ОСОБЕННОСТИ ГЕОХИМИИ РЕДКИХ ЭЛЕМЕНТОВ В ЦИРКОНАХ ИЗ РАННЕПАЛЕОЗОЙСКИХ ГРАНИТОВ НА ТЕРРИТОРИИ АНГАРО-ВИТИМСКОГО БАТОЛИТА

© 2020 г. Е. В. Левашова^{а, *}, Д. А. Носков^{ь, **}, С. Г. Скублов^{а, с, ***}

^аИнститут геологии и геохронологии докембрия РАН наб. Макарова, 2, Санкт-Петербург, 199034 Россия ^bИнститут геохимии им. А.П. Виноградова СО РАН ул. Фаворского, 1a, Иркутск, 664033 Россия ^cСанкт-Петербургский горный университет Васильевский остров, 21 линия, 2, Санкт-Петербург, 199106 Россия *e-mail: katerina232k@yandex.ru **e-mail: noskov.deniz78@yandex.ru ***e-mail: skublov@yandex.ru Поступила в редакцию 07.12.2018 г. После доработки 10.06.2019 г. Принята к публикации 05.07.2019 г.

Анализ состава циркона из раннепалеозойских известково-щелочных гранитоидов из центральной части ареала Ангаро-Витимского батолита показал наличие двух разновидностей циркона с устойчивыми геохимическими различиями. Центральные неизмененные области цирконов, однородные в обратно-рассеянных электронах (BSE), характеризуются "магматическим" типом распределения редкоземельных элементов (REE) и умеренным содержанием элементов-примесей. Для измененных зон циркона характерно выполаживание спектров за счет роста легких и средних REE, а также повышенное содержание U, Th, Ca, Sr, Ba. Такая особенность состава циркона может быть обусловлена привносом флюида, вызвавшего метасоматическое изменение гранитов в процессе их микроклинизации. Геохимические особенности циркона, наряду с их внутренним строением, следует учитывать при геохронологическом исследовании циркона.

Ключевые слова: циркон, геохимия редких элементов, редкоземельные элементы, Ангаро-Витимский батолит

DOI: 10.31857/S0016752520020065

введение

Основной объем гранитоидного магматизма Байкальской складчатой области (БСО) приходится на палеозойские магматические события, где выделяются два этапа: раннепалеозойский постколлизионный и позднепалеозойский, природа которого еще дискуссионна (Litvinovsky et al., 2011; Ярмолюк и др., 1997; Donskaya et al., 2013).

Большая часть гранитоидов БСО представлена известково-щелочными олигоклаз-микроклиновыми гранитоидами (баргузинского и конкудеромамаканского комплексов), которые по петротипическим критериям были объединены в Ангаро-Витимский батолит (АВБ) площадью 150– 170 тыс. км². Большая часть опубликованных значений возраста для известково-щелочных гранитоидов БСО указывают на позднепалеозойский этап магматизма 320–290 млн лет, а подчиненная часть ложится в раннепалеозойский постколлизионный этап 440-425 млн лет (Неймарк и др. 1993; Рыцк и др., 1998, 2008; Ненахов и др., 2007; Герасимов и др., 2009). Опубликованные в настоящее время данные по раннепалеозойским гранитоидам (Неймарк и др., 1993; Рыцк и др., 1998, 2011; Ненахов и др., 2007) носят фрагментарный характер и не позволяют надежно выделить общие петрогенетические и геохимические черты раннепалеозойских гранитоидов, отделяющие их из разнообразия известково-щелочных гранитов БСО, и определить четкие пространственные границы соответствующего им комплекса. Представляется, что раннепалеозойский этап гранитообразования в значительной степени затушеван позднепалеозойским проявлением гранитоидного магматизма. Очевидно, что требуется более детальное изучение гранитоидов с раннепалеозойскими значениями возраста.

Данные по редкоэлементному составу циркона, получаемые с помощью локальных методов, позволяют установить генезис и изменения в цирконах, реконструируя магматическую историю содержащих его пород. Цель данной работы заключается в изучении минералого-геохимических особенностей цирконов из раннепалеозойских гранитов и признаков влияния на них более поздних этапов магматической активизации, что имеет теоретическую и методическую значимость при исследовании известково-щелочных гранитоидов БСО. Получение критериев сохранности и измененности цирконов в дальнейшем позволит надежно выделить раннепалеозойские граниты и их петрогенетические особенности на территории АВБ.

