РАСПРОСТРАНЕНИЕ АНОКСИЧНЫХ УСЛОВИЙ В ФОТИЧЕСКОМ СЛОЕ БАССЕЙНА СЕДИМЕНТАЦИИ ПРИ ФОРМИРОВАНИИ ОРГАНИЧЕСКОГО ВЕЩЕСТВА ДОМАНИКОВЫХ ОТЛОЖЕНИЙ СЕВЕРНЫХ И ЦЕНТРАЛЬНЫХ РАЙОНОВ ВОЛГО-УРАЛЬСКОГО НГБ

© 2020 г. М. Б. Смирнов^{*a*, *, Н. П. Фадеева^{*b*, **}, Е. Н. Полудеткина^{*b*, ***}}

^аФедеральное государственное бюджетное учреждение науки Ордена Трудового Красного Знамени Институт нефтехимического синтеза им. А.В. Топчиева РАН,

Ленинский пр. д. 29, Москва, 119991 Россия

^bМосковский государственный университет им. М.В. Ломоносова Геологический факультет,

Ленинские горы д. 1, Москва, 119991 Россия

*e-mail: m1952s@yandex.ru

e-mail: fadeeva_nataly@mail.ru *e-mail: poludetkinaelena@mail.ru

Поступила в редакцию 25.02.2019 г. После доработки 18.06.2019 г. Принята к публикации 05.07.2019 г.

Рассмотрен состав соелинений – свилетелей аноксии в фотическом слое бассейна селиментации в образцах из отложений верхнего девона (саргаевский, семилукский и мендымский горизонты, фаменский ярус), относящихся к доманиковой формации, широко распространенной на территории Волго-Уральского бассейна. Изучен разрез север-юг, охватывающий северный и центральный районы Волго-Урала. Показано наличие сероводородного заражения фотического слоя на большей части изученной территории. Для семилукского времени граница сероводородного заражения проходила в средней части прибортовой зоны Мухано-Ероховского прогиба; наибольшей мощности оно достигало в северной части региона. В этой же части мощное постоянное сероводородное заражение зафиксировано в пашийское и саргаевское время. В зоне Мухано-Ероховского прогиба в мендымское и фаменское время наблюдается сильное изменение обстановки: от мощного постоянного заражения до полного его отсутствия. Показано, что изменения содержания свидетелей аноксии в пробах Камско-Бельской впадины и Южно-Татарского свода вызваны именно вариацией мощности зараженного слоя. Установлено, что в целом процессы полного гидрирования исходных полиенов преобладают над процессами циклизации для отложений доманикового типа во всем изученном регионе. Обнаружено, что отношение суммарного содержания во фракции ароматических соединений алкилбензолов к общему содержанию продуктов полного гидрирования исходных полиенов для ОВ отложений доманикового типа изученных районов не зависят от зрелости ОВ. Предложено объяснение этого факта.

Ключевые слова: Волго-Уральский бассейн, Южно-Татарский свод, свидетели аноксии, доманиковая формация, нефтематеринские отложения

DOI: 10.31857/S0016752520030103

Карбонатные, кремнисто-карбонатные и карбонатно-кремнистые отложения доманикового типа широко распространены в пределах Волго-Уральского и Тимано-Печорского нефтегазоносных бассейнов (НГБ). В силу их обогащенности органическим веществом (ОВ) их традиционно рассматривают как один из основных нефтематеринских комплексов этих регионов. При этом несмотря на очевидную важность для Волго-Уральского НГБ до последнего времени о составе ОВ этого типа пород была опубликована единственная работа (Гордадзе, Тихомиров, 2007), в которой приведены данные о насыщенных биомаркерах 3-х проб семилукского горизонта и 5-ти проб известняков фаменского яруса. Ароматические компоненты ОВ изучены не были. Следует отметить, что состав ОВ отложений верхнего девона Тимано-Печорского НГБ изучен намного лучше (Бушнев, 2002; Бушнев, 2009; Бушнев, Бурдельная, 2015; Бушнев и др., 2016; Бушнев и др., 2017).

Вместе с тем, первый опыт изучения состава фракций ароматических соединений из отложений семилукского и саргаевского горизонтов

Тлянчи-Тамакской площади, расположенной в северной части Южно-Татарского свода показал значимость анализа этих групп соединений. Во всех пробах были найдены высокие концентрации многочисленной группы весьма важных для геохимии соединений – свидетелей аноксии в фотическом слое бассейна седиментации (Полудеткина и др., 2017). То есть вещество отлагалось в условиях постоянной аноксии в фотическом слое бассейна седиментации при достаточно большой мощности зараженного сероводородом слоя воды. Установление таких особых условий формирования ОВ представляется весьма существенным хотя бы с точки зрения возможных путей и скорости его преобразования. Для Тимано-Печорского НГБ наличие сероводородного заражения фотического слоя при формировании отложений доманика было продемонстрировано в серии работ (Бушнев, 2002; Бушнев, 2009; Бушнев и др., 2016; Бушнев и др., 2017). Тем самым возникает естественный вопрос: насколько широко было распространено это заражение в пределах Волго-Урала при формировании осадков доманикового типа? И в каких зонах и какие периоды времени оно было постоянным и достаточно мощным, а где и когда – маломощным и/или эпизодическим?

