ФОРМЫ НАХОЖДЕНИЯ ИСКУССТВЕННЫХ РАДИОНУКЛИДОВ В ПОЧВАХ РАЙОНА РАСПОЛОЖЕНИЯ КОЛЬСКОЙ АЭС

© 2021 г. М. Б. Попова^{*a*, *}, Т. А. Горяченкова^{*a*, **}, А. П. Борисов^{*a*}, Е. И. Казинская^{*a*}, Е. А. Лавринович^{*a*}, Д. В. Манахов^{*b*}

^аИнститут геохимии и аналитической химии им. В.И. Вернадского РАН, ул. Косыгина, 19, Москва, 119991 Россия ^bМосковский государственный университет им. М.В. Ломоносова, Факультет почвоведения,

Ленинские горы, Москва, 119991 Россия *e-mail: marbpop@gmail.com **e-mail: goryach@geokhi.ru Поступила в редакцию 01.11.2020 г. После доработки 11.01.2021 г. Принята к публикации 20.01.2021 г.

В статье описаны результаты исследования форм нахождения ¹³⁷Cs, ⁹⁰Sr, ^{239, 240}Pu и ²³⁷Np в разных генетических горизонтах иллювиально-железистых подзолов района расположения Кольской атомной электростанции (КоАЭС). Данные были получены путем искусственного внесения растворов изотопов в почвенные образцы. Сравнение полученых результатов с литературными данными о распределении этих радионуклидов в почвах других регионов России показало, что в северных иллювиально-железистых подволах они значительно подвижнее, чем в почвах других регионов России: суммарно в водорастворимую и обменную формы переходит до 33% ¹³⁷Cs, до 82% ⁹⁰Sr, до 39% ^{239,240}Pu и до 69% ²³⁷Np.

Ключевые слова: подзолы, формы нахождения, радионуклиды **DOI:** 10.31857/S001675252110006X

введение

Для обеспечения безопасности населения и устойчивости экосистем в условиях потенциального воздействия ионизирующего излучения необходимо регулярно проводить радиоэкологический мониторинг. Атомные электростанции и прочие предприятия ядерно-топливного цикла имеют развитую сеть внешнего дозиметрического контроля, но их природоохранные службы не занимаются детальным изучением поведения радионуклидов в окружающей среде. Между тем для составления корректного прогноза радиационной обстановки в случае внештатной ситуации важно понимать особенности миграции радионуклидов в компонентах окружающей среды и оценивать возможность их попадания в живые организмы. Геохимическое поведение радионуклидов в значительной степени определяется их формами нахождения в почве.

В геохимии, почвоведении и радиоэкологии широко применяются методы изучения форм нахождения радионуклидов, основанные на селективном растворении органических и неорганических соединений почв, в составе которых могут находиться радионуклиды — методы последовательной экстракции (Филонова и др., 2014; Павлоцкая, 1997; Горяченкова и др., 2005; Goryachenkova et al., 1991). Полученные результаты по формам нахождения радионуклидов дают возможность прогнозировать их поведение в почвах в зависимости от основных почвенных свойств, типа выпадений, в составе которых радионуклиды поступают в окружающую среду; а также химических свойств самих радионуклидов.

В естественных условиях формы нахождения радионуклидов можно изучать только при условии их достаточного для эксперимента содержания в почвах. Если же содержание радионуклида в почвах мало, для изучения форм нахождения используют метод искусственного внесения радионуклидов в образцы. За прошедшие десятилетия был опубликован ряд работ, посвященных изучению поведения радионуклидов в почвах с внесением изотопов в условиях лабораторных и полевых экспериментов, который показал сопоставимость результатов, получаемых с помощью этих методов (Санжарова и др., 2005; Алексахин, 1992; Лавринович и др., 2014; Павлоцкая и др., 2005).

В научной литературе приведены данные по формам нахождения радионуклидов в разных типах почв (табл. 1). Так, для ¹³⁷Cs характерно закрепление в почве по механизмам необменного

Радионуклид	Водорастворимая Н ₂ О	Обменная 1 М CH ₃ COONH ₄ , pH 4.8	Подвижная 1 M HCl	Кислоторастворимая 6 M HCl	Остаток
¹³⁷ Cs	0.1-0.7	5.7-13.3	1.1-7.9	16.3-20.9	14.2-76.8
^{239,240} Pu	0.5-3.0	2.5-19.3	2.0-18.2	16.5-68.0	14.2-69.2.0
²³⁷ Np	7-56.7	31.7-36.7	14.0-29.1	6.5-26.0	1.2-6.5

Таблица 1. Формы нахождения радионуклидов в разных типах почв, %

*По Алексахину Р.М. и др., 1992; Васильевой А.Н. и др., 2008; Кундузбаевой А.Е. и др., 2016; Санжаровой Н.И. и др., 2005; Павлоцкой Ф.И., 1974; Павлоцкой Ф.И. и др., 1997; Павлоцкой Ф.И. и др., 2003; Семенкову И.Н и др., 2015; Лавринович Е.А. и др., 2014; Goryachenkova T.A. et al., 1991.