ХАРАКТЕРИСТИКА ПОРОД И МЕТОДИКА ИССЛЕДОВАНИЯ ЦИРКОНА

Объектом исследования являются цирконы из раннепалеозойских известково-щелочных гранитов БСО. Пробы были отобраны в районе Баргузинской впадины, в нижнем течении р. Гарга (5 проб), над местом, где по геофизическим данным располагается магмаподводящий канал (Герасимов и др., 2009), а также по одной пробе из мест близ р. Сахули и пос. Юбилейный, р. Чилир (рис. 1). Они относятся к наименее измененным разновидностям средне-крупнозернистых равномернозернистых и порфировидных олигоклаз-микроклиновых биотитовых гранитов, петротипически относимых к баргузинскому комплексу (Гребенщикова и др., 2009).

Для данных гранитоидов в целом характерно повышенное содержание Sr, Ba и B при относительно низком содержании Fe, Sn, Be, Li и Cs. B них отмечается максимальное содержание легких REE (LREE), по сравнению с породами других комплексов (например, зазинского) (Гребенщикова и др., 2009). При этом содержание тяжелых REE (HREE) в них существенно меньше, отсутствует Eu-аномалия, что свидетельствует об отсутствии магматического фракционирования полевых шпатов.

По валовым составам вышеуказанных проб, из которых были удалены вкрапленники микроклина, Rb–Sr методом была получена изохрона 425 \pm 22 млн лет (Гребенщикова и др., 2009). Оценка возраста выделенных вкрапленников микроклина показала их более молодой возраст приблизительно 332–300 млн лет, что свидетельствует об оторванной по времени метасоматической калишпатизации (Герасимов и др., 2009). Данное определение подтверждается значением возраста по монациту 425 \pm 2 млн лет из гнейсогранитов по бортам р. Гарга выше устья р. Икат (Рыцк и др., 2008).

Изображения цирконов в BSE были получены в ИГХ СО РАН на микрозонде JEOL JXA-8200

ЦКП ИНЦ. Содержание REE и редких элементов в цирконе определено на ионном микрозонде Cameca IMS-4f (ЯФ ФТИАН) по стандартной методике (Федотова и др., 2008). Температура кристаллизации циркона рассчитана с помощью титанового термометра (Watson et al., 2006). При построении спектров распределения REE состав циркона нормирован к составу хондрита CI (Мс-Donough, Sun, 1995). Были использованы дискриминационные диаграммы с выделенными полями "гидротермально-метасоматического" и магматического циркона, предложенные П. Хоскиным (Hoskin, 2005) и К. Киркландом (Kirkland et al., 2009), позволяющие выявить особенности состава, указывающие на генезис циркона.

РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ

Циркон из известково-щелочных гранитов представлен преимущественно хорошо ограненными зернами размером 80-200 мкм дипирамидально-призматического облика с неоднородным внутренним строением (рис. 2). В большинстве зерен отмечается наличие тонкополосчатой ростовой осцилляционной зональности характерной для циркона магматического генезиса, которая, как правило, наблюдается в кайме и краевой зоне цирконов, тогда как центральные участки зерен имеют однородное строение более темного цвета на изображении в обратно-рассеянных электронах (BSE). Циркон, характеризующийся однородным строением на BSE-изображении, имеет неоднородную окраску центральной и краевой зоны на катодолюминесцентном (CL) изображении. Кроме того, отмечаются зерна, имеющие следы изменений, для них характерны "изъеденные" границы с пятнистым внутренним строением, отчетливо выраженным на BSE-изображении.

Выделенные по особенностям внутреннего строения домены циркона резко отличаются и по распределению редких и редкоземельных элементов (табл. 1). Ядра (точки 8-1, 10-1, 40-1 на рис. 2) и центральные зоны циркона характеризуются дифференцированным характером распределения REE с увеличением содержания от легких к тяжелым REE, все спектры подобны и образуют довольно компактную полосу (рис. 3а). Суммарное содержание REE составляет от 300 до 1500 ppm, Lu_N/La_N варьирует от 500 до 4400 за счет переменного содержания легких REE, но в среднем составляет 1300. Отчетливо проявлена положительная Се-аномалия (Се/Се* = от 6 до 43, в среднем = 17) и выражена отрицательная Еианомалия (Eu/Eu * = от 0.2 до 0.5, в среднем = 0.4). По характеру распределения REE данный циркон отвечает циркону магматического генезиса (Hoskin, Schaltegger, 2003). Стоит отметить, что по характеру распределения REE каймы циркона

ГЕОХИМИЯ том 65 № 2 2020

аксим

0

0

 $\overline{}$

9

Ś

 \sim

and.

