY-H) индексов геомагнитной активности на главной фазе магнитной бури // Солнечно-земная физика. Вып. 23. С. 100–108. 2013.

– Бороев Р.Н., Васильев М.С. Связь индекса ASY-H с параметрами межпланетной среды и авроральной активности на главных фазах магнитных бурь во время событий СІR и ІСМЕ // Солнечно-земная физика. Т. 6. № 1. С. 43–50. 2020.

– Дремухина Л.А., Ермолаев Ю.И., Лодкина И.Г. Динамика межпланетных параметров и геомагнитных индексов в периоды магнитных бурь, инициированных разными типами солнечного ветра // Геомагнетизм и аэрономия. Т. 59. № 6. С. 683–695. 2019.

– Ермолаев Ю.И., Ермолаев М.Ю., Николаева Н.С, Лодкина И.Г. Статистическое исследование гелиосферных условий, приводящих к магнитным бурям // Космич. исслед. Т. 45. № 6. С. 489–498. 2007.

– Ермолаев Ю.И., Николаева Н.С., Лодкина И.Г., Ермолаев М.Ю. Каталог крупномасштабных явлений солнечного ветра для периода 1976–2000 гг. // Космич. исслед. Т. 47. № 2. С. 99–113. 2009.

– Ермолаев Ю.И., Лодкина И.Г., Николаева Н.С., Ермолаев М.Ю. Статистическое исследование влияния межпланетных условий на геомагнитные бури // Космич. исслед. Т. 48. № 6. С. 499–515. 2010.

— Ермолаев Ю.И., Лодкина И.Г., Николаева Н.С., Ермолаев М.Ю. Статистическое исследование влияния межпланетных условий на геомагнитные бури. 2. Вариации параметров // Космич. исслед. Т. 49. № 1. С. 24–37. 2011.

– Калегаев В.В. Динамические модели геомагнитного поля // Солнечно-земная физика. Вып. 16. С. 60–69. 2010.

— Николаева Н.С., Ермолаев Ю.И., Лодкина И.Г. Зависимость геомагнитной активности во время магнитных бурь от параметров солнечного ветра для разных типов течений. 2. Главная фаза бури // Геомагнетизм и аэрономия. Т. 52. № 1. С. 31–40. 2012а.

– Николаева Н.С., Ермолаев Ю.И., Лодкина И.Г. Зависимость геомагнитной активности во время магнитных бурь от параметров солнечного ветра для разных типов течений. З. Развитие бури // Геомагнетизм и аэрономия. Т. 52. № 1. С. 41–52. 20126.

– Николаева Н.С., Ермолаев Ю.И., Лодкина И.Г. Зависит ли генерация магнитной бури от типа солнечного ветра? // Геомагнетизм и Аэрономия. Т. 57. № 25. С. 555–561. 2017.

- Соловьев С.И., Бороев Р.Н., Баишев Д.Г., Макарова Е.С., Моисеев А.В., Потапов А.С., Енгебретсон М., Юмото К. Развитие суббуревых и низкоширотных геомагнитных возмущений в периоды супермагнитных бурь 29, 30 октября 2003 г. и 20 ноября 2003 г. // Солнечно-земная физика. Вып. 8. С. 132–134. 2005.

— Фельдитейн Я.И., Дремухина Л.А., Вещезерова У.Б., Гольшев С.А., Кизирия Л.В., Графе А. Моделирование вариаций геомагнитного поля в период интенсивной магнитной бури // Геомагнетизм и аэрономия. Т. 33. № 6. С. 58–66. 1993.

- Akasofu S.-I. Solar-wind disturbances and the solar wind-magnetosphere energy coupling function // Solar Space Sci. Rev. V. 34. P. 173–183. 1983.

- Borovsky J. E., Denton M.H. Differences between CME-Driven Storms and CIR-Driven Storms // J. Geophys. Res. V. 28. P. 121–190. 2006.

– Boroyev R.N. Relationship between substorm activity and the interplanetary medium parameters during the main phase of strong magnetic field // Adv. Space Res. V. 63. P. 302–308. 2019.

- Boroyev R.N., Vasiliev M.S. Substorm activity during the main phase of magnetic storms induced

by the CIR and ICME events // Adv. Space Res. V. 61. P. 348–354. 2018.

- Bothmer V. The solar and interplanetary causes of space storms in solar cycle 23 // IEEE Transactions on Plasma Science. V. 32. N_{2} 4. P. 1411–1414. 2004.

- Burton R. K., McPherron R. L., Russell C. T. An empirical relationship between interplanetary conditions and Dst // J. Geophys. Res. V. 80. P. 4204–4214. 1975.

- *Crooker N.U.* Solar and heliospheric geoeffective disturbances // J. Atmosp. Solar-Ter. Physics. V. 62. P. 1071-1085. 2000.

