УДК 523.62-337+523.62-726

ГЕЛИОСФЕРНОЕ МАГНИТНОЕ ПОЛЕ И МОДЕЛЬ ПАРКЕРА

© 2021 г. Н. С. Свиржевский^{1,} *, Г. А. Базилевская¹, М. С. Калинин¹, М. Б. Крайнев¹, В. С. Махмутов¹, А. К. Свиржевская¹, Ю. И. Стожков¹

¹Физический институт им. П.Н. Лебедева РАН (ФИАН), г. Москва, Россия

*e-mail: svirzhev@fian.fiandns.mipt.ru Поступила в редакцию 30.06.2020 г. После доработки 27.10.2020 г. Принята к публикации 28.01.2021 г.

В паркеровской модели гелиосферного магнитного поля отношение азимутальной компоненты поля B_{φ} к радиальной компоненте B_r зависит только от радиальной скорости V солнечного ветра и координат точки наблюдения (r, θ) : $B_{\varphi}/B_r = -\omega r \sin \theta/V$ (на расстоянии от Солнца r > 1 а. е.). Мы проверили это соотношение вблизи эклиптики на радиальных расстояниях до 19 а. е. по данным космических аппаратов VOYAGER 1, VOYAGER 2 и ULYSSES и вне эклиптики по данным ULYSS-ES. Показано, что предсказания паркеровской модели хорошо согласуются с наблюдениями вне секторных зон в периоды времени, близкие к минимумам солнечной активности. В пределах секторных зон и в периоды максимумов солнечной активности существуют значительные расхождения между данными наблюдений и предсказаниями этой модели.

DOI: 10.31857/S0016794021030160

1. ВВЕДЕНИЕ. ПАРКЕРОВСКАЯ МОДЕЛЬ ГМП

Паркеровская спиральная модель гелиосферного магнитного поля (ГМП) является в настояшее время базовой системой отсчета. в которой описываются пространственные и временные вариации магнитного поля в гелиосфере. Parker [1958] предложил модель, в которой газ (плазма), покидая Солнце, уносит с собой вмороженное солнечное магнитное поле. Предполагается, что за пределами некоторого расстояния r = b солнечное тяготение и ускорение наружу за счет высокой температуры не оказывают влияния на плазму, так что ее скорость в направлении от Солнца является постоянной. Вследствие того, что Солнце вращается, линии тока плазмы во вращающейся системе отсчета образуют в гелиосфере Архимедовы спирали, а силовые линии ГМП располагаются вдоль этих спиралей. В инерциальной системе отсчета линии тока плазмы являются радиальными, но силовые линии ГМП попрежнему остаются спиральными [Owens and Forsyth, 2013].

Различные стороны паркеровской модели ГМП проверялись в широком интервале расстояний, начиная с расстояний 0.3-0.4 а. е. по данным KA HELIOS 1 и HELIOS 2 [Bruno and Bavassano, 1997], на расстояниях 1–8.5 а. е. по данным KA PIONEER 10 и PIONEER 11 [Thomas and Smith, 1980] и на расстояниях от 1 до 80 а. е. и более по

данным KA VOYAGER 1 и VOYAGER 2 [Burlaga et al., 2002]. Выводы, сделанные в этих работах, сводятся к тому, что, в общем, паркеровская спиральная модель ГМП согласуется с наблюдениями, хотя отдельные расхождения модели с экспериментом имеются. Около Земли массивы часовых ланных по компонентам ГМП за период 1963-2007 гг. были проанализированы в работе [Веселовский и др., 2010]. Авторы этой работы пришли к выводу, что наблюдаемые параметры ГМП и солнечного ветра и теоретические представления о строении и динамике внутренней гелиосферы находятся в разумном согласии между собой. В работе [Khabarova and Obridko, 2012] было показано, что вблизи эклиптики на расстоянии до 5.4 а. е. напряженность ГМП $B(r, \theta, \phi)$ плохо согласуется с зависимостью $B_r(r, \theta, \phi) \sim 1/r^2$, следующей из паркеровской модели для радиальной компоненты поля, причем согласие между наблюдаемой $|B_r|$ -компонентой и паркеровской величиной $B_r(r, \theta, \phi)$ особенно сильно нарушается на малых (~0.3-0.4 а. е.) расстояниях от Солнца. По данным KA ULYSSES паркеровская модель проверялась в высоких гелиоширотах, и было установлено, что с хорошей точностью выполняется предсказание модели о том, что радиальная компонента $B_r(r, \theta, \phi)$ ГМП не зависит от гелиошироты как в минимуме солнечной активности, так и в максимуме, а с расстоянием эта компонента поля изменяется как $1/r^2$ [Smith and Balogh, 1995; Smith et al., 2001].

В работе [Вогоvsky, 2010] были исследованы направления вектора **В** (r, θ, ϕ) ГМП относительно предсказываемой паркеровской моделью спирали по данным HELIOS 1 и HELIOS 2 (0.3–0.4 а. е.), а также по данным КА АСЕ за 1998–2008 гг. и OMNI 2 за 1963–2008 гг. на 1 а. е. Исследования показали, что, в среднем, ГМП направлено вдоль паркеровской спирали, однако отклонения от этого направления велики. Отклонения вектора **В** (r, θ, ϕ) от паркеровской спирали регистрируются, главным образом, вблизи гелиосферного токового слоя и в магнитных облаках, связанных с выбросами корональных масс.