Պհ

9

INUI.

Чł

36

ΠD

Таблица	1. Распр	еделение	т хиядэд а	и редкозе	мельных	гнэмэце у	OB (ppm)	в цирко	не из гра	одиотин	в на терр	итории А	нгаро-Ві	1ТИМСКОГО	батолита	
Компо-	AV47Z8.1	AV47Z8.2	AV47Z8.3	AV47Z10.1	AV47Z10.2	AV47Z10.3	AV76Z22.1	AV76Z22.2	AV76Z23.1	AV76Z23.2	AV76Z24.1	AV76Z24.2	AV76Z26.1	AV76Z26.2	AV76Z28.1	AV76Z28.2
ненты	odfr	кайма	кайма	odiris	кайма	кайма	odпя	кайма	центр	край	центр	край	центр	край	центр	край
La	0.30	0.45	0.27	0.28	0.16	0.20	0.18	34.2	0.78	2.50	0.79	5.54	1.34	2.24	16.2	3.57
Ce	17.3	12.1	5.67	22.8	90.6	26.6	13.5	114	64.1	26.6	21.7	38.6	47.0	65.4	92.0	58.4
Pr	0.24	0.12	0.05	0.18	0.11	0.15	0.07	8.38	0.56	09.0	0.40	4.30	0.70	1.24	11.5	2.90
Nd	1.59	0.46	0.18	2.11	0.43	1.32	0.53	34.5	3.00	2.08	2.22	14.9	3.81	5.77	50.3	13.2
Sm	2.78	1.23	0.36	3.55	0.62	2.60	0.72	7.60	2.94	0.95	2.21	4.63	2.91	4.85	16.5	4.38
Eu	1.23	0.39	0.10	1.54	0.18	0.52	0.34	1.16	0.93	0.33	0.61	0.91	0.57	0.97	2.56	0.86
Gd	13.0	9.76	2.39	17.7	4.06	11.9	4.85	17.8	18.0	5.60	9.93	7.43	9.40	14.7	33.7	13.0
Dy	46.7	62.7	13.6	81.5	35.59	43.6	24.0	42.3	92.0	27.0	45.1	32.7	41.6	49.1	103	50.7
Er	106	198	49.0	234	118	117	63.5	107	293	88.0	129	85.7	124	121	227	139
Yb	226	530	164	535	343	289	174	279	803	258	337	276	354	308	576	370
Lu	38.1	93.8	37.2	9.96	71.1	51.1	32.1	54.8	165	53.6	68.2	58.3	72.8	63.2	112	75.1
Li	0.57	8.26	2.40	0.10	7.28	1.78	0.40	3.34	1.39	0.83	1.09	0.75	1.77	5.28	1.16	5.69
Ь	183	42.3	94.8	121	137	157	64.0	4954	59.9	73.8	159	79.5	27.7	74.2	180	161
Ca	50.0	31.9	21.5	16.9	43.4	41.0	30.9	7313	19.0	38.6	40.4	40.1	33.1	39.7	65.4	50.0
Ξ	10.3	3.87	2.62	17.8	10.6	17.7t	11.1	8.12	20.7	11.1	9.54	23.8	7.89	7.81	6.95	7.09
Sr	0.59	0.84	0.58	0.70	0.83	1.01	0.76	21.2	1.89	0.69	0.89	1.00	0.95	0.90	1.42	1.51
Y	597	1141	285	1286	683	706	354	675	1647	509	718	536	790	781	1503	116
Nb	163	114	60.4	74.8	89.4	49.1	54.8	52.0	49.8	36.7	40.0	10.1	29.3	23.3	43.8	23.1
Ba	1.73	3.43	2.42	1.82	1.50	2.46	2.79	2.23	1.73	1.78	2.42	1.96	2.33	1.98	3.36	10.4
Ηf	7893	11987	10733	6994	11153	9263	9233	10 228	10264	9433	9853	10034	9485	9370	10020	11090
Th	17.2	120	25.3	34.1	53.9	134	35	319	427	105	92.3	144	236	702	409	638
Ŋ	34.7	1271	352	79.5	1060	381	69	728	1232	350	321	483	607	1186	820	1329
Th/U	0.50	0.09	0.07	0.43	0.05	0.35	0.51	0.44	0.35	0.30	0.29	0.30	0.39	0.59	0.50	0.48
Eu/Eu*	0.62	0.34	0.31	0.59	0.34	0.29	0.55	0.30	0.39	0.44	0.40	0.47	0.33	0.35	0.33	0.35
Ce/Ce*	15.6	12.6	11.5	24.7	16.8	36.8	29.2	1.63	23.4	5.26	9.33	1.91	11.8	9.50	1.63	4.39
ΣREE	453	606	273	995	583	544	314	700	1442	465	617	529	658	636	1241	731
ΣLREE	19.4	13.1	6.17	25.4	9.76	28.3	14.3	191	68.4	31.8	25.1	63.3	52.9	74.6	170	78.1
ΣHREE	430	894	266	965	572	512	299	501	1370	432	589	460	602	556	1052	647
Lu _N /La _N	1224	2021	1311	3294	4380	2453	1678	15.4	2043	206	833	101	523	271	66.5	203
Lu _N /Gd _N	23.7	7.7	126	44.3	142	34.7	53.5	24.9	73.9	77.4	55.5	63.4	62.6	34.7	26.9	46.9
Sm _N /La _N	14.8	4.41	2.09	20.1	6.30	20.8	6.26	0.36	6.07	0.60	4.49	1.34	3.47	3.46	1.63	1.96
T(Ti), °C	746	999	637	797	748	796	752	725	812	752	739	826	723	722	712	714