- Despirak I.V., Lubchich A.A., Kleimenova N.G. High-latitudes magnetic substorms under different types of the solar wind large-scale structure // Sun and Geosphere. V. 13. N° 1. P. 57–61. 2018.

– Dungey J.W. Interplanetary magnetic field and the auroral zone // Phys. Rev. Lett. № 6. P. 47–48. 1961.

ГЕОМАГНЕТИЗМ И АЭРОНОМИЯ том 60 № 6 2020

- Feldstein Ya.I., Levinin A.E., Golyshev S.A., Dremukhina L.A., Vestchezerova U.B., Valtchuk T.E., Grafe A. Ring current and auroral electrojets in connection with interplanetary medium parameters during magnetic storms // Ann. Geoph. V. 12. № 7. P. 602–611. 1994.

- Gonzalez W.D., Jozelyn J.A., Kamide Y., Kroehl H.W., Rostoker, G., Tsurutani, B. T., Vasyliunas V.M. What is a geomagnetic storm? // J. Geophys. Res. V. 899. № A4. P. 5771–5777. 1994.

- Gonzalez W.D., Tsurutani B.T., Clua de Gonzalez A.L. Interplanetary origin of geomagnetic storms // Space Sci. Rev. V. 88. P. 529–562. 1999.

 Gonzalez W.D., Echer E. A study on the peak Dst and peak negative Bz relationship during intense geomagnetic storms // Geophys. Res. Lett. V. 32. L18103. 2005. https://doi.org/10.1029/2005GL023486

- Gosling J.T., Pizzo V.J. Formation and evolution of corotating interaction regions and their three-dimensional structure // Space Sci. Rev. V. 89. P. 21–52. 1999.

- Huttinen K.E.J., Koskinen H.E.J., Karinen A., Mursula K. Asymmenric development of magnetic storms during magnetic clouds and sheath regions // Geophys. Res. Lett. V. 33. L06107. 2006.

https://doi.org/10.1029/2005GL024894

- *Iyemori T.* Storm-time magnetospheric currents inferred from midlatitude geomagnetic field variation // J. Geomagn. Geoelectr. V. 42. P. 1249–1265. 1990.

 Kane R.P. How good is the relationship of solar and interplanetary plasma parameters with geomagnetic storms? // J. Geophys. Res. V. 110. A022B. 2005. doi JA010799. https://doi.org/10.1029/2004

- Kawasaki K., Akasofu S.-I. Low-latitude DS component of geomagnetic storm field // J. Geophys. Res. V. 76. P. 2396-2405. 1971. - *King J.H., Papitashvili N.E.* Solar wind spatial scales in and comparisons of hourly Wind and ACE plasma and magnetic field data // J. Geophys. Res. V. 110. A02209. 2004. https://doi.org/10.1029/2004JA010804

- Longden N., Denton M. H., Honary F. Particle precipitation during ICME-driven and CIR-driven geomagnetic storms // J. Geophys. Res. V. 113. A06205. 2008. https://doi.org/10.1029/2007JA012752

- Perreault P., Akasofu S.-I. A study of geomagnetic storms // Geophys. J. R. Astr. Soc. V. 54. P. 547–573. 1978.

https://doi.org/10.1111/j.1365-246X.1978.tb05494.x

- *Plotnikov I.Y., Barkova E.S.* Nonlinear dependence of *Dst* and *AE* indices on the electric field of magnetic clouds // Adv. Space Res. V. 40. P. 1858–1862. 2007.

- Pulkkinen T.I., Partamies N., Huttunen K.E.J., Reeves G.D., Koskinen H.E.J. Differences in geomagnetic storms driven by magnetic clouds and ICME sheath regions // Geophys. Res. Lett. V. 34. L02105. 2007.

https://doi.org/10.1029/2006GL027775

- Russell C.T., McPherron R.L., Burton R.K. On the Cause of Magnetic Storms // J. Geophys. Res. V. 79. P. 1105–1109. 1974.

- Sugiura M., Poros D.J. Hourly Values of Equatorial Dst for the Years 1957 to 1970 // Rep. GSFC. Greenbelt. Maryland. 1971. 16 p.

- Yermolaev Y.I., Nikolaeva N.S., Lodkina I.G., Yermolaev M.Y. Specific interplanetary conditions for CIR-induced, Sheath-induced, and ICME-induced geomagnetic storms obtained by double superposed epoch analysis // Ann. Geophys. V. 28. P. 2177–2186. 2010.

- Yermolaev Y.I., Lodkina I.G., Nikolaeva N.S., Yermolaev M.Y. Influence of the interplanetary driver type on the durations of the main and recovery phases of magnetic storms // J. Geophys. Res. V. 119. № 10. P. 8126–8136. 2014. https://doi.org/10.1002/2014JA019826