В связи с проблемами, связанными с описанием модуляции галактических космических лучей, паркеровская модель ГМП подвергалась некоторым изменениям в области высоких гелиоширот [Jokipii and Kota, 1989; Smith and Bieber, 1991], но эти изменения существенно не поменяли базовую структуру модели. Кроме того, была предложена модель ГМП, значительно отличающаяся от паркеровской модели [Fisk, 1996], которая, однако, не подтверждается экспериментально [Sternal et al., 2011; Roberts et al., 2007].

Выражения для радиальной $B_r(r, \theta, \phi)$, азимутальной $B_{\phi}(r, \theta, \phi)$ и гелиоширотной $B_{\theta}(r, \theta, \phi)$ компонент паркеровского магнитного поля в гелиоцентрической сферической системе координат (r, θ, ϕ) приводятся ниже в виде [см., например, Scherer et al., 2010; Owens and Forsyth, 2013]:

$$B_{r}(r,\theta,\phi) = \frac{B_{0}r_{0}^{2}}{r^{2}},$$

$$B_{\phi}(r,\theta,\phi) = \frac{(v_{\phi} - \omega r)\sin\theta}{V}B_{r}(r,\theta,\phi), \quad (1)$$

$$B_{\theta}(r,\theta,\phi) = 0.$$

Это общепринятые в настоящее время выражения для компонент ГМП. Здесь предполагается, что плазма вытекает радиально с постоянной, не зависящей от гелиошироты, скоростью V из "поверхности источника", под которой обычно понимается сферическая поверхность, окружающая Солнце на некотором расстоянии $b = r_0$ от его центра [Schatten, 2001]. На поверхности источника у гелиосферного магнитного поля $B(r, \theta, \phi)$ отлична от нуля только радиальная компонента $B_r(r_0, \theta, \phi) = B_0$. В формулах (1) r – радиальное расстояние до точки наблюдения; $\omega = 2.67 \times 10^{-6}$ рад/с – синодическая угловая скорость вращения Солнца (его экваториальной части); $v_{\phi} = \omega r_0 -$ азимутальная скорость солнечного ветра на поверхности источника. В этой работе не учитывается зависимость угловой скорости вращения Солнца от гелиошироты, так как ниже рассматриваются данные по гелиосферному магнитному полю и скорости солнечного ветра на расстояниях, превышающих 1 а. е. Возможное дифференциальное вращение околосолнечной плазмы исчезает уже на расстояниях, равных нескольким радиусам Солнца [Бадалян и Обридко, 2018].

Если в качестве поверхности источника выбрать поверхность Солнца ($r_0 = 0.696 \times 10^6$ км), то азимутальная скорость газа v_{φ} на этой поверхности будет равна ~2 км/с. Примерно такую же азимутальную скорость будет иметь и газ, вытекающий из короны Солнца и образующий в гелиосфере солнечный ветер. Скорость v_{φ} в паркеровской модели не меняется за пределами поверхности источника, а так как на 1 а. е. величина произведения $\omega r = 405$ км/с, то на орбите Земли и за ее пределами $v_{\varphi} \ll \omega r$. Тогда выражение для азимутальной компоненты поля $B_{\varphi}(r, \theta, \varphi)$ с хорошей точностью можно записать в виде:

$$B_{\varphi}(r,\theta,\varphi) = \frac{-\omega r \sin \theta}{V} B_r(r,\theta,\varphi).$$
(2)

В данной работе мы сравнили определенную из наблюдений величину отношения азимутальной B_0 и радиальной B_r компонент ГМП

$$B_{\omega}/B_r = -\omega r \sin\theta/V \tag{3}$$

с предсказаниями паркеровской модели на радиальных расстояниях r > 1 а. е. Соотношение (3) обладает свойствами, позволяющими легко проверить согласие модели с результатами наблюдений. Правая часть выражения (3) представляет собой произведение трех положительных величин – угловой скорости вращения Солнца ω, радиального расстояния *r* и sin θ ($0 \le \theta \le \pi$). Поэтому величина B_{ϕ}/B_r должна быть всегда отрицательной. Правая часть (3) устанавливает также определенные ограничения на величину изменений отношения B_{ω}/B_r , так как она является функцией скорости солнечного ветра V, которая зависит от гелиошироты и фазы солнечного цикла, но изменяется не больше чем в 3 раза. Наконец, абсолютная величина выражения $(-\omega r \sin \theta)/V$ возрастает пропорционально радиальному расстоянию от Солнца, что требует такого же роста для величины отношения B_{ϕ}/B_r . Выражение (3) первоначально было рассмотрено вблизи эклиптики (при $\sin \theta \approx 1$), чтобы не учитывать возможную зависимость B_{0}/B_{r} от гелиошироты. Для этого были использованы данные KA VOYAGER 1 и VOYAGER 2 (www.omniweb.gsfc.nasa.gov) и ULYSSES (http:// helio.estec.esa.nl/ulysses/archve/) на начальных этапах полета. Соотношение (3) было затем рассмотрено по данным KA ULYSSES в широком диапазоне гелиоширот λ и на расстояниях 1.35–5.4 а. е.

Рис. 1. Отношение тангенциальной и радиальной компонент ГМП B_t/B_r (серая линия) и величина ($-\omega r$)/V (тонкая линия) по данным VOYAGER2 вблизи эклиптики. Расстояние КА от Солнца показано штриховой линией (правая ось ординат).

