УДК 550.383

ИНВЕРСИИ ГЕОМАГНИТНОГО ПОЛЯ: ОГРАНИЧЕНИЕ НА ИНТЕНСИВНОСТЬ КОНВЕКЦИИ В ЯДРЕ ЗЕМЛИ?

© 2021 г. М. Ю. Решетняк^{1, 2, *}

¹Институт физики Земли им. О.Ю. Шмидта РАН (ИФЗ РАН), г. Москва, Россия ²Институт земного магнетизма, ионосферы и распространения радиоволн им. Н.В. Пушкова РАН (ИЗМИРАН), г. Москва, г. Троицк, Россия

*e-mail: m.reshetnyak@gmail.com Поступила в редакцию 03.07.2020 г. После доработки 14.07.2020 г. Принята к публикации 24.09.2020 г.

Современные модели геодинамо позволяют генерировать магнитное поле как без инверсий, так и с частыми инверсиями. Переход от одного режима к другому связан с относительно небольшим изменением интенсивности источников генерации. Из этого, обычно, делается вывод, что система геодинамо находится вблизи такого перехода, что вообще говоря, требует более детального обоснования. В работе на основе современных моделей геодинамо приведен анализ того, к каким еще изменениям в поведении геомагнитного поля приводит подобный переход. В частности, насколько нарушается дипольность магнитного поля, изменяется его напряженность, каково соотношение времени затухания и роста диполя во время инверсии.

DOI: 10.31857/S0016794021020139

1. ВВЕДЕНИЕ

Согласно теории геодинамо, наблюдаемое на поверхности Земли геомагнитное поле, генерируется течениями проводяшей жидкости в ядре [Копо, 2009]. По оценкам палеомагнитологов магнитное поле существовало не менее 3.6 млрд лет, см. подробнее в [Решетняк и Павлов, 2016], что сравнимо с возрастом Земли – 4.5 млрд лет. С меньшей уверенностью можно утверждать, что большую часть времени магнитное поле было дипольным, и лишь изредка претерпевало обращение полярности магнитного диполя (инверсии геомагнитного поля), во время которых амплитуда диполя уменьшалась в несколько раз. За историю Земли инверсий было несколько сотен, что в совокупности с дипольностью поля, является хорошими тестом для проверки работоспособности моделей геодинамо.

В моделях геодинамо, включающих уравнения конвекции, присутствует два пороговых явления, связанных с появлением конвекции, так и магнитного поля. Оба процесса начинаются при превышении пороговых значений источников энергии, вызывающих конвекцию, и, собственно, интенсивности возникающей конвекции, генерирующей, в свою очередь, магнитное поле. Тепловая конвекция в жидком ядре турбулентная, гидродинамическое число Рейнольдса Re ~ 10⁸. Столь высокое значение Re, говорит о том, что турбулентность развитая, возбуждено большое число конвективных мод, и поведение поля скорости на больших масштабах уже мало зависит от изменения интенсивности источников тепловой конвекции. С магнитным полем ситуация обстоит по-другому: магнитное число Рейнольдса $Rm \sim 10^2 - 10^3$ не столь велико, и всего на 1-2 порядка превосходит свое критическое значение. Последнее является причиной того, что в силу небольшого числа возбужденных магнитных мод в уравнении индукции, изменение магнитного поля на больших масштабах при конвективных флуктуациях может быть весьма существенным. Предполагается, что смена режима генерации без инверсий на режим с частыми инверсиями сопряжен с такими флуктуациями. Как правило, почему именно система находится вблизи данного перехода на протяжении всей истории Земли, не обсуждается.

Представления о том, как частота инверсий связана с амплитудой источников энергии, эволюционировали с развитием моделей геодинамо. Согласно первым моделям геодинамо среднего поля [Джонс, 1995], в том числе и Z-модели [Ануфриев и др., 1997], переход от режима без инверсий к частым инверсиям вблизи порога генерации был сопряжен с уменьшением амплитуды источников энергии (динамо-числа). При появлении трехмерных не осесимметричных моделей геодинамо, позволивших моделировать циклоническую конвекцию, точка зрения сменилась на противоположную: оказалось, что для такого перехода необходимо увеличение амплитуды источников энергии [Christensen et al., 1999]. В дальнейшем, с использованием геострофических течений, полученных в трехмерных моделях тепловой конвекции, аналогичный результат удалось получить и в моделях среднего поля [Решетняк, 2017]. Переход к частым инверсиям связывают с относительным уменьшением влияния вращения, что в свою очередь, приводит к увеличению флуктуаций магнитных полюсов относительно географических, см. подробнее в [Reshetnyak and Hejda, 2013].