188

ЛЕВАШОВА и др.

ГЕОХИМИЯ том 65 № 2 2020

Γ	Таблица	1. Окон	чание													
EOX	Компо-	AV76Z30.1	AV76Z30.2	AV76Z34.1	AV44Z37.1	AV44Z38.1	AV44Z40.1	AV44Z40.2	AV44Z49.1	AV44Z49.2	AV44Z50.1	AV44Z50.2	AV44Z55.1	AV44Z55.2	4V44Z56A. 1	AV44Z56A. 2
ИМ	ненты	центр	край	центр	центр	центр	odtris	кайма	оdпя	кайма	оdпя	кайма	изм.центр	изм. край	центр	центр
ия	La	0.28	0.84	0.87	0.25	0.32	0.53	0.36	0.54	0.46	1.47	4.68	95.4	37.1	0.89	0.83
	Ce	32.0	13.8	73.1	16.8	20.5	9.10	12.9	25.5	28.3	93.0	122	510	210	13.1	9.92
том	Pr	0.10	0.39	0.30	0.04	0.07	0.24	0.03	0.25	0.17	1.42	4.18	60.1	28.3	0.18	0.07
ı 65	PN	0.74	1.79	2.28	0.37	0.53	2.38	0.23	1.91	0.66	7.96	23.4	310	155	1.63	0.53
	Sm	1.24	0.74	3.46	0.62	06.0	2.70	0.55	2.60	1.32	9.29	8.23	69.6	41.9	2.03	0.81
N⁰	Eu	0.40	0.21	1.17	0.27	0.31	0.53	0.24	0.83	0.46	3.61	2.72	20.1	11.7	0.28	0.17
2	Gd	6.38	2.26	22.0	3.46	5.19	11.5	3.47	10.4	7.75	48.8	34.6	89.2	50.9	9.51	7.88
20	Dy	25.0	9.86	91.4	17.5	25.5	48.3	18.0	35.3	33.0	178	84.6	96.4	71.1	46.9	28.7
)20	Er	70.4	32.0	233	65.6	77.2	128	65.1	73.3	97.8	381	253	217	179	116	82.5
	Yb	181	110	555	213	232	323	217	162	296	722	706	675	547	261	252
	Lu	40.1	25.9	106	46.6	50.7	61.4	49.5	26.8	60.6	117	133	140	113	43.6	57.0
	Li	5.76	3.64	0.81	0.36	1.91	2.98	0.40	0.87	1.10	0.74	4.25	34.5	22.3	0.82	14.5
	Р	79.6	181	76.9	104	19.7	13.3	158	80.2	67.0	236	81.2	271	194	136	34.5
	Ca	22.3	38.2	73.9	24.5	21.2	70.5	35.0	21.2	29.0	82.9	232	1028	308	54.4	65.5
	Ξ	3.74	7.01	7.12	2.13	3.16	7.00	2.19	8.64	2.69	13.9	58.7	67.3	14.8	9.52	11.0
	Sr	0.67	0.98	1.13	0.74	0.74	1.25	1.06	0.52	0.80	1.83	15.5	69.4	13.4	1.23	1.73
	Y	459	189	1431	372	464	782	383	418	574	2186	1547	1441	1067	631	470
	δŊ	23.2	17.1	28.3	16.1	15.6	27.8	17.8	87.5	65.6	58.2	51.4	92.3	76.4	38.0	58.0
	Ba	1.87	3.15	2.68	1.83	0.59	2.79	1.49	2.44	1.09	3.26	9.47	39.8	11.8	2.93	2.48
	Hf	9266	11223	8921	9956	9066	7334	12122	7396	10119	7583	9755	14568	17793	8772	12433
	Th	282	74.7	413	56.2	72.8	79.2	65.6	19.1	94.8	147	437	935	482	30.1	64.0
	Ŋ	750	561	706	193	204	623	262	43.2	261	297	1490	4154	3065	131	1466
	Th/U	0.38	0.13	0.59	0.29	0.36	0.13	0.25	0.44	0.36	0.49	0.29	0.23	0.16	0.23	0.04
	Eu/Eu*	0.44	0.49	0.41	0.55	0.44	0.29	0.52	0.48	0.43	0.52	0.49	0.78	0.77	0.20	0.20
	Ce/Ce*	46.4	5.85	34.8	38.8	33.9	6.18	28.8	17.0	24.5	15.6	6.67	1.63	1.57	7.82	10.0
	ΣREE	358	198	1088	364	413	588	367	339	527	1563	1376	2283	1445	495	440
	<i><u>ZLREE</u></i>	33.1	16.9	76.6	17.5	21.4	12.3	13.5	28.2	29.6	104	154	975	431	15.8	11.4
	ΣHREE	323	180	1007	346	391	573	353	307	496	1447	1210	1219	961	477	428
	Lu _N /La _N	1398	297	1175	1791	1534	1114	1322	482	1274	766	274	14.1	29.3	469	659
	Lu _N /Gd _N	50.9	92.8	39.1	109	79.0	43.4	116	20.9	63.3	19.3	31.1	12.7	17.9	37.1	58.6
	Sm _N /La _N	7.18	1.42	6.36	3.94	4.51	8.14	2.42	7.76	4.63	10.1	2.81	1.17	1.81	3.64	1.55
	$T(\mathrm{Ti}), ^{\circ}\mathrm{C}$	663	713	714	623	650	712	625	730	639	773	928	945	779	739	752