2. МАГНИТНОЕ ПОЛЕ НА ЭКЛИПТИКЕ НА РАССТОЯНИЯХ 1–19 a. e.

На начальных участках траектории KA VOY-AGER 1, VOYAGER 2 и ULYSSES находились вблизи эклиптики, так что их гелиоширота λ менялась в пределах $\lambda = \pm 7.3^\circ$. В этом случае sin $\theta \ge$ ≥ 0.99 (так как $\theta = 90^\circ - \lambda$) и из (3), опустив sin θ , мы получим выражение:

$$\frac{B_{\varphi}}{B_r} = -\frac{\omega r}{V},\tag{4}$$

которое проверялось с использованием суточных данных по магнитным полям и скорости солнечного ветра.

Отметим, что данные по напряженности ГМП на дальних КА приводятся в системах отсчета *RTN*, связанных непосредственно с самими КА. В системе отсчета *RTN* ГМП имеет радиальную $B_r(r, \theta, \varphi)$, тангенциальную $B_t(r, \theta, \varphi)$ и гелиоширотную $B_n(r, \theta, \varphi)$ компоненты. Тангенциальная $B_t(r, \theta, \varphi)$ и радиальная $B_r(r, \theta, \varphi)$ компоненты ГМП из *RTN* совпадают с азимутальной $B_{\varphi}(r, \theta, \varphi)$ и радиальной $B_r(r, \theta, \varphi)$ компонентами поля, представленными в гелиоцентрической сферической системе отсчета. Поэтому мы можем рассматривать отношения B_{φ}/B_r и B_t/B_r как равноценные, и тогда выражение (4) можно записать как

$$\frac{B_t}{B_r} = -\frac{\omega r}{V}.$$
(5)

Для проверки выражения (5) были использованы суточные данные, полученные на VOYAGER 2 (за период с 24 августа 1977 г. по 31 декабря 1985 г.; 1–19 а. е.), VOYAGER 1 (7 сентября 1977 г.– 2 июня 1980 г.; 1–7 а. е.) и ULYSSES (25 октября 1990 г.–1 марта 1992 г.; 1–5.4 а. е.).

Величина отношения B_t/B_r и правая часть (5), а также расстояние VOYAGER 2 от Солнца, показаны на рис. 1. Видно, что между величинами B_t/B_r , и (- ωr)/V нет никакой связи. С полной очевидностью это проявляется на расстоянии 10– 19 а. е. С увеличением расстояния КА от Солнца абсолютная величина (- ωr)/V возрастает примерно пропорционально радиусу r, а отношение B_t/B_r , флуктуирует около нуля независимо от этого расстояния. Отметим также, что, согласно (5), положительные величины отношения B_t/B_r должны отсутствовать. Выводы об отсутствии связи между величинами B_t/B_r и (- ωr)/V, следующие из данных VOYAGER 2, подтверждаются и данными VOYAGER 1 (рис. 2).

Величина отношения B_t/B_r , как видно из приведенных рисунков, часто достигает несколько десятков и значительно флуктуирует. Однако большие значения B_t/B_r не связаны с большими величинами или сильными флуктуациями азимутальной компоненты поля B_t , показанной на рис. 3, а определяются малой величиной радиальной компоненты B_r . Поэтому при отборе данных для

Рис. 2. Величины отношений B_t/B_r и ($-\omega r$)/V вблизи эклиптики по данным VOYAGER 1 на расстоянии 1–10 а. е. от Солнца. Обозначения величин такие же, как на рис. 1.

Рис. 3. Тангенциальная компонента ГМП B_t вблизи эклиптики по данным VOYAGER 2.

графиков из массива данных по B_t/B_r были исключены те величины, в которых $|B_r| \le 0.02$ нТл. Основанием для такого отбора послужило предположение, что экспериментальная погрешность измерений B_r по порядку величины равна 0.02 нТл.

На рисунке 4 показаны величины B_t/B_r и $(-\omega r)/V$, построенные по данным КА ULYSSES, полученным во время полета от Земли до Юпитера вблизи эклиптики. Из-за большого разброса данных, связанного, главным образом, с малой величиной радиальной компоненты поля B_r , сде-

лать определенные выводы о согласии или расхождении между величинами B_t/B_r и $(-\omega r)/V$ не представляется возможным. Можно, однако, отметить, что в течение ~100 первых дней полета эти величины согласуются.

3. ВЫСОКОШИРОТНОЕ МАГНИТНОЕ ПОЛЕ В 1993–1996 и 2006–2008 гг. ПО ДАННЫМ КА ULYSSES

Рассмотрим выражение $B_t/B_r = -\omega r \sin \theta/V$ по данным KA ULYSSES за пределами эклиптики. На рисунке 5 показана величина отношения

Рис. 4. Отношение тангенциальной и радиальной компонент ГМП B_t/B_r (серая линия) и величина ($-\omega r$)/V (черная линия) на эклиптике по данным ULYSSES. Расстояние КА от Солнца показано штриховой линией.

 B_t/B_r , определенная по данным ULYSSES за все время измерений 1990–2009 гг. (На рисунке не представлены B_t/B_r при $|B_r| \le 0.02$ нТл). Показана также величина (- $\omega r \sin \theta$)/V, при вычислении которой использовались экспериментальные данные по скорости солнечного ветра V. Величина отношения B_t/B_r , как видно на рис. 5, зависит от времени. Выделяются интервалы времени (август 1993–август 1996 гг., февраль 2006–октябрь 2008 гг.), когда флуктуации B_t/B_r малы, а величина этого отношения хорошо согласуется с величиной (- $\omega r \sin \theta$)/V. Выделяется по величине флуктуаций B_t/B_r и более короткий интервал времени (июль–декабрь 2001 г.) в период максимума солнечной активности.