Настоящая работа посвящена ответу на перечисленные вопросы, а также ряда других, обсуждаемых в связи с составом свидетелей аноксии в фотическом слое (Koopmans et.al., 1996; Cliffford et al., 1998) для северных и центральных районов Волго-Уральского НГБ на основании данных о составе фракций ароматических соединений ОВ из отложений доманикового типа ряда площадей Камско-Бельской впадины, Южно-Татарского свода и Муханово-Ероховского прогиба.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Хлороформный битумоид А экстрагировали из породы, дробленой до порошка размером 0.25 мм, хлороформом в аппарате Сокслета в течение не менее 120 часов. После стандартного осаждения асфальтенов гексаном, полученные мальтены были разделены на силикагеле (Merck), импрегнированном AgNO₃. При выделении фракции насыщенных углеводородов элюент — гексан, ароматических соединений — толуол.

Масс-спектральный анализ проводили на хроматомасс-спектрометре Thermo Focus DSQ II. Использована капиллярная колонка HP-5, длина 15 м, внутренний диаметр 0.25 мм, толщина фазы 0.25 мкм, газ-носитель–гелий. Режим работы: температура инжектора 300°С, начальная температура термостата хроматографа – 70°С, нагрев со скоростью 2°С/мин до 310°С, далее – изотерма в течении 20 мин; режим работы масс-спектрометра: энергия ионизации 70 эВ, температура источника 250° С, сканирование в диапазоне 10-650 Да со скоростью 1.0 скан/с, разрешение единичное по всему диапазону масс.

Методика идентификации соединений — свидетелей аноксии опиралась на данные (Коортапs et al., 1996; Cliffford et al., 1998) и описана в (Полудеткина и др., 2017; Смирнов, Полудеткина, 2018а). Основные характеристические ионы: m/z = 133, 134, 235, 237, 287, 169, 183, 209, 210, 223,274. Хроматограммы, построенные по этим ионам, приведены на рис. 1, 2.

РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ

Образцы, из которых выделены изученные фракции ароматических соединений в целом те же, для которых ранее изучен состав насыщенных биомаркеров (Смирнов и др., 2018). Они отобраны на 11 площадях (16 скважин), общее число образцов 93 (рис. 3, табл. 1). Большинство скважин приурочено к Южно-Татарскому своду (его северной, северо-восточной и центральной частям), одна – в Камско-Бельской впадине; остальные располагаются в бортовом склоне и в центре Муханово-Ероховского прогиба, являюшегося частью Камско-Кинельской системы прогибов, наложенных на восточную часть Мелекесской впадины. В целом можно говорить о изученном разрезе север-юг, охватывающем северный и центральный районы Волго-Урала. Основная часть проб – из отложений семилукского горизонта; для отдельных площадей получены данные для саргаевского и пашийского горизонта. На трех площадях Мухано-Ероховского прогиба представлены пробы мендымского горизонта и фаменского яруса.

На основной части изученной территории (Камско-Бельская впадина, Южно-Татарский свод) ОВ пород верхнего девона относительно слабо катагенетически преобразовано (градации катагенеза ПК, МК₁). Только в Муханово-Ероховском прогибе оно находится на градациях MK_2 - MK_3 , а в районе Пешковских скважин — MK_4 и более (Fadeeva et al., 2015). Данные о составе насыщенных биомаркеров приведены в (Смирнов и др., 2018). Таким образом, изученные отложения охватывают весь разрез доманикового комплекса (саргай-фамен) и подстилающих его кыновско-пашийских отложений, катагенез которых изменяется в широком диапазоне — от зоны незрелого OB до главных зон нефте- и газообразования.

Полный список идентифицированных соединений приведен на рис. 4 (всего – 63 вещества, хотя компоненты с нафталиновыми циклами обнаружены лишь в отдельных образцах). В соответствии с приведенных в (Koopman et al., 1996; Clifford et al., 1998) схемами вероятного образова-

Рис. 1. Типичные хроматограммы, построенные по характеристическим ионам *m*/*z* = 133 + 134. Нижняя – содержание свидетелей аноксии 5.5 мас. %, К_{лес} = 3.3, средняя – соответственно, 1.2 мас. % и 22, верхняя – 3.5 мас. % и 0.9. Залитыми кругами отмечены бензолы XXVIII, незалитыми – бензолы XXIX. Нумерация остальных пиков соответствует приведенной на рис. 4.

Рис. 2. Хроматограммы, построенные по характеристическим ионам с *m*/*z* = 169, 183, 209, 223, 235, 237, 287. Нумерация пиков соответствует приведенной на рис. 4. Залитым треугольником отмечены пики бифенилов XXVII.

ГЕОХИМИЯ

Рис. 3. Схема размещения изученных площадей. Числами 1–11 обозначены перечисленные в табл. 1 площади. Границы: *I* – тектонических элементов, *2* – распространения доманиковых отложений.