ОСОБЕННОСТИ ГЕОХИМИИ РЕДКИХ ЭЛЕМЕНТОВ В ЦИРКОНАХ

Рис. 2. Изображение в обратно-отраженных электронах проанализированного циркона из раннепалеозойских гранитов с указанием точек анализа. Диаметр кратера ионного зонда в цирконе составляет примерно 20 мкм.

(точки 8-2, 8-3, 10-2, 10-3, 40-2, 49-2 на рис. 2 и 3а) имеют подобный характер распределения. Ядра циркона выделяются умеренным содержанием Hf (7000–8000 ppm), тогда как в кайме оно составляет 9000–12000 ppm и характеризуются более высоким значением Th/U отношения (0.4–0.5) и меньшим содержанием U и Th. Это можно объяснить низким содержанием этих элементов в расплаве (среднее содержание U и Th в известковощелочных гранитах БСО невелико и составляет 1.4 и 14 ppm, соответственно) по сравнению с каймой, в которой Th/U отношение составляет 0.05– 0.3. Кроме того, наблюдается незначительное понижение содержания Ti и Ca в кайме циркона.

В целом в центральных областях и ядрах циркона наблюдается низкое содержание примесей: P - 30-230 ppm, Ca - 30-80, Nb - 20-160, Th -20-430, U - 30-1500, Y - 300-2000 ppm (табл. 1). Содержание Ті в среднем составляет 8.6 ppm, что отвечает температуре кристаллизации циркона по "Ti-in-Zircon" термометру (Watson et al., 2006) около 730°С.