На рисунке 6 в увеличенном масштабе показана величина отношения B_t/B_r в первом из этих интервалов (август 1993-август 1996 гг.), включающем быстрый пролет ULYSSES от Южного до Северного полюса Солнца. Отличительной особенностью этого интервала является то, что ULYSSES находился в это время за пределами секторной зоны (за исключением короткого интервала времени, ~20 дней, в течение которого КА пролетал через приэкваториальную область). Понятие "секторная зона" для обозначения той части гелиосферы, в которой расположен гелиосферный токовый слой (ГТС), разделяющий ГМП противоположного направления, было введено в работах [Burlaga et al., 1996, 2017]. Скорость солнечного ветра около КА вне секторной зоны была высокой, *V*≥750 км/с.

В течение этого времени выполняются все условия, предъявляемые паркеровской моделью к соотношению $B_t/B_r = -\omega r \sin \theta/V$. Во-первых, величина отношения B_t/B_r изменяется во времени и в пространстве согласованно с правой частью выражения ($-\omega r \sin \theta/V$), хотя изменения самих компонент поля B_r и B_{ϕ} довольно сложные. Во-вторых, флуктуации B_t/B_r малы и их, по-видимому, можно рассматривать как верхний предел флуктуаций, связанных с погрешностью измерений компонент поля. И, в-третьих, величина отношения B_t/B_r является отрицательной (за исключением районов, близких к полюсам, где величина B_t/B_r мала и может быть сравнима с погрешностями измерений).

Паркеровские выражения для компонент ГМП $B_r(r, \theta, \phi)$, $B_t(r, \theta, \phi)$ и $B_{\theta}(r, \theta, \phi)$ на этом интервале времени очень хорошо описывают результаты измерений. Мы сравнили экспериментальные данные B_r с модельной величиной $B_r(r, \theta, \phi)$, определив ее значение из выражения:

$$B_r(r,\theta,\phi) = \frac{B_0(r_0=1)r_0^2}{r^2}.$$
 (6)

Предварительно из экспериментальных данных были вычислены средние значения радиальной компоненты поля B_r при r = 2 а. е. в южном и северном полушариях гелиосферы. Из данных в южном полушарии за 21 день (13 октября–2 ноября 1994 г.) получены среднее значение расстояния до Солнца $\langle r \rangle = 1.99$ а. е. (усреднение 2.07–

Рис. 5. Величина отношения B_t/B_r (серая линия) и величина ($-\omega r \sin \theta$)/*V* (черная линия) по данным ULYSSES за все время работы KA.

Рис. 6. Величина отношения B_t/B_r (серая линия) и величина ($-\omega r \sin \theta$)/V (черная линия) по данным ULYSSES за 9 августа 1993—16 августа 1996 гг. Штриховой линией показана гелиоширота КА (правая ось ординат).

1.93 а. е.), средняя величина $\langle B_r \rangle = -0.78$ нТл и среднее значение гелиошироты $\langle \lambda \rangle = 72.43^{\circ}$ S (усреднение в интервале 76.1–70.4° S). Но так как ULYSSES приближался к Солнцу до расстояния r = 1.34 а. е. и нужно было сравнить теорию и эксперимент на интервале расстояний от 1.34 до 2 а. е., то была определена величина радиальной компоненты поля $B_0(r_0 = 1)$ при $r_0 = 1$ а. е.:

 $B_0(r_0=1)=\langle B_r\rangle r^2,$

что составляет -3.10 нТл.

Таким же образом для $B_0(r_0 = 1)$ в северном полушарии была получена величина $B_0(r_0 = 1) =$ $= \langle B_r \rangle r^2 = -2.96$ нТл при среднем значении северной гелиошироты $\langle \lambda \rangle = 79.91^\circ$ N (усреднение в интервале гелиоширот 79.2–80.2–79.8° N).

Рис. 7. Сравнение экспериментальной величины B_r (серая линия) с расчетной величиной $B_r(r, \theta, \varphi) = B_0/r^2$ (жирная линия) в южном и северном полушариях гелиосферы по данным KA ULYSSES в интервале расстояний 1.35–4.5 а. е. Тонкой черной линией показана зависимость $B_r(r, \theta, \varphi) = B_0/r^{5/3}$. Штриховой линией показана гелиоширота KA.

Используя полученные значения для $B_0(r_0 = 1)$ и выражение (6), можно вычислить теоретическое значение $B_r(r, \theta, \phi)$ на интервале расстояний 4.5–1.34–4.5 а. е. и в интервале углов от 35° S через Южный и Северный полюсы Солнца до 35° N и сравнить его с измеренным значением B_r . Результаты этого сравнения показаны на рис. 7. Без особой математической обработки очевидно, что наблюдаемая радиальная компонента поля B_r изменяется как $B_0(r_0 = 1)/r^2 = B_r(r, \theta, \phi)$ в южном и северном полушариях гелиосферы в широком диапазоне гелиоширот и расстояний в полном соответствии с паркеровской моделью ГМП.