ния все они при количественном анализе сгруппированы следующим образом:

 – группа 1 – продукты гидрирования исходных полиеновых соединений I, II;

— группа 2 — прочие компоненты C_{40} — продукты циклизации в диагенезе с частичным гидрированием исходных (III — XII);

- группа 3 - соединения С₃₂ и С₃₃ - продукты, образовавшиеся в диагенезе путем элиминирования толуола или ксилолов из компонентов группы 2 (XIII - XX);

 – группа 4 – компоненты С₁₉–С₂₆ – продукты более глубокой деструкции в диагенезе (XXI–XXVI);

- группа 5 - ряд бифенилов XXVII;

 – группа 6 – 2,3,6-Ме₃-замещенные алкилбензолы XXVIII;

 – группа 7 – 3,4,5-Ме₃-замещенные алкилбензолы XXIX. Обобщенные результаты определения каждой из перечисленных групп для каждой площади приведены в таблице 2. В ней же представлены

 – общее содержание компонентов – свидетелей аноксии в фотическом слое бассейна седиментации во фракциях ароматических соединений;

 отношения суммарного содержания алкилбензолов XXVIII и XXIX к общему содержанию продуктов гидрирования исходных полиеновых соединений I, II – параметр, предложенный в (Koopman et al., 1996, Clifford et al., 1998) как показатель зрелости OB;

 процент от всех свидетелей аноксии, приходящийся на продукты реакций циклизации исходных полиеновых структур III—XXVII.

Последнюю величину рассматривали, чтобы оценить соотношение между глубиной протекания процесса циклизации исходных и их полного гидрирования в диагенезе (продукты полного

СМИРНОВ и др.

№ на рис. 3	Площадь	Скв.	Глубина, м	Возраст, горизонт	Порода	Количество образцов
1	Есенейская	117	2077-2090	Семилукский	Карбонатные, кремни- стые, смешанные*	9
			2012-2015	Пашийский	Кремнисто-карбонатные	5
2	Тлянчи-Тамакская	300	1675–1689	Семилукский	Карбонатные, кремни- стые, смешанные	7
			1704-1705	Саргаевский	Карбонатные	2
		859	1626-1630	Семилукский	Карбонатные, кремни- стые, смешанные	6
		839	1656-1630	Семилукский	Карбонатные, кремни- стые, смешанные	3
		139	Н.д.	Семилукский	Кремнистые	1
		852	Н.д.	Мендым	Кремнисто-карбонатные	1
3	Бухарская	750	Н.д.	Семилукский	Карбонатные, кремни- стые, смешанные	9
4	Березовская	32941	1707—1726	Семилукский	Карбонатные, кремни- стые, смешанные	9
5	Азнакаевская	23294	1688-1701	Семилукский	Карбонатные, кремнисто- карбонатные	7
6	Минибаевская	20335	1743-1748	Семилукский	Смешанные	1
7	Восточно-Ленино- горская	28951	1620-1628	Семилукский	Смешанные	2
8	Малогосвицкая	220	3231-3248	Семилукский	Карбонатно-кремнистые, карбонатные	6
9	Скифская	160	3052-3077	Фамен	Известняки	4
			3108-3114	Мендым	Смешанные	4
10	Сударовская	170	3004-3018	Фамен	Смешанные, известняки	3
			3048-3053	Мендым	Смешанные, известняки	2
11	Пешковская	42	3609-3622	Фамен	Смешанные, кремнистые	5
			3623-3626	Мендым	Смешанные	2
		41	3856-3872	Семилукский	Карбонатные, кремни- стые, смешанные	5

Таблица 1. Список изученных площадей с общей характеристикой проб

Примечание. "Смешанные" – карбонатно-кремнистые, кремнисто-карбонатные.

гидрирования — группы 1, 6 и 7) (Коортап et al., 1996; Полудеткина и др., 2017).

Анализ приведенных в табл. 2 сведений об общем содержании свидетелей аноксии во фракциях ароматических соединений дает следующую картину. В целом в изученном районе вариации их концентрации очень велики (в 500 раз). Наибольшие значения наблюдаются в северной части региона (Есинейская, Тлянчи-Тамакская площади). Для ОВ семилукского горизонта медианы достоверно уменьшаются с севера на юг в ряду Есинейская площадь, Тлянчи-Тамакская площадь, остальные площади Южно-Татарского свода и Малогосвитская площадь, Пешковская площадь. В ОВ семилукского горизонта последней (скв. 41) свидетели аноксии найдены только в одной пробе при крайне низком содержании (0.04%). Следовательно, граница сероводородного заражения в семилукское время проходила в средней части прибортовой зоны Мухано-Ероховского прогиба. При этом следует отметить, что, в отличие от площадей Южно-Татарского свода, на Малогосвитской площади, хотя и только в одной пробе, содержание свидетелей аноксии составляло менее 0.5% (измеренное значение — 0.4%). На Есинейской площади образцы пашийского горизонта примерно такие же, как и семилукского. Относительно ОВ мендымского горизонта и фаменского яруса получены данные только для Мухано-Ероховского прогиба (Скифская, Сударовская, Пеш-

Рис. 4. Структуры идентифицированных соединений – свидетелей аноксии в фотическом слое.