По характеру распределения REE резко отличаются краевые зоны циркона с осцилляционной зональностью (точки 22-2, 24-2, 50-2 на рис. 2, 3б) и измененные зерна (точки 55-1, 55-2 на рис. 2, 36). Спектры REE в них отличаются горизонтальным распределением в области LREE (Lu_N/La_N – 14– 300) с проявленной положительной Се-аномалией относительно небольшой величины (Се/Се* = = от 2 до 9, в среднем = 3), отрицательная Eu-аномалия отсутствует или слабо выражена и имеет невысокое значение (Eu/Eu* = от 0.3 до 0.8, в среднем = 0.5). В области HREE, как для центральных частей циркона, отмечается положительный наклон спектров REE с увеличением от Gd к Lu (Lu_N/Gd_N = 13-93). Суммарное содержание REE в таком цирконе составляет 200-1300 ppm, в измененных участках повышается до 2300 ррт. Содержание остальных примесей в целом соответствует их уровню в центральных неизменен-

Рис. 3. Спектры распределения REE в цирконе из раннепалеозойских гранитов: а – преимущественно для центральных участков и ядер циркона; б – для краевых зон и измененных зерен.

ных зонах, отмечается лишь большее содержание Th (100–900 ppm) и U (300–4000 ppm), при этом значение Th/U (0.1–0.6) остается таким же (табл. 1). В измененном цирконе наблюдается сравнительно повышенное содержание почти всех определяемых элементов-примесей, главным образом, REE (до 2300 ppm), U (до 4000 ppm), Ca (до 1000 ppm), Sr (до 70 ppm), Ba (до 40 ppm). Содержание Ti в краевых зонах циркона в среднем составляет 8 ppm, что отвечает температуре кристаллизации циркона около 725°C. Содержание Ti в измененных зернах увеличивается до 60–67 ppm, что делает не-

ГЕОХИМИЯ том 65 № 2 2020

корректными расчеты температуры по "Ti-in-Zircon" термометру (Watson et al., 2006).

Распределение LREE и HREE в центральных зонах и ядрах циркона слабо коррелирует между собой (r = 0.48). В целом содержание HREE не превышает 1100 ррт, LREE – 100 ррт (рис. 4а). Краевые участки циркона и измененные зерна характеризуются более повышенным содержанием LREE (свыше 1000 ррт) при сопоставимом количестве HREE. Стоит отметить, что материнские хорошо раскристаллизованные, иногда порфировидные биотитовые граниты характеризу-

Рис. 4. Соотношение LREE–HREE (a), Ca–Ti (б), Th–U (в), La–Sm_N/La_N (г), Sm_N/La_N–Ce/Ce^{*} (д), Ce/Ce^{*}–Eu/Eu^{*} (е) в цирконе. На диаграммах La–Sm_N/La_N (г), Sm_N/La_N–Ce/Ce^{*} (д), Ce/Ce^{*}–Eu/Eu^{*} (е) нанесены поля составов магматического (*1*) и гидротермально-метасоматического (*2*) циркона по (Hoskin, 2005), а для диаграммы La–Sm_N/La_N дополнительно отмечены границы зон (пунктирные линии) по (Kirkland et al., 2009).

ются относительно высокими содержаниями REE (среднее содержание 180 ppm).

Неформульные для циркона элементы Са и Ті не имеют корреляционной связи (r = 0.05). На бинарном графике фигуративные точки циркона представляют собой довольно компактную группу, растянутую вдоль оси Ті с содержанием Ті в пределах 2–20 ррт и Са – 20–100 ррт (рис. 46). В данный компактный кластер преимущественно входят фигуративные точки центральных зон изученного циркона. Краевые участки кристаллов циркона и в особенности измененный циркон ха-

рактеризуется резко повышенным содержанием как Ca (до 7000 ppm), так и Ti (до 70 ppm).

Распределение Th и U в изученных кристаллах циркона положительно коррелируется (r = 0.78), с образованием четкого линейного тренда (рис. 4в). В нижней части тренда лежат точки центральных зон и ядер циркона цирконов с невысоким содержанием Th и U, отражающим содержание этих элементов в гранитном расплаве. В верхней части тренда находятся точки циркона, относящиеся к краевой зоне кристаллов и к измененным участкам. Содержание в них Th и U существенно выше, достигая значений 1000 и 4000 ррт соответственно.