Поскольку Rm невелико, мы вправе ожидать, что поведение магнитного поля может кардинально меняться при изменении Rm, не ограничиваясь лишь частотой инверсий. И такие изменения действительно наблюдаются как в трехмерных моделях [Christensen et al., 1999], так и в моделях среднего поля [Решетняк, 2017]. Однако сложно сказать, насколько этот факт подтверждается палеомагнитными наблюдениями, поскольку точность определения частоты инверсий геомагнитного поля существенно превосходит точность определения других характеристик поля в прошлом. Далее, на примере моделей среднего поля и трехмерной модели динамо с тепловой конвекцией, мы рассмотрим какие еще изменения происходят в магнитном поле при переходе от режима без инверсий к частым сменам полярности, и до какой степени мы можем сопоставлять результаты моделирования с наблюдениями.

2. РЕЗУЛЬТАТЫ МОДЕЛИРОВАНИЯ

Модель геодинамо должна удовлетворять как минимум двум требованиям: использовать параметры (коэффициенты переноса, амплитуды источников энергии, угловую скорость вращения планеты), основанные на физической модели Земли, и, воспроизводить близкие к наблюдениям эволюционные ряды магнитного поля. В настоящее время ни одна из моделей не удовлетворяет первому критерию, поскольку моделирование конвекции с Re ~ 10⁸ без использования турбулентных моделей конвекции невозможно. Применение же известных моделей турбулентности также невозможно, поскольку они не учитывают быстрое вращение, и связанную с ним анизотропию конвекции. В результате, по параметрам принимается следующий компромисс: коэффициенты переноса берутся больше на несколько порядков, так чтобы числа Рейнольдса были порядка 10²—10³. Очевидно, что такой подход увеличивает флуктуации крупномасштабной скорости при увеличении амплитуд источников энергии, и

как следствие — крупномасштабного магнитного поля.

Другой важный параметр, период суточного вращения планеты, принимается, как правило, меньшим суток, чтобы сократить разрыв между сутками и характерным временем вариаций дипольного магнитного поля, которое ~10³ лет и более. На практике, вращение выбирают таким, чтобы хотя бы выполнялся геострофический баланс сил [Pedlosky, 1987]. В этом случае скейлинговые оценки, описывающие взаимосвязь между безразмерными числами, позволяют надеяться [Christensen and Aubert, 2006], что получаемые решения могут быть пересчитаны для параметров ядра.

Современные трехмерные модели геодинамо регистрируют две важные границы: начало генерации дипольного магнитного поля без инверсий (I), и по мере увеличения амплитуды источников энергии (числа Рэлея в тепловой и композиционной конвекции) — переход магнитного поля в мультипольную конфигурацию с частыми инверсиями (II). Наличие границы II качественно отражает тот факт, что увеличение амплитуды центрально-симметричных сил плавучести уменьшает относительную роль сил вращения, имеющих осевую симметрию [Reshetnyak and Hejda, 2013]. Впервые, в трехмерных моделях геодинамо это было показано в работе [Glatzmaier et al., 1999], и далее результат был сформулирован в

терминах критического числа Россби Ro^{cr} [Chris-

tensen and Aubert, 2006]. При Ro < Ro^{cr} магнитные полюса находятся вблизи географических, при увеличении Ro – появляются инверсии. Важно, что вращение оказывает влияние на генерацию магнитного поля и во время частых инверсий. Это следует как из того, что продолжительность инверсий (10^3-10^4 лет) много меньше времени между инверсиями, составляющем миллионы лет и более, так и более фундаментального свойства генерации крупномасштабных магнитных полей, связанного с необходимостью вращения как такового.