В работе [Кhabarova and Obridko, 2012] показано, что зависимость радиальной компоненты ГМП от радиуса на эклиптике на расстоянии от 0.3 до 5 а. е. хорошо описывается законом $B_r \sim 1/r^{5/3}$. Мы сравнили зависимости $B_r \sim 1/r^2$ и $B_r \sim 1/r^{5/3}$ по данным KA ULYSSES в 1993–1996 гг. за пределами эклиптики (рис. 7). Сравнение показало, что зависимость $B_r \sim 1/r^2$ точнее согласуется с экспериментальными данными, чем зависимость $B_r \sim 1/r^{5/3}$.

На рисунке 8 представлены данные по измеренной B_t и вычисленной $B_{\phi}(r, \theta, \varphi) = \frac{-\omega r \sin \theta}{V} \times B_r(r, \theta, \varphi)$ азимутальным компонентам поля. При вычислениях использовались значения скорости солнечного ветра *V*, взятые из эксперимен-

та. Как и в случае радиального поля, измеряемая азимутальная компонента поля B_t ведет себя как паркеровская величина.

Чтобы показать, что паркеровская модель ГМП в рассматриваемый период времени описывает все три компоненты поля, на рис. 9 приводится также экспериментально определенная гелиоширотная компонента поля B_n . В паркеровской модели ГМП $B_{\theta}(r, \theta, \phi) = 0$, что согласуется с измерениями — в среднем близка к нулю и наблюдаемая B_n -компонента.

Третий "быстрый" пролет КА ULYSSES вблизи Солнца, так же, как и первый пролет, проходил в канун минимума солнечной активности (2006-2008 гг.). В течение почти трех лет ULYSSES находился вне секторной зоны, и соотношение $B_t/B_r = -\omega r \sin \theta/V$ выполнялось вполне хорошо, хотя и не так чисто, как в 1993–1995 гг. (рис. 10). Выросла зашумленность данных, возможно по техническим причинам. На рисунке 11 видно, что между наблюдаемой азимутальной В, компонентой поля и паркеровской величиной $B_{0}(r, \theta, \phi) =$ $= -\omega r B_r \sin \theta / V$ имеется хорошее согласие. Мы установили также, что экспериментально определенная радиальная компонента поля В, в это время зависит от расстояния *r* таким же образом, как и паркеровская величина $B_r(r, \theta, \phi) = B_0 r_0^2 / r^2$.

ГЕОМАГНЕТИЗМ И АЭРОНОМИЯ том 61 № 3 2021

Рис. 8. Сравнение наблюдаемой величины азимутальной компоненты B_t (серая линия) с расчетной величиной $B_{\phi}(r, \theta, \phi)$ (черная линия) в южном и северном полушариях гелиосферы. Расстояние KA ULYSSES от Солнца (левая ось координат) показано штрихпунктирной линией, гелиоширота показана пунктиром.

Рис. 9. Гелиоширотная компонента поля B_n в южном и северном полушариях гелиосферы. Расстояние KA ULYSSES от Солнца и его гелиоширота показаны так же, как на рис. 8.

4. МАГНИТНОЕ ПОЛЕ В МАКСИМУМЕ АКТИВНОСТИ 1999–2002 гг. ПО ДАННЫМ КА ULYSSES

Второй пролет КА ULYSSES от 35° южной гелиошироты через Южный и Северный полюсы Солнца до 35° северной гелиошироты в сентябре 1999—августе 2002 гг. включает период максимума активности 23-го солнечного цикла. Поведение отношения B_t/B_r в это время, показанное на рис. 12, существенно отличается от того, что мы видели во время первого и третьего пролетов. Знак отношения B_t/B_r бывает как положительным, так и отрицательным. Значительно увеличились флуктуации этого отношения и по этой

ГЕОМАГНЕТИЗМ И АЭРОНОМИЯ том 61 № 3 2021

Рис. 10. Величина отношения B_t/B_r (серая линия) и величина ($-\omega r \sin \theta$)/V (черная линия) по данным ULYSSES в период, близкий к минимуму солнечной активности 2009 г. Гелиоширота КА показана штриховой линией.

Рис. 11. Сравнение экспериментальной величины азимутальной компоненты поля B_t (серая линия) с расчетной величиной $B_{\phi}(r, \theta, \phi)$ (черная линия) в южном и северном полушариях гелиосферы во время третьего быстрого облета Солнца КА ULYSSES. Гелиоширота КА показана штриховой линией.

причине нельзя сказать ничего определенного о согласованности в поведении величин B_t/B_r и $(-\omega r \sin \theta)/V$.

Известно, что в период максимумов солнечной активности в высокоширотных областях Солнца изменяются направления солнечных магнитных полей — переполюсовка. Это явление происходит обычно за время от половины года до одного года и не одновременно на Южном и Северном полюсах Солнца. Радиальная компонента поля может быть неустойчивой по знаку во время переполюсовки. ULYSSES пролетал над районом, близким к Южному полюсу Солнца в декабре 2000–январе 2001 гг. и регистрировал как положительную, так и отрицательную величину *B_r*. По этой причине оказалось невозможным удовле-

Рис. 12. Величина отношения B_t/B_r (серая линия) и величина (– $\omega r \sin \theta$)/V (черная линия) в период максимума солнечной активности 1999—2002 гг. Штриховой линией показана гелиоширота KA ULYSSES.