На диаграмме $La_N - Sm_N/La_N$ (рис. 4г) почти все точки циркона попадают в промежуточную область между магматическим и гидротермальным полями (Hoskin, 2005). При этом к полю гидротермального циркона приближены точки, соответствующие краевым и измененным зонам, тогда как вблизи поля магматического циркона лежат точки неизмененных центральных участков. По предложенныму другими авторами выделению фигуративных полей циркона практически все точки попадают в область гидротермального циркона (Kirkland et al., 2009).

На дискриминационной диаграмме Sm_N/La_N-Се/Се* (рис. 4д) прослеживается аналогичное, по сравнению с предыдущей диаграммой (La_N- Sm_N/La_N), положение фигуративных точек относительно обозначенных полей (Hoskin, 2005). Так, точки циркона показывают постепенный переход от поля магматического циркона к полю "гидротермально-метасоматического" циркона. Точки циркона, находящиеся в гидротермальном поле и в непосредственной близости к нему, относятся к обогащенным U, REE и другими примесями краевым и измененным областям циркона. Данные точки циркона характеризуются пологим спектром распределения REE с редуцированной Ce- или Euаномалиями. Оставшаяся часть точек циркона находится вблизи поля магматического циркона, а также частично в самом поле. Таким точкам свойственно невысокое содержание REE и других элементов-примесей. К такому циркону, как правило, относятся центральные неизмененные области зерна.

На диаграмме Ce/Ce*-Eu/Eu* (рис. 4е) большинство точек составов циркона располагаются вне области выделенных полей (Hoskin, 2005), что указывает на необходимость доработки данной дискриминационной диаграммы. Краевые зоны и измененные участки характеризуются невысокими показателями Ce/Ce* (менее 10), при этом значение Eu/Eu* остается примерно на одном и том же уровне в диапазоне от 0.2 до 0.6 (иногда до 0.8) и располагаются вблизи поля гидротермального циркона.

выводы

Проведенный анализ состава по редким элементам ширкона из раннепалеозойских известковощелочных гранитов на территории АВБ позволил выделить две разновидности этого минерала - магматическую и преобразованную, возможно гидротермального генезиса. Несмотря на то, что обе выделенные разновидности циркона имеют геохимические характеристики состава, свойственные циркону магматического генезиса, однако, между ними наблюдаются устойчивые различия в распределении ряда редких и редкоземельных элементов. "Магматический" тип распределения REE в полной мере присущ центральным областям циркона, которые имеют однородное строение в BSE и умеренное содержание элементов-примесей. Краевые участки и измененные зоны циркона отличаются от них практически горизонтальными спектрами в области легких и средних REE за счет повышенного содержания этих элементов. Эта разновидность циркона, кроме того, отличается повышенным содержанием U, Th, Ca, Sr и Ba, положительно коррелирующих друг с другом. Такая особенность состава циркона может быть обусловлена привносом флюида, вызвавшего метасоматическое изменение гранитов в процессе их калишпатизации.

Повышенное содержание U в измененных зонах (до 4000 ppm), наряду с возросшим содержанием неформульных элементов (в первую очередь, кальция), должно приводить к росту метамиктности и, как следствие, появлению дискордатнтности и искажению значений U-Pb возраста циркона вплоть до невозможности их интерпретации (Geisler, Schleicher, 2000). Полученные результаты требуют корректного применения локальных методов датирования циркона, сопровождающегося минералого-геохимическим изучением отличающихся по составу разновидностей циркона. Наложенные изменения, обнаруженные авторами в цирконах раннепалеозойских известково-щелочных гранитов, необходимо учитывать при датировании всех известково-щелочных гранитоидов БСО. Возможно, это поможет надежно разделить петротипы ранне- и позднепалеозойских этапов магматизма на данной территории.

Авторы благодарят С.Г. Симакина и Е.В. Потапова (ЯФ ФТИАН) за проведенное исследование геохимии циркона, Л.Ф. Суворову (ИГХ СО РАН) за получение BSE-изображений.

Исследование проведено в рамках выполнения государственного задания ИГХ СО РАН по Проекту IX.130.3.1. (0350-2016-0032) и является вкладом в выполнение темы НИР ИГГД РАН (0153-2019-0002).

СПИСОК ЛИТЕРАТУРЫ

Герасимов Н.С., Гребенщикова В.И., Носков Д.А. (2009) Изотопно-геохимические Герасимов Н.С., Гре-

ГЕОХИМИЯ том 65 № 2 2020

бенщикова В.И., Носков Д.А. Изотопно-геохимические различия баргузинских и зазинских гранитов (восточное Прибайкалье). Вестник Иркутского государственного технического университета 4, 17-22.