Проиллюстрируем вышесказанное рис. 1, где изображено поведение кинетической E_k и магнитной E_m энергии, а также магнитной энергии диполя E_m^d в трехмерной модели геодинамо Magic, см. подробнее описание модели в **Приложении**. Как мы видим, положение максимумов для трех графиков различно. Если кинетическая энергия продолжает расти с ростом числа Рэлея Ra, то магнитный диполь начинает убывать значительно быстрее, чем полная магнитная энергия. И к моменту появления инверсий (Ra ~ 4 × 10⁵) становится весьма маленьким. Этот результат хорошо известен и подтверждается многочисленными численными экспериментами [Christensen and

Aubert, 2006]. Другими словами, в трехмерных моделях сложно получить одновременно сильное дипольное магнитное поле и инверсии. Поскольку согласно наблюдениям, см. подробнее [Решетняк и Павлов, 2016], скорее всего, магнитное поле на геологических временах в прошлом і) было дипольным; іі) имело сравнимую с современной напряженность, сопоставление границы II с наблюдениями следует проводить крайне осторожно. Следует принять во внимание, что искомая модель геодинамо должна воспроизводить близкие к наблюдаемым в настоящее время свойствам поля на фоне достаточно больших изменений параметров, связанных с эволюцией жидкого и твер-

дого ядер [Reshetnyak, 2019], т.е. ее чувствительность к изменениям параметров должна быть не

велика. В сложившейся ситуации интересно обратиться к накопившемуся опыту моделирования динамо средних полей. Без учета быстрого вращения стандартные модели среднего поля на пороге генерации дают периодические инверсии магнитного поля [Джонс, 1995]. Аналогичная картина наблюдался и в Z-модели Брагинского [Ануфриев и др., 1997]. Если взять геострофические течения из трехмерных моделей конвекции, вычислить по ним гидродинамическую спиральность. α-эффект, дифференциальное вращение, и подставить это в модель αω-динамо (модель среднего поля) с алгебраическим квенчингом для α-эффекта, то качественно получившийся результат напоминает вышеописанные результаты трехмерного моделирования: сначала генерируется дипольное магнитное поле без инверсий, далее, по мере увеличения скоростей, возникает переход к частым инверсиям магнитного поля с потерей дипольности [Решетняк, 2017]. Интересно, что в моделях среднего поля число Россби в явном виде не фигурирует, а решение для магнитного поля зависит только от амплитуды скоростей течений. В терминах линейного анализа это соответствует изменению скорости роста мод магнитного поля, появлению новых мод, с ростом скорости течений, т.е. Rm. С этой точки зрения результат, полученный в работе [Christensen and Aubert, 2006], мог бы получить новую трактовку, а именно: не как зависимость дипольности от Ro, a от Rm.

Поскольку граница II в моделях среднего поля такая же резкая, как и в трехмерных моделях, и получить сильное дипольное магнитное с частыми инверсиями практически невозможно, была предпринята модификация модели αω-динамо. Идея состояла в том, чтобы учесть флуктуации источника генерации, α-эффекта [Hoyng, 1993], связанные с турбулентностью. Последнее можно сделать как вблизи границы I, так и – II. Для границы I этот вопрос был рассмотрен в работе [Решетняк, 2019]. Выбор именно этой границы был

Рис. 1. Зависимость кинетической энергии E_k (тонкая линия), магнитной энергии (штриховая лини), и энергии магнитного диполя E_m^d (толстая линия) от числа Рэлея Ra для Pr = 1, Pm = 5, E = 10⁻³. Графики нормированы на значения 5.7 × 10⁸, 1.0 × 10⁹, 1.2 × 10⁸, соответственно.

обусловлен наблюдающимся палеомагнитологами медленным затуханием диполя во время последних пяти инверсий, и быстрым его восстановлением после инверсий [Valet, 2005]. Авторы высказали предположение, что уменьшение амплитуды диполя связано с затуханием магнитного поля, вызванным сбоем процесса динамо. В терминах модели [Hoyng, 1993] затухание может быть связано с флуктуациями а. В аш-модели среднего поля с геострофическими скоростями [Решетняк, 2019] удается получить наблюдаемое отношение времен 4 : 1. Обратим внимание, что вблизи границы I дипольное магнитное поле очень устойчиво, и требуются "дополнительные" меры для получения инверсий. Подобным образом инверсии можно воспроизвести и вблизи границы II. Однако из общих соображений следует ожидать, что с увеличением амплитуды источников энергии характерное время вариации магнитного поля будет уменьшаться, и отношение времен будет меньше единицы.

В рамках трехмерного моделирования флуктуации источников энергии вблизи границы I были реализованы в виде следующего численного эксперимента. Поскольку не каждая флуктуация приводит к инверсии магнитного диполя, а само трехмерное моделирование требует длительных вычислений, то было принято решение ограничиться оценкой времени отклика той или иной величины на изменение параметра. При этом сами инверсии, если они были, не учитывались.