творительно определить среднюю величину $\langle B(r) \rangle$ радиальной компоненты при r = 2 а. е. Из-за отсутствия корректной величины $\langle B(r) \rangle$ в южном полушарии не удалось сравнить измеряемые величины B_r и B_t с модельными величинами. Формально определенное значение $B_0(r_0 = 1)$ в южном полушарии оказалось равным $B_0(r_0 = 1) =$ = -0.813 нТл, что, очевидно, неправильно по величине, но по знаку может быть правильным, так как знак B_r -компоненты в южном полушарии до переполюсовки был отрицательным.

Ко времени пролета над Северным полюсом Солнца (гелиоширота 80.2° N), в первой половине октября 2001 г., переполюсовка магнитных полярных полей уже завершилась, среднее значение радиальной компоненты $\langle B(r) \rangle$ при r = 2 а. е. имело отрицательный знак, так что величина $B_0(r_0 = 1)$ хорошо определялась и была равной $B_0(r_0 = 1) = B_r r^2 = -2.96$ нТл.

Сравнение экспериментально определенных величин B_r и B_t с расчетными величинами в южном и северном полушариях гелиосферы показаны на рис. 13 и 14. Согласие между измеряемыми величинами и паркеровскими компонентами $B_r(r, \theta, \phi)$ и $B_{\phi}(r, \theta, \phi)$ не такое хорошее, как во время 1-го и 3-го пролетов КА над полюсами Солнца. Формальная оценка коэффициента корреляции R между измерениями и расчетом для B_r и $B_r(r, \theta, \phi)$ дает R = 0.166. Для B_t и $B_{\phi}(r, \theta, \phi)$ эта величина равна R = 0.033. Для первого пролета (1993–1996 гг.), например, соответствующие величины коэффициентов корреляции *R* были равны 0.877 и 0.834.

Гелиоширотная компонента поля B_n в период максимума солнечной активности 2000 г. флуктуирует около нуля, но величина флуктуаций в 2— 4 раза выше по сравнению с флуктуациями в годы, близкие к минимумам 1996 и 2009 гг.

В 1999—2002 гг. КА ULYSSES находился в секторной зоне — в той части гелиосферы, в которой расположен гелиосферный токовый слой. В 1996—1999 и 2002—2005 гг. ULYSSES также находился в секторных зонах, и сравнение измеряемых компонент поля B_r и B_t с расчетными величинами $B_r(r, \theta, \phi)$ и $B_{\phi}(r, \theta, \phi)$ показало, что корреляция между ними низкая.

5. ОБСУЖДЕНИЕ И ЗАКЛЮЧЕНИЕ

В работе проверено следствие паркеровской модели гелиосферного магнитного поля – соотношение $B_{\phi}/B_r = -\omega r \sin \theta/V$ – на радиальных расстояниях от 1 до 19 а.е. по данным KA VOYAG-ER 2, VOYAGER 1 и ULYSSES. Результаты этой проверки вблизи эклиптики (при $\sin \theta \approx 1$) показали, что на расстояниях r > 5 а. е. предсказания паркеровской модели, в общем, не согласуются с экспериментальными данными. Установлено, что при удалении KA от Солнца абсолютная величина выражения $(-\omega r)/V$ возрастает примерно пропорционально расстоянию r, тогда как величина отношения B_{ϕ}/B_r флуктуирует около нуля независимо от расстояния. Выводы об отсутствии связи между величинами B_{ϕ}/B_r и $(-\omega r)/V$ следу-

Рис. 13. Сравнение наблюдаемой радиальной компоненты B_r (серая линия) с расчетной величиной $B_r(r, \theta, \varphi) = B_0/r^2$ (черная линия) в южном и северном полушариях гелиосферы в период максимума солнечной активности 2000–2002 гг. по данным KA ULYSSES. Гелиоширота KA показана штриховой линией.

Рис. 14. Сравнение наблюдаемой азимутальной компоненты поля B_t (серая линия) с расчетной величиной $B_{\varphi}(r, \theta, \varphi)$ (черная линия) в южном и северном полушариях гелиосферы в 2000–2002 гг. Гелиоширота KA ULYSSES показана штриховой линией.

ют как из данных VOYAGER 2, так и из данных VOYAGER 1. В интервале расстояний 1–5.4 а. е., рассмотренном по данным ULYSSES, сделать убедительные выводы о связи модели с результатами наблюдений не представляется возможным в связи с большой величиной флуктуаций отношения B_{ϕ}/B_{r} .

При анализе выражения $B_{\phi}/B_r = -\omega r \sin \theta/V$ вне эклиптики выяснилось, что в данных KA ULYSSES можно выделить интервалы времени (август 1993—август 1996 гг., февраль 2006—октябрь 2008 гг.), когда отношение B_{ϕ}/B_r хорошо согласуется с величиной ($-\omega r \sin \theta$)/V. Особен-

293

ность этих выделенных интервалов заключается в том, что в это время ULYSSES находился за пределами секторных зон (за исключением коротких интервалов времени, ~20 дней, при перелетах через приэкваториальные районы вблизи Солнца). При этом выполнялись все требования, предъявляемые паркеровской моделью к соотношению $B_{\phi}/B_r = -\omega r \sin \theta/V$. Во-первых, величина B_t/B_r изменялась во времени и в пространстве согласованно с правой частью выражения $(-\omega r \sin \theta)/V$, во-вторых, флуктуации B_{ϕ}/B_r были малы и, втретьих, величина отношения B_t/B_r всегда была отрицательна. При этом выполнялась также паркеровская зависимость для радиальной компоненты $B_r(r, \theta, \phi) = B_0 r_0^2 / r^2$ и для азимутальной компоненты $B_{\omega}(r,\theta,\phi) = (-\omega r B_r \sin \theta)/V$. Поведение гелиоширотной компоненты поля В_n также хорошо согласовалось с паркеровской моделью ГМП.