ковская площади). Из 6 проб мендыма близко расположенных Скифской и Сударовской площадей в одной концентрация свидетелей аноксии весьма высока (6.7%, Сударовская площадь), в двух умеренная (1.2 и 2.3%, соответственно, Сударовская и Скифская площадь) и в трех пробах Скифской площади – еще на порядок меньше (0.14–0.21%). На Пешковской площади в одной

Таблица 2. У	/средненные	характеристики	содержани	ия компоне	НТОВ — СВИ,	детелей ан	оксии во фра	кциях арома	тических сое	адинений 	
		Общее			% ot cyv	имы свидет	елей анокси	И		Сумма	Сумма
Площадь	Возраст	содержание свидетелей аноксии, мас. %	С ₄₀ , гидр.	С ₄₀ , проч.	Сумма С ₃₂ , С ₃₃	Сумма С ₂₁ –С ₂₇	Бифенилы XXVII	2,3,6-Ме ₃ - бензолы	3,4,5-Ме ₃ - бензолы	бензолов/С ₄₀ гидр.	продуктов циклизации
Есинейская	$\mathrm{D}_{\mathrm{3dm}}$	<u>1.5-9.6</u> <u>4.7/4.3-7.5</u>	$\frac{0-10}{2.3/1-4}$	0	0	<u>1-6</u> <u>1,6/1-3</u>	1-8 1.8/1.6-2	<u>58–77</u> <u>73/68–73</u>	$\frac{17-24}{22/20-23}$	7->1000 40/22-109	2-15 <u>3.4/3-5</u>
Есинейская	$\mathrm{D}_{\mathrm{3psh}}$	2.7–7.3 3.0/2.8–5.1	<u>0.5–5</u> <u>4/3–5</u>	0-1 0.5/0-1	0-1 0.9/0-1	<u>1–5</u> 4/3–4	<u>1-1.5</u> <u>1.2/1.1-1.3</u>	<u>58–65</u> 60/58–61	28–34 30/29–31	16–212 21 /16–31	<u>3-7</u> 6.7/4-7
Тлянчи- Тамакская	$\mathrm{D}_{\mathrm{3dm}},\mathrm{D}_{\mathrm{3sr}}$	<u>1.2-7.6</u> <u>3.0/2.2-5.2</u>	<u>6-52</u> <u>21/14-31</u>	<u>1-9</u> <u>1.6/1-2</u>	<u>0-6</u> 2.3/2-3	<u>3–25</u> 4.3/4–6	$\frac{0-14}{3/2-5}$	<u>18–65</u> 46/39–55	<u>11–23</u> <u>19/15–20</u>	0.6–13.8 3.0 /1.9–5.0	7–36 13/10–20
Бухарская	$\mathrm{D}_{\mathrm{3dm}}$	0.8–3.7 2.0/1.1–2.9	7–32 18/9–24	<u>1-4</u> 2/1.5-2	0.8-4 2.4/1.6-2.4	<u>2.5-7</u> <u>4.5/4-6</u>	1.2–3 1.8/1.6–2.3	42–62 53/45–57	<u>13–24</u> 20/19–22	1.9–12.3 4.2/2.7–8.5	7–16 11/9–13
Восточно- Лениногор- ская	$\mathrm{D}_{\mathrm{3dm}}$	2.8-3.2	26-45	3.55	4.5-4.5	57	1.0-2.5	28-38	12-18	0.9-2.1	16-18
минибаев- ская	$\mathrm{D}_{\mathrm{3dm}}$	6.0	7	2.5	2.5	6.5	3.5	59	19	10.8	15
Азнакаев- ская	$\mathbf{D}_{\mathrm{3dm}}$	<u>1.2–1.9</u> <u>1.6/1.4–1.7</u>	4-17 12/10-13	<u>0-6</u> <u>1.1/1-1.2</u>	0.6–1.8 1.4 /1.2–1.6	3-5 4/3.5-4	2.5-8 4.5/3.5-7.5	51–68 58/57–61	16-20 16.5/16-18	4.2–22 6.3/5.6–7.6	<u>8-15</u> <u>13/10-14</u>
Березов- ская	${ m D}_{ m 3dm}$	<u>1.2–2.7</u> <u>1.7/1.4–2.4</u>	<u>4–36</u> <u>15/7–19</u>	<u>0.8–3</u> 2/1.5–2.5	<u>1.5-4</u> 2 /2-2.5	<u>2.5-7</u> <u>4.5/4-6</u>	<u>1–9.5</u> 7.5/3–8.5	<u>37–64</u> 50/49–59	<u>15-20</u> <u>17/16-18</u>	1.6–18 4.4 /3.6–11	<u>9–20</u> <u>16/12–19</u>
Малого- свитская	${ m D}_{ m 3dm}$	0.5-6.4 1.5/1.3-1.8	<u>0-14</u> <u>0/0-1</u>	Н.П.О.	Н.П.О.	0-4 1.5/0.5-2	<u>0–3</u> <u>1.5/0.5–2</u>	<u>61–75</u> 70/67–72	21–33 25/22–28	5.9->300 > 90	<0.3-5 4/2-4
Сударов- ская	${\rm D}_{ m 3md},{\rm D}_{ m 3fm}$	0.4-6.7 <u>1.2/0.6-1.5</u>	<u>0-11</u> <u>0/0-2</u>	Н.П.О.	Н.П.О.	2.5-6 3.5 /3-4.5	<u>0-3.5</u> 0.8/0.5-3.5	<u>59–73</u> 66/60–72	<u>18–35</u> 26/21–27	~=>300 ~ 50	<u>4-7</u> <u>6/5-6</u>
Скифская	${ m D}_{ m 3fm}$	0.3–1.8 <u>1.4/1.2–1.6</u>	<u>0-0.6</u>	Н.П.О.	Н.П.О.	<u>0-3</u> 0.5/0-1	$\frac{0.3-7}{2/0.5-4}$	70–75 72/71–73	<u>18–27</u> 25 /23–26	>100->200	<u>0.3-10</u> 2.5/0.5-5
Скифская	${ m D}_{ m 3md}$	0.1–2.3 0.2/0.2–0.2	<u>1-7</u> <u>1.5/1-3</u>	Н.П.О.	Н.П.О.	<u>2-8</u> <u>3.5/3-3.5</u>	2.5-9 6/4-7.5	64-65 64.5/64-65	<u>22-24</u> <u>23/22-23</u>	<u>12–115</u> 66/43–87	<u>6–12</u> <u>10/9–11</u>
Пешков- ская, скв. 41	${ m D}_{ m 3dm}$	<0.02-<0.1	Н.Д.	Н.Д.	н.д.	н.д.	н.д.	н.д.	н.д.	н.д.	Н.Д.
Пешков- ская, скв. 42	$\mathrm{D}_{\mathrm{3md}},\mathrm{D}_{\mathrm{3fm}}$	<0.02-0.7 <0.02	н.д.	н.д.	н.д.	Н.Д.	н.д.	н.д.	н.д.	н.д.	Н.Д.
Примечания. Н.п.о. – ниже	Над чертой — предела обна	наибольшее и наил ружения; н.д. – нет	иенышее зна г данных.	ачения; под ч	сртой меди	ана (выделе	на жирным ш	ифтом) и гран	ницы, в которі	ые укладывается	50% значений.