Рис. 2. Петли гистерезиса для кинетической энергии E_k (*a*) и магнитной энергии диполя E_m^d (б) в безразмерных единицах (подробности в Приложении) для $\Pr = 1$, $\Pr = 20$, $E = 10^{-3}$, $R_1 = 8 \times 10^4$, $R_2 = 1.05 \times 10^5$. Сплошная линия – C_1 , штриховая линия – C_2 .

В трехмерной модели динамо было введено ступенчатое изменение числа Рэлея Ra через интервал времени \tilde{T} :

$$Ra(t) = \begin{cases} R_1, & i - \text{четное} \\ R_2, & i - \text{нечетное}, \end{cases}$$
(1)

 $i\tilde{T} \leq t < (i+1)\tilde{T}, i = 0...N.$ Период $\tilde{T} = 20$ подбирался таким образом, чтобы решение успело выйти на квазистастационарный уровень. Характерное время расчета для N = 20 занимало одни сутки.

В качестве тестируемых величин были рассмотрены средние по числу реализаций энергии E_k , E_m и E_m^d . Из общего числа N изменений Ra было выделено две последовательности: первая, в которой в середине интервала \tilde{T} происходил переход $R_1 \rightarrow R_2$ (кривая C_1), и вторая, в которой происходил обратный переход $-R_2 \rightarrow R_1$ (кривая C_2). Для C_2 время *t* отсчитывалось в обратном направлении от \tilde{T} до 0. Если процесс обратим, то при достаточно большом \tilde{T} концы кривых C_1 и C_2 совпадают. Поведение же кривых C_1 и C_2 вблизи $\tilde{T}/2$ может отличаться, и возникает петля гистерезиса. Наличие гистерезиса связано с инерцией (памятью) процесса.

Решение вблизи границы I представлено на рис. 2. Увеличение (уменьшение) Ra на кривых $C_1(C_2)$ приводит к увеличению (уменьшению) E_k и E_m^d , соответственно. Поскольку конвективное

время при быстром вращении меньше магнитного, скачок для E_k более резкий. Для магнитного диполя наблюдается петля гистерезиса (небольшое смещение кривых вблизи $t = \tilde{T}/2 = 10$), связанное с тем, что характерное время у E_m^d больше, чем у E_k (и у E_m). Обратим внимание, что в жидком ядре Pm ~ 10^{-5} и характерные времена конвекции и магнитного поля отличаются еще больше, но в целом, модель правильно воспроизводит соотношение конвективного и магнитного времени. В модели наблюдаются всплески кинетиче-

ской энергии в момент скачка: в дальнейшем, по мере изменения магнитного поля кинетическая энергия становится меньше (больше) для кривых $C_1(C_2)$.

Поскольку наклоны кривых на рис. 26 вблизи t = 10 близки, характерное время убывания и роста магнитного диполя совпадают (отношение времен порядка единицы). Ни в одном из проведенных экспериментов в трехмерной модели вблизи границы I существенно изменить отношение времен не удавалось. В известной литературе возможность получения отличных от единицы отношения времен в трехмерных моделях также не обсуждалась.

3. ОБСУЖДЕНИЕ

Если исключить из рассмотрения достоверность наблюдений (а аналогов работы [Valet, 2005] автору неизвестно), и попытаться дать объяснение почему модели среднего поля и трехмерные модели дают различные результаты, то можно выдвинуть следующее предположение. В отличие от модели среднего поля, где конвекция задается в виде постоянного во времени профиля дифференциального вращения и распределения α -эффекта с простой формой обратной связи по магнитному полю, в трехмерной модели и процесс генерации, и процесс диссипации, связаны с циклонической конвекцией. Конвекция в ядре неосесимметричная и представляет собой вращающиеся колоновидные вихри, вытянутые вдоль оси вращения, масштаб которых по горизонтали много меньше масштаба по вертикали. В случае затухания магнитного поля, когда Rm мало, вих-

ющиеся колоновидные вихри, вытянутые вдоль оси вращения, масштаб которых по горизонтали много меньше масштаба по вертикали. В случае затухания магнитного поля, когда Rm мало, вихри разрушают крупномасштабное осесимметричное магнитное поле за короткий промежуток времени, порядка времени оборота вихря. В моделях же среднего поля, есть только характерные времена самого магнитного поля, считающегося осесимметричным. Чем ближе Ra для режима затухания к границе I, тем медленнее происходит затухание и больше время затухания. В силу этого модели среднего поля и трехмерные дают различное отношение времен роста и затухания магнитного поля.