В течение девяти лет, с начала 1997 по 2006 гг., ULYSSES проводил измерения в пределах секторных зон, там, где ГМП меняет направление при пересечении ГТС. Этот период времени включает максимум солнечной активности 2000 г., когда угол наклона ГТС к экваториальной плоскости гелиосферы достигал 70 градусов. ГМП в этих условиях дополнительно возмущено. Так, при сравнении гелиоширотных компонент поля B_n в 1995 г. и в 2001 г. было установлено, что флуктуации величины В_n в период максимума солнечной активности возрастают в 3-4 раза. Экспериментальные данные за 1997-2006 гг. паркеровская модель ГМП не описывает, и причина заключается в том, что не выполняются те условия и предположения, с учетом которых она была сформулирована.

Основные предположения модели состоят в том, что 1) газ сферически симметрично вытекает из вращающегося Солнца или с поверхности источника, расположенной на некотором расстоянии от Солнца; 2) скорость газа И в направлении от Солнца является постоянной и не зависит от угловых координат; 3) за пределами некоторого расстояния r = b газ движется свободно. Модель ГМП была предложена Паркером в то время, когда возможность сравнить теоретические представления с экспериментальными данными была крайне ограничена или отсутствовала вовсе. И позже выяснилось, что в действительности гелиосфера устроена сложнее. Оказалось, что в гелиосфере постоянно существует токовый слой, который нарушает сферическую симметрию. Токовый слой имеет сложную геометрическую форму. Он расположен наклонно к плоскости солнечного экватора, причем угол наклона ГТС изменяется в течение 11-летнего солнечного цикла в широких пределах — от 4° до 70°. В некоторых случаях, в периоды максимумов солнечной активности, токовый слой распадается на отдельные участки, не связанные с Солнцем. Радиальная скорость газа *V* в окрестностях ГТС подавлена.

Компоненты В, и В, гелиосферного магнитного поля имеют противоположные направления по разные стороны ГТС. При пересечении токового слоя КА регистрирует изменение направлений В. и В. не одновременно. При этом возникают ситуации, когда в течение продолжительного времени B_r и B_t имеют один и тот же знак, что приводит к тому, что $B_t/B_r > 0$. Кроме того, на токовом слое всегда есть участки, на которых $B_r \cong 0$, и тогда величина отношения B_t/B_r сильно возрастает. Эти два эффекта наблюдаются как на часовых данных по компонентам B_r и B_t , так и при суточном их усреднении. Условие $B_{\omega}/B_r = -\omega r \sin \theta/V$ на токовом слое практически нарушается всегда. Возможно, что на ГТС генерируется собственное магнитное поле [Svirzhevsky et al., 2014].

Зависимость скорости солнечного ветра V от гелиошироты также нарушает сферически симметричную картину. Из высокоширотных районов короны Солнца вытекает плазма со скоростью, в 2 раза превышающей ее скорость в низких гелиоширотах. Источником быстрого ветра являются и корональные дыры, которые появляются и на средних гелиоширотах и в районе гелиоэкватора. Свой вклад в неоднородность скорости ветра вносят транзиентные образования, связанные с корональными выбросами массы. Все это приводит к тому, что паркеровская модель описывает ГМП только в отдельных местах и в отдельные интервалы времени, когда выполняются те условия и предположения, с учетом которых она была сформулирована.

Одной из причин появления этой работы была необходимость в выяснении того, в какой степени паркеровскую модель ГМП можно использовать в задачах по модуляции ГКЛ, так как наша группа проводит многолетние (с 1957 г.) зондовые измерения космических лучей в атмосфере Земли и проводит расчеты, описывающие поведение ГКЛ в 11-летних и 22-летних солнечных циклах [Калинин и др., 2017]. В этих расчетах паркеровская модель ГМП используется без всяких ограничений на расстояниях от 1 до 120 а. е. и на любой фазе солнечного цикла. хотя и с небольшими модификациями [Jokipii and Kota, 1989; Smith and Bieber, 1991]. Большинство групп, исследующих модуляцию ГКЛ, поступают так же, по той причине, что эта модель проста и удобна в использовании. На основании данных, которые приводятся в этой работе, можно сделать вывод, что использовать более-менее успешно паркеровскую

модель для описания модуляции ГКЛ можно только в периоды времени, близкие к минимумам солнечной активности.

6. БЛАГОДАРНОСТИ

Авторы выражают благодарность научным группам, проводившим эксперименты на KA ULYSSES, VOYAGER 1 и VOYAGER 2, за данные по магнитным полям и скорости солнечного ветра, представленные в интернете.

ФИНАНСИРОВАНИЕ РАБОТЫ

Работа была частично поддержана Российским фондом фундаментальных исследований, РФФИ (грант № 18-02-00582) и Программой Президиума РАН "Фундаментальные свойства материи и астрофизика".