Гребенщикова В.И., Носков Д.А., Герасимов Н.С. (2009) Геохимия и условия формирования Ангаро-Витимского гранитоидного батолита (Прибайкалье). Вестник Иркутского государственного технического университета **3**, 24-30.

Неймарк Л.А., Рыцк Е.Ю., Ризванова Н.Г., Гороховский Б.М. (1993) О полихронности Ангаро-Витимского батолита по данным U-Rb метода по циркону и сфену. ДАН **333**(5), 634-637.

Ненахов В.М., Никитин А.В., Доронина Н.А., Матуков Д.И., Лепехина Е.Н., Бережная Н.Г. (2007) О полихронности Ангаро-Витимского батолита. *ДАН* **414**(4), 509-512.

Рыцк Е.Ю., Неймарк Л.А., Амелин Ю.В. (1998) Возраст и геодинамические обстановки формирования палеозойских гранитоидов северной части Байкальской складчатой области. *Геотектоника* (5), 46-60.

Рыцк Е.Ю., Макеев А.Ф., Сальникова Е.Б., Федосеенко А.М. (2008) Возраст гнейсогранитов Гарганской "глыбы" Баргузино-Витимского супертеррейна. Граниты и эволюция Земли: геодинамическая позиция, петрогенезис и рудоностность гранитоидных батолитов. Улан-Удэ: Изд-во БНЦ СО РАН, 334-335.

Рыцк Е.Ю., Ковач В.П., Ярмолюк В.В., Коваленко В.И., Богомолов Е.С., Котов А.Б. (2011) Изотопная структура и эволюция континентальной коры Восточно-Забайкальского сегмента центрально-азиатского складчатого пояса. *Геотектоника* (5), 17-51.

Турутанов Е.Х. (2007) Объемная модель Ангаро-Витимского батолита. *Геодинамическая эволюция литосферы Центрально-Азиатского подвижного пояса (от океана к континенту)*. Иркутск: Институт земной коры СО РАН **2**, 131-132. Федотова А.А., Бибикова Е.В., Симакин С.Г. (2008) Геохимия циркона (данные ионного микрозонда) как индикатор генезиса минерала при геохронологических исследованиях. *Геохимия* (9), 980-997.

Fedotova A. A., Bibikova E. V., and Simakin S. G., (2008). "Ion-microprobe zircon geochemistry as an indicator of mineral genesis during geochronological studies," *Geochem. Int.* **46**(9), 912-927.

Donskaya T.V., Gladkochub D.P., Mazukabzov A.M., Ivanov A.V. (2013) Late Paleozoic – Mesozoic subduction-related magmatism at the southern margin of the Siberian continent and the 150 million-year history of the Mongol-Okhotsk Ocean. J. As. Earth Sci. **62**, 79-97.

Hoskin P.W.O., Schaltegger U. (2003) The composition of zircon and igneous and metamorphic petrogenesis. *Rev. Mineral. Geochem.* **53**, 27-62.

Hoskin P.W.O. (2005) Trace-element composition of hydrothermal zircon and the alteration of Hadean zircon from the Jack Hills, Australia. *Geochim. Cosmochim. Acta* **69**, 637-648.

Geisler T., Schleicher H. (2000) Improved U-Th-total Pbdating of zircons by electron microprobe using a simple new background modeling procedure and Ca as a chemical criterion of fluid-induced U-Th-Pb discordance in zircon. *Chem. Geol.* **163**, 269-285.

Kirkland C.L., Whitehouse M.J., Slagstad T. (2009) Fluidassisted zircon and monazite growth within a shear zone: a case study from Finnmark, Arctic Norway. *Contrib. Mineral. Petrol.* **158**, 637-657.

Litvinovsky B.A., Tsygankov A.A., Jahn B.M., Y. Katzir, Be'eri-Shlevin Y. (2011) Origin and evolution of overlapping calc-alkaline and alkaline magmas: The Late Palaeozoic post-collisional igneous province of Transbaikalia (Russia). *Lithos* **125**, 845–874.

McDonough W.F., Sun S.S. (1995) The composition of the Earth. *Chem. Geol.* **120**, 223-253. Watson E.B., Wark D.A., Thomas J.B. (2006) Crystallization thermometers for zircon and rutile. *Contrib. Mineral. Petrol.* **151**, 413-433.