Вышесказанное можно пояснить и другим способом: в моделях среднего поля при уменьшении источников энергии решение в пределе стремится к свободно затухающему осесимметричному решению, без турбулентной конвекции. Этот процесс затухания сравнительно медленный. В трехмерных моделях конвекция присутствует и вовремя затухания. Этот эффект можно сформулировать как на языке анизотропной турбулентной диффузии, так и в первом приближении, оценив время диссипации по времени оборота конвективного вихря. В любом случае, решение во время затухания будет существенно отличаться от свободно затухающего решения с однородным коэффициентом диффузии.

Экстраполируя полученные результаты на процесс инверсии, можно предположить, что и во время инверсий временной асимметрии в трехмерной модели не будет. Как мы видим, сравнение результатов моделирования различных моделей и наблюдений улучшают наше понимание физики процессов в жидком ядре Земли. Появление трехмерных моделей динамо потребовало пересмотра полученных ранее результатов моделирования в моделях среднего поля. Вопрос же сопоставления результатов моделирования с наблюдениями требует, как дальнейшего уточнения самих наблюдений, в частности по тонкой структуре инверсий, так и ответа на вопрос, почему эволюционные процессы в ядре Земли слабо отражаются на поведении магнитного поля. Дальнейшее исследование спектральных свойств уравнения индукции вблизи границ I и II кажется

вполне закономерным шагом в дальнейших исследованиях.

ПРИЛОЖЕНИЕ

Рассмотрим уравнения динамо в сферическом слое $r_1 \le r \le r_0$, где (r, θ, φ) – сферическая система координат, $r_0 = 1$, $r_i = 0.35$. Введя следующие единицы измерения для скорости V, времени *t*, давления *P* и магнитного поля **B**: v/d, d^2/v , $\varrho v^2/d^2$ и $\sqrt{2\Omega \rho v \mu}$, где $d = r_0 - r_i$ – единица длины, v - коэффициент кинематической вязкости, ρ – плотность вещества, μ – магнитная проницаемость, запишем систему уравнений динамо в виде:

$$\frac{\partial \mathbf{B}}{\partial t} = \nabla \times (\mathbf{V} \times \mathbf{B}) + \mathrm{Pm}^{-1} \Delta \mathbf{B}, \quad \nabla \cdot \mathbf{V} = 0, \quad \nabla \cdot \mathbf{B} = 0,$$
$$\frac{\partial \mathbf{V}}{\partial t} + (\mathbf{V} \cdot \nabla) \mathbf{V} = -\nabla P - \frac{2}{\mathrm{E}} \mathbf{1}_{z} \times \mathbf{V} + \frac{\mathrm{Ra}}{\mathrm{Pr}} T \mathbf{1}_{r} + + \Delta \mathbf{V} + \frac{1}{\mathrm{EPm}} (\nabla \times \mathbf{B}) \times \mathbf{B},$$
$$\frac{\partial T}{\partial t} + (\mathbf{V} \cdot \nabla) (T + T_{0}) = \mathrm{Pr}^{-1} \Delta T.$$

Безразмерные числа Прандтля, Экмана, Рэлея и магнитного Прандтля заданы в виде: $\Pr = \frac{V}{\kappa}$,

 $E = \frac{v}{2\Omega L^2}, Ra = \frac{\alpha g_o \delta T d^3}{v\kappa} u Pm = \frac{v}{\eta}, где \kappa - \kappa o \Rightarrow \phi$ фициент молекулярной теплопроводности, α – коэффициент объемного расширения, \mathbf{g}_o – ускорение свободного падения, δT – единица возмущения температуры T относительно "диффузионного" (не конвективного) распределения температуры $T_0 = \frac{r_i(r-1)}{r(r_i-1)}, \eta$ – коэффициент магнитной диффузии.