284

СМИРНОВ и др.

ГЕОХИМИЯ том 65 № 3

2020

пробе свидетели аноксии не найдены (<0.02%), во второй их 0.4%. В ОВ фаменского яруса Скифской и Сударовской площадей вариации состава по этому параметру на порядок меньше: в четырех пробах содержание – от 1.2 до 1.8%, еще в трех – 0.3–0.6%. На Пешковской площади из пяти проб четыре не содержат свидетелей аноксии (предел обнаружения 0.02%). В одной пробе их 0.7%. То есть в этой зоне в отдельные интервалы времени имелось значительное сероводородное заражение фотического слоя, тогда как в другие оно охватывало узкий слой воды либо было эпизодическим, или отсутствовало. Из сравнения этих величин с полученными для нефтей Татарстана (Смирнов и др., 2019) следует, что доманиковые отложения центральной части Мухано-Ероховского прогиба следует исключить из списка возможных нефтематеринских пород нефтей этого региона.

Вариации суммарного содержания свидетелей аноксии при их в целом высокой концентрации могут быть связаны либо с изменением мощности зараженного слоя, либо с изменением его продуктивности (в обоих случаях зависимость прямая: увеличение мощности/продуктивности приводит к росту концентрации), либо с изменением продуктивности не зараженного сероводородом слоя (зависимость обратная). В случае низких концентраций добавляется еще одна возможность – изменение длительности интервалов времени, в течение которых заражение имело и не имело места. Разница между крайними значениями концентраций, которые следует рассматривать как высокие (условно – от ~1.5%, то есть такие, когда доля ОВ, сформированная в зараженной зоне, значительна (Полудеткина и др., 2017)) в изученных пробах примерно семикратная. Тогда если наблюдаемые вариации концентрации свидетелей аноксии обусловлены изменением продуктивности, то должна фиксироваться значимая корреляция между этой концентрацией и Соог (положительная при вариации продуктивности зараженного слоя и отрицательная – для не зараженного). Однако этого не наблюдается при примерно стократной разнице по величине Сорг. Следовательно, изменения содержания свидетелей аноксии в пробах Камско-Бельской впадины и Южно-Татарского свода вызваны вариацией мощности зараженного слоя. Для Скифской, Сударовской и Пешковской площадей можно предположить также влияние длительности перерывов существования сероводородного заражения, когда на Пешковской площади в интервале времени от семилукского до фаменского заражение появлялось лишь эпизодически и оставалось относительно маломощным.

Из сопоставления полученных данных с результатами (Бушнев, 2002; Бушнев, 2009; Бушнев и др., 2016) следует, что сероводородное заражение фотического слоя было широко распространено не только в доманиковом море Тимано-Печорского региона, но и в северной и центральной части Волго-Урала.