поглощения, при этом ключевую роль играет его фиксация в межпакетном пространстве вторичных глинистых минералов, главным образом гидрослюд и представителей монтмориллонитовой группы (Алексахин, 1992; Семенков и др., 2015).

⁹⁰Sr является одним из наиболее подвижных в окружающей среде радионуклидов, он может поглощаться растениями из почвы в 90 раз интенсивнее, чем ¹³⁷Сs (Рачкова и др., 2015). Ведущим механизмом закрепления ⁹⁰Sr в разных типах почв является ионный обмен, а большая часть содержащегося в почвах ⁹⁰Sr найдена в обменной форме (Алексахин, 1992; Кундузбаева др., 2016). Главный фактор, влияющий на миграцию этого изотопа – наличие в растворе катионов, конкурирующих с ⁹⁰Sr за обменные места в почвенно-поглощающем комплексе. Чаще всего в этой роли выступают его изотопный (стабильный стронций) и неизотопный (кальций) носители. В ряде изученных ранее типах почв коэффициент селективной сорбции радиостронция к кальцию больше единицы, что указывает на то, что ⁹⁰Sr сорбируется прочнее своего неизотопного носителя (Павлоцкая, 1974).

²³⁹Ри — наименее подвижный в почве трансурановый элемент. Для ²³⁹Ри характерен необменный тип поведения в почве, большая часть его сосредоточена в труднорастворимой форме (Горяченкова и др., 2005; Павлоцкая, 1997; Goгуасhenkova Т.А. et al., 1991). Плутоний ассоциируется с аморфными гидроксидами алюминия и железа, а также низкомолекулярными гумусовыми кислотами, входящими в состав органоминеральных пленок, покрывающих минеральные частицы почв (Павлоцкая и др., 2003; Лавринович и др., 2014; Novikov et al., 2016; Горяченкова и др., 2009).

Исследования, посвященные поведению ²³⁷Np в почве, крайне немногочисленны. Установлено, что ²³⁷Np аналогично ⁹⁰Sr проявляет большую подвижность, а формы его нахождения зависят от типа почв. Как правило, большая часть этого радионуклида сосредоточена в водорастворимой и обменной формах. Отмечено активное участие глинистых минералов в закреплении нептуния и

ГЕОХИМИЯ том 66 № 10 2021

важность определения их содержания в почвах (Лавринович и др., 2014; Nilsson, Carlsen, 1989).

В почвах северных регионов материковой Арктики, в том числе подзолах Кольского полуострова, формы нахождения таких радионуклидов как ¹³⁷Cs, ⁹⁰Sr, ^{239,240}Pu и ²³⁷Np не изучены. Между тем ¹³⁷Сѕ и ⁹⁰Sr присутствуют в штатных выбросах Кольской атомной электростанции (КоАЭС), а попадание ^{239,240}Ри и ²³⁷Np в окружающую среду возможно в случае аварии на КоАЭС. Также на Кольском полуострове расположен ряд объектов потенциальной радиационной опасности (предприятия атомного морского флота и предприятия, осуществляющие обращение с радиоактивными отходами), деятельность которых может привести к загрязнению окружающей среды различными радионуклидами. в том числе трансурановыми.

Целью настоящего исследования является сравнительное экспериментальное изучение подвижности 137 Cs, 90 Sr, $^{239, 240}$ Pu и 237 Np в геохимически контрастных горизонтах типичного подзола, отобранного в 30 километрах к северо-западу от Кольской атомной электростанции.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Объекты и методы исследования

КоАЭС расположена за Полярным кругом в Мурманской области рядом с озерами Имандра и Верхняя Пиренга, на расстоянии 33 км к северу от г. Кандалакша и 60 км к югу от г. Мончегорска. На Кольском полуострове выпадает в среднем около 400 мм осадков в год. Преобладающими типами почв в этом регионе являются подзолы иллювиально-железистые с промывным режимом (Фридланд и др., 1977). Доминирующий тип лесных сообшеств в районе исследований – сосняки чернично-лишайниковые. Объектами исследования для сравнительного изучения форм нахождения радионуклидов служили образцы подзола иллювиально-железистого песчаного на морене, отобранные из 3-х генетических горизонтов одного почвенного разреза, заложенного на фоновой площадке в 30 км от КоАЭС. Образцы были

Форма, экстрагент	Состав соединений радионуклидов				
"Доступные" формы соединений					
Водорастворимая (H ₂ O дистил-