СПИСОК ЛИТЕРАТУРЫ

- Бадалян О.Г., Обридко В.Н. Дифференциальное вращение солнечной короны по данным о магнитном по-ле // Письма в астрон. журн. Т. 44. С. 791–798. 2018. https://doi.org/10.1134/S0320010818110013

— Веселовский И.С., Дмитриев А.В., Суворова А.В. Алгебра и статистика солнечного ветра // Космич. исслед. Т. 48. № 2. С. 115-130. 2010.

— Калинин М.С., Базилевская Г.А., Крайнев М.Б., Свиржевская А.К., Свиржевский Н.С. Модуляция галактических космических лучей в 22-24 солнечных циклах. Анализ и физическая интерпретация // Геомагнетизм и аэрономия. Т. 57. № 5. С. 592-601. 2017. https://doi.org/10.7868/S00167940170501X

- Borovsky J.E. On the variations of the solar wind magnetic field about the Parker spiral direction // J. Geophys. Res. V. 115. A09101. 1410. 2010.

https://doi.org/10.1029/2009JA015040

- Bruno R., Bayassano B. On the winding of the IMF spiral for slow and fast wind within the inner heliosphere // Geophys. Res. Lett. V. 24. № 18. P. 2267-2270. 1997. https://doi.org/10.1029/97GL02183

- Burlaga L.F., Ness N.F., Belcher J.W., Lazarus A.J., Richardson J.D. Voyager observations of the magnetic field, interstellar pickup ions and solar wind in the distant heliosphere // Space Sci. Rev. V. 78. Issue 1-2. P. 34-42. 1996.

- Burlaga L.F., Ness N.F., Richardson J.D. Transition from the unipolar region to the sector zone: Voyager 2, 2013 and 2014 // Astrophys J. V. 841:47 (13pp). 2017. https://doi.org/10.3847/1538-4357/aa6f5c

- Burlaga L.F., Ness N.F., Wang Y.-M., Sheeley N.R.Jr. Heliospheric magnetic field strength and polarity from 1 to 81 AU during the ascending phase of solar cycle 23 // J. Geophys. Res. V. 107. № A11. 1410. 2002. https://doi.org/10.1029/2001JA009217

- Fisk L.A. Motion of the footpoints of heliospheric magnetic field lines at the Sun: Implications for recurrent energetic particle events at high heliographic latitudes // J. Geophys. Res. V. 101. № A7. P. 15547–15553. 1996. https://doi.org/10.1029/96JA01105

- Jokipii J.R., Kota J. The polar heliospheric magnetic field // J. Geophys. Res. Lett. V. 16. № 1. P. 1–4. 1989. https://doi.org/10.1051/0004-6361/200913638

Khabarova O., Obridko V. Puzzles of the interplanetary magnetic field in the inner heliosphere // Astrophys. J. V. 761:82 (10pp). 2012.

https://doi.org/10.1088/0004-637X/761/2/82

Owens M.J., Forsyth R.J. The heliospheric magnetic field // Living Rev. in Solar Phys. V. 10. A5 P. 1–52. 2013. https://doi.org/10.12942/lrsp-2013-5

- Parker E.N. Dynamics of the interplanetary gas and magnetic fields // Astrophys. J. V. 128. P. 664-676. 1958. https://doi.org/10.1086/146579

– Roberts D.A., Giacalone J., Jokipii J.R., Goldstein M.L., Zepp T.D. Spectra of polar heliospheric magnetic fields and implications for field structure // J. Geophys. Res. V. 112. № A08103. P. 1–6. 2007.

- Schatten K.H. Coronal and interplanetary magnetic field geometry: Streak lines // J. Geophys. Res. V. 106. № A8. P. 15.833–15.840. 2001. doi 2000ĴA000102

- Scherer K., Fichtner H., Effenberger F., Burger R.A., Wiengarten T. Comparison of different analytic heliospheric magnetic field configurations and their significance for the particle injection at the termination shock // Astron. Astrophys. V. 521. № A1. P. 1–8. 2010.

https://doi.org/10.1051/0004-6361/200913638

- Smith C.W., Bieber J.W. Solar cycle variation of the interplanetary magnetic field spiral // Astrophys. J. V. 370. Part 1. P. 435-441. 1991.

- Smith E.J., Balogh A. Ulysses observations of the radial magnetic field // Geophys. Res. Lett. V. 22. № 23. P. 3317-3320. 1995.

https://doi.org/10.1029/95GL02826

- Smith E.J., Balogh A., Forsyth R.J., McComas D.J. Ulysses in the south polar cap at solar maximum: Heliospheric magnetic field // Geophys. Res. Lett. V. 28. № 22. P. 4159-4162.2001.

- Sternal-O., Engelbrecht N.E., Burger R.A., Ferreira S.E.S., Fichtner-H., Heber B., Kopp-A., Potgieter-M.S., Scherer K. Possible evidence for a Fisk-type heliospheric magnetic field. // Astrophys. J. V. 741. P. 1–12. 2011. https://doi.org/10.1088/0004-637X/741/1/23

- Svirzhevsky N.S., Bazilevskaya G.A., Svirzhevskaya A.K., Stozhkov Yu.I. Comparison of measured and calculated magnetic fields along the Ulvsses orbit // Adv. Space Res. V. 55. № 3. P. 208–220. 2014.

https://doi.org/10.1016/j.asr.2014.80.009

- Thomas B.T., Smith E.J. The Parker spiral configuration of the interplanetary magnetic field between 1 and 8.5 AU // J. Geophys. Res. - Space V. 85. № 12. P. 6861-6867. 1980. https://doi.org/10.1029/JA085iA12p0881