В целом разница между образцами по доле соединений – продуктов циклизации полиенов от общего содержания свидетелей аноксии более чем стократная (от <0.3 до 36%, табл. 2). При этом четко фиксируется разница между ОВ Южно-Татарского свода и Мухано-Ероховского прогиба + + Камско-Бельской впадины. Среди проб Южно-Татарского свода лишь в трех эта доля менее 8% (минимум 7%). Интервал значений для основной части образцов (83%) невелик – 8–20%. На Есинейской плошали только в одной пробе из самой нижней части семилукского горизонта на долю продуктов циклизации приходится почти 15%. Во всех остальных образцах и в отложениях семилукского, и пашийского горизонтов они составляют от 2.5 до 7.5%. Наиболее пестрая картина наблюдается в пробах из прибортовой зоны Мухано-Ероховского прогиба. Наибольшие величины найдены в ОВ Скифской площади мендымского горизонта: 6%, два образца по 10.5 и 12.5%. Для Сударовской и основной части проб Малогосвитской площадей эти величины -4-7%, хотя в одном образце Малогосвитской площади с общим содержанием свидетелей аноксии 1.3% они не найдены (предел обнаружения ~0.3%). Самый большой разброс в пределах одновозрастных отложений одной скважины наблюдается для ОВ фаменского яруса Скифской площади: 10, 5, 0.5 и 0.3%.

Из приведенных данных следует, что в целом процессы полного гидрирования исходных полиенов преобладают над процессами циклизации для отложений доманикового типа во всем изученном регионе. При этом в пределах Южно-Татарского свода процессы циклизации в заметной степени конкурируют с процессами полного гидрирования, обеспечивая в среднем около 15% продуктов реакций. Для ОВ Камско-Бельской впадины и Мухано-Ероховского прогиба за исключением мендымского горизонта Скифской площади процессы полного гидрирования безусловно доминируют, так что как правило, на долю продуктов циклизации приходится не более 5% свидетелей аноксии. Образцы мендымского горизонта Скифской площади в этом плане занимают промежуточное положение.

Теоретически величина К_{дес}, равная отношению суммарного содержания во фракции алкилбензолов XXVIII и XXIX к общему содержанию продуктов полного гидрирования исходных полиенов I и II, может изменяться в очень широких пределах. Для образцов с общим содержанием свидетелей аноксии более 1% с учетом чувствительности метода ГХ-МС и обычного уровня интенсивности малых пиков, на фоне которых иден-

Рис. 5. Зависимость между К_{дес} (при К_{дес} < 50) и другими параметрами зрелости для проб Южно-Татарского свода и Камско-Бельской впадины.

тификация целевых компонентов становится затруднительной, наблюдаемый интервал значений $K_{\text{дес}} - \sim 0.05 - 1000$. В изученных пробах наименьшее значение составило 0.6, наибольшее — >1000 (табл. 2).

Ранее (Koopmans et al., 1996; Cliffford et al., 1998) параметр К_{лес} было предложено рассматривать как величину, отражающую зрелость ОВ: чем больше степень деструкции алкильной цепи и. следовательно, больше алкилбензолов и меньше бициклоароматических соединений C₄₀, тем больше зрелость и тем больше К_{дес.} Подтверждением послужили положительные корреляции Клес и иных распространенных параметров, по которым стандартно определяют зрелость ОВ. Однако из полученных в настоящей работе результатов следует, что в общем случае величина Клес не зависит от зрелости ОВ. Так. в пробах Есинейской площади эта величина меняется от 7.1 до >1000. Значения стандартных параметров зрелость для первой из них: $T_s/T_m = 0.11$, 4-Me-DBT/1-Me-DBT = 1.4, для второй — практически такие же: $T_s/T_m = 0.12$, 4-Me-DBT/1-Me-DBT = 1.7. Для образца с Тлянчи-Тамакской площади, в котором зафиксировано наименьшее среди всех изученных проб значение $K_{\text{дес}}$ (0.6) $T_s/T_m = 0.16$, 4-Ме-DBT/1-Me-DBT = 0.9. В целом же, если рассматривать только образца с площадей Южно-Татарского свода и Камско-Бельской впадины, где везде наблюдается высокая концентрация свидетелей аноксии, и даже отбросить наибольшие значения K_{nec} , корреляция между K_{nec} и T_s/T_m отсутствует. Аналогичная картина наблюдается для зависимости K_{nec} от 4-Me-DBT/1-Me-DBT (рис. 5).