Система (А.1) замыкается вакуумными граничными условиями для магнитного поля на r_0, r_i , нулевыми граничными условиями для поля скорости и возмущений температуры. В работе использован псевдо-спектральный MPI-код Magic, адаптированный для операционной системы Gentoo. Для разложений по 65 полиномам Чебышева и 128 сферическим функциям использовалось 16-ядер на компьютерах Intel(R) Xeon(R) СРИ Е5-2640. Использованный код является удивительным примером того, как благодаря огромным усилиям немецких ученых [Wicht, 2002; Gastine and Wicht, 2012], пионерский прототип кода, разработанный в Лос-Аламосе Гарри Глатцмайером [Glatzmaier and Roberts, 1995], появился в открытом доступе на сайте GitHub.

ФИНАНСИРОВАНИЕ РАБОТЫ

Работа выполнена при поддержке Российского научного фонда, грант № 19-47-04110.

СПИСОК ЛИТЕРАТУРЫ

— Ануфриев А.П., Решетняк М.Ю., Хейда П. Влияние внутреннего ядра на генерацию магнитного поля в модели α∞-динамо // Геомагнетизм и аэрономия. Т. 37. № 1. Р. 161—166. 1997.

— Джонс К.А. Модели динамо и ограничение Тейлора / Космическая магнитная гидродинамика. М.: Мир, ред. Э. Прист, А. Худа. 440 с. 1995.

— Решетняк М.Ю., Павлов В.Э. Эволюция дипольного геомагнитного поля. Наблюдения и модели // Геомагнетизм и аэрономия. Т. 56. С. 117–132. 2016. https://doi.org/10.7868/S0016794015060139

— Решетняк М.Ю. Адаптация модели среднего поля в геодинамо // Физика Земли. № 4. С. 93–99. 2017. https://doi.org/10.7868/S0002333717030097

— *Решетняк М.Ю.* Разрушение и восстановление магнитного поля во время инверсий // Астрономический вестник. Т. 53. № 4. С. 265–272. 2019. https://doi.org/10.1134/S0320930X1904008X

— *Christensen U., Olson P., Glatzmaier G.A.* Numerical modelling of the geodynamo: a systematic parameter study // Geophys. J. Int. V. 138. № 2. P. 393–409. 1999. https://doi.org/10.1046/j.1365-246x.1999.00886.x

- Christensen U.R., Aubert J. Scaling properties of convection-driven dynamos in rotating spherical shells and application to planetary magnetic fields // Geophys. J. Int. V. 166. P. 97–114. 2006.

https://doi.org/10.1111/j.1365-246x.2006.03009.x

- Gastine T., Wicht J. Effects of compressibility on driving zonal flow in gas giants // Icarus. V. 219. № 1. P. 428–442. 2012.

https://doi.org/10.1016/j.icarus.2012.03.018

- Glatzmaier G.A. Roberts P.H. A three-dimension selfconsistent computer simulation of a geomagnetic field reversal // Nature. V. 377. P. 203–209. 1995.

- Glatzmaier G.A., Coe R.S., Hongre L., Roberts P.H. The Role of the Earth's Mantle in Controlling the Frequency of Geomagnetic Reversal // Nature. V. 401. P. 885–890. 1999. https://doi.org/10.1038/44776

— Hoyng P. Helicity fluctuations in mean field theory: An explanation for the variability of the solar cycle? // Astron. Astrophys. V. 272. P. 321–339. 1993.

— Kono M., Schubert G. Geomagnetism // Treatise on Geophysics. V. 5. Amsterdam: Elsevier, 589 p. 2009.

- *Pedlosky J.* Geophysical fluid dynamics. NY: Springer-Verlag. 711 p. 1987.

https://doi.org/10.1007/978-1-4612-4650-3

— Reshetnyak M.Yu., Hejda P. Heat flux modulation in Domino dynamo model // Open Journal of Geology. V. 2B. P. 55–59. 2013.

https://doi.org/10.4236/ojg.2013.32B013

- Reshetnyak M.Yu. Evolution of the inner core of the earth: consequences for geodynamo // Magnetohydrodynamics. V. 55. \mathbb{N} 1–2. P. 175-183. 2019. https://doi.org/10.22364/mhd.55.1-2.21

- Valet J.-P., Meynadier L., Guyodo Y. Geomagnetic dipole strength and reversal rate over the past two million years //

Nature. V. 435. P. 802–805. 2005. https://doi.org/10.1038/nature03674

- *Wicht J.* Inner core conductivity in numerical dynamo

simulations // Phys. Earth Planet. Int. V. 132. P. 281–302. 2002.

https://doi.org/10.1016/S0031-9201(02)00078-X