Объяснение полученным результатам следует из анализа возможных путей образования алкилбензолов – свидетелей аноксии (XXVIII, XXIX). Так, наблюдаемые в ОВ пород и в нефтях молекулярно-массовые распределения этих компонен-TOB (Koopmans et al., 1996; Cliffford et al., 1998; Бушнев, 2002; Бушнев, 2009; Бушнев и др., 2016; Бушнев и др., 2017; Смирнов, Полудеткина, 2018б) не могут быть продуктами обычного крекинга насыщенных исходных I и II. Причина – общеизвестный факт, что в ароматических соединениях с многоатомным алкильным заместителем ароматического цикла энергия разрыва С-С-связи алкильной цепи в бета-положении к ароматической системе существенно меньше, чем прочих, удаленных от этой системы С-С-связей. Так что при термическом крекинге I или II не менее 99% всех продуктов будет приходиться на 2 (или 3) соединения, получающихся при разрыве этой бетасвязи: алкилбензол С₃₀ и соответствующий тетразамещенный бензол (для I – бензолы). При термокаталитическом крекинге, как известно, рвется альфа-связь к бензольному циклу с образованием компонентов С₃₁ и триметилзамещенных бензолов. Но ни в одном образце, включая все, описанные в литературе, доминирования компоненты С₃₀ или С₃₁ в ряду XXVIII, XXIX не наблюдалось. Наоборот, доля этих соединений в общей массе рассматриваемых алкилбензолов мала. Так, для изученных проб типичное молекулярно-массовое распределение присутствующих в наибольшей концентрации соединений XXVIII приведено на рис. 6. Если же полагать, что причиной такой малой концентрации С₃₀ и С₃₁ является последующая деструкция их цепи на второй стадии крекинга, то в силу той же причины безусловно доминирующими продуктами при этом будут изопреноид С₂₀ (кроцетан) и, опять же, тетразамещенный бензол или нерегулярный изопреноид С₂₂ и тризамещенный бензол. Получить же 2% и более на фракцию ароматических соединений на-

Рис. 6. Молекулярно-массовое распределение алкибензолов - свидетелей аноксии XXVIII.

блюдаемых как основные компонентов рядов XXVIII, XXIX $C_{16}-C_{22}$ невозможно. Кроме того, если в полученных фракциях OB пород соединения до C_{13} отсутствовали, то для нефтей, где можно наблюдать ряды начиная с C_9-C_{10} ни разу не было зафиксировано повышенное содержание соответствующих тетра- или тризамещенных бензолов (Смирнов и др., 2019). Хотя, чтобы получить измеренные в работе концентрации свидетелей аноксии — алкилбензолов, содержание этих бензолов должно быть ураганным.

Таким образом, из наблюдаемого молекулярно-массового распределения алкилбензолов свидетелей аноксии следует, что при их образовании распад по бета- и альфа-связи к бензольным циклам практически блокирован. В принципе это может быть обусловлено либо стерическими факторами, либо тем, что деструкция алкильных цепей идет на стадиях, когда двойные связи не полностью гидрированы и в первую очередь сохраняются именно в бета-положении к бензолам вследствие частичного сопряжения со связями ароматических циклов. Далее следует учесть, что значения стандартно используемых для оценки зрелости параметров характеризует глубину протекания реакций кислотной изомеризации. Катализаторы такой изомеризации и катализаторы крекинга разные (хотя, как правило, процессы изомеризации в той или иной степени сопровождаются крекингом и наоборот). Так что возможны как ситуации, когда глубины процессов деструкции и процессов изомеризации окажутся взаимосвязанными, так и случаи, когда в породах соотношения катализаторов и типы их активности меняются произвольным образом и тогда такой связи не будет. То есть, не исключено, что, анализ взаимосвязи Кдес и стандартных параметров зрелости (*T_s*/*T_m*, 4-Me-DBT/1-Me-DBT) поз-

ГЕОХИМИЯ том 65 № 3 2020

волит получать сведения об особенности каталитической активности для серии пород.

ЗАКЛЮЧЕНИЕ

Анализ общего содержания соединений - свидетелей аноксии показал наличие сероводородного заражения фотического слоя на больше части изученной территории. Для семилукского времени мощность зараженного слоя достоверно уменьшается с севера на юг в ряду Есинейская площадь, Тлянчи-Тамакская площадь, остальные площади Южно-Татарского свода и Малогосвитская площадь, Пешковская площадь. Граница сероводородного заражения проходила в средней части прибортовой зоны Мухано-Ероховского прогиба. В пашийское и саргаевское время в северной части региона зафиксировано мощное постоянное сероводородное заражение (прочие области не изучены). В зоне Мухано-Ероховского прогиба в мендымское и фаменское время наблюдается сильное изменение обстановки. В одни временные интервалы - мощное постоянное заражение, в другие – маломощное и/или эпизодическое, в третьи — полное отсутствие зараженных вод.

Показано, что изменения содержания свидетелей аноксии в пробах Камско-Бельской впадины и Южно-Татарского свода вызваны именно вариацией мощности зараженного слоя, а не иными причинами. Установлено, что в целом процессы полного гидрирования исходных полиенов преобладают над процессами циклизации для отложений доманикового типа во всем изученном регионе. При этом в пределах Южно-Татарского свода процессы циклизации в заметной степени конкурируют с процессами полного гидрирования, обеспечивая в среднем около 15% продуктов реакций. Для ОВ Камско-Бельской впадины и Мухано-Ероховского прогиба за ис-

ключением мендымского горизонта Скифской площади процессы полного гидрирования безусловно доминируют. Образцы мендымского горизонта Скифской площади в этом плане занимают промежуточное положение. Обнаружено, что отношение суммарного содержания во фракции ароматических соединений алкилбензолов XXVIII и XXIX к общему содержанию продуктов полного гидрирования исходных полиенов I и II для ОВ отложений доманикового типа изученных районов, в отличие от данных, полученных для других регионов (Koopmans et al., 1996; Cliffford et al., 1998) не зависят от зрелости ОВ. Предложено объяснение этого факта, исходящее из возможной разницы каталитической активности пород в процессах кислотной изомеризации и крекинга насыщенных цепей. Работа выполнена в рамках Государственного задания ИНХС РАН.

СПИСОК ЛИТЕРАТУРЫ

Бушнев Д.А. (2002) Особенности состава биомаркеров битумоида и продуктов пиролиза керогена отложений верхнего девона Печорского бассейна. *Нефтехимия* **42**(5), 325-339.

Бушнев Д.А. (2009) Органическое вещество ухтинского доманика. *ДАН* **426**(4), 516-519.

Бушнев Д.А., Бурдельная Н.С. (2015) Нефти и органическое вещество позднедевонских отложений Тимано-Печорского бассейна, сопоставление по молекулярным и изотопным данным. *Нефтехимия* **55**(5), 375-382.

Бушнев Д.А., Бурдельная Н.С., Пономаренко Е.С., Зубова (Кирюхина) Т. А. (2016) Аноксия доманикового бассейна Тимано-Печорского региона. Литология и полезные ископаемые (4), 329-335.

Бушнев А.Д., Бурдельная Н.С., Валяева О.В., Деревесникова А.А. (2017) Геохимия нефтей позднего девона Тимано-Печорского бассейна. *Геология и геофизика* (3-4), С. 410-422.

Гордадзе Г.Н., Тихомиров В.И. (2007) Об источниках нефтей на северо-востоке Татарстана. *Нефтехимия* **47**(6), 422-431.

Полудеткина Е.Н., Смирнов М.Б. Фадеева Н.П. Козлова Е.В. (2017) Доказательство формирования органического вещества карбонатных отложений верхнего девона Татарского свода в условиях постоянной аноксии в фотическом слое. *Геохимия* (8), 730-740.

Poludetkina E.N., Smirnov M.B., Fadeeva N.P., Kozlova E.V. (2017) Proof of formation of organic matter in upper devonian carbonate and carbonate-siliceous sediments of the South –Tatar uplift in constant photic layers anoxia. *Geoch. Int.* **55**(8), 726-736.

Смирнов М.Б., Полудеткина Е.Н. (2018а) Простой способ оценки значимости биопродукции в условиях аноксии в фотическом слое при формировании рассе-янного органического вещества пород и нефтей по данным масс-спетрометрии. *Масс-спектрометрия* (2), 93-101.

Смирнов М.Б., Полудеткина Е.Н. (2018б) Характеристики источников нефтей Ромашкинского месторождения по результатам изучения состава насыщенных и ароматических биомаркеров. *Геохимия* (2), 175-184.

Smirnov M.B., Poludetkina E.N. (2018b) Characteristics of sources of oils of Romashkino field by composition of saturated and aromatic biomarkers. *Geoch. Int.* **56**(2), 162-170.

Смирнов М.Б., Фадеева Н.П., Борисов Р.С., Полудеткина Е.Н. (2018) Характеристика органического вещества доманикоидных отложений верхнего девона северных и центральных районов Волго-Урала по составу насыщенных биомаркеров. *Геохимия* (8), 774-790.

Smirnov M.B., Borisov R.S., Fadeeva N.P., Poludetkina E.N. (2018) The characteristics of the organic matter of the upper Devonian domanik-tipe deposites in the northern and central regions of the Volga-Ural basin according to saturated biomarkers composition. *Geoch. Int.* **56**(8), 812-827.

Смирнов М.Б., Полудеткина Е.Н., Фадеева Н.П. (2019) Свидетели аноксии в фотическом слое бассейна седиментации в нефтях Татарстана. *Геохимия* (6), 594-604.

Smirnov M.B., Poludetkina E.N. Fadeeva N.P. (2019) Anoxia in the photic layer of the sedimentation basin: markers of the oils of Tatarstan. *Geoch. Int.* **57**(6). 635-644.

Cliffford D.J., Clayton J.L., Damste J.S.S. (1998) 2,3,6-/3,4,5-Trimethyl substituted diaryl carotenoid derivatives (Chlorobiaceae) in petroleums in the Belorussian Pripyat River Basin. *Org. Geochem.* **29**(5-7), 1253-1267.

Fadeeva N.P., Kozlova E.V., Poludetkina E.N., Shardanova T.A., Pronina N.V., Stupakova A.V., Kalmykov G.A., Khomyak A.N. (2015) The hydrocarbon generation potential of the domanik formation in the Volga-Ural petroliferous basin. *Moscow University Geology Bulletin.* **70**(6). P. 521-529.

Koopmans M.P., Koster J., van-Kaam-Peters H.M.E., Kenig F., Schouten S., Hartgers W.A., de Leeuw J.W., Damste J.S.S. (1996) Diagenetic and catagenetic products of isorenieratene: Molecular indicators for photic zone anoxia. *Geochim. Cosmochim. Acta* **60** (22), 4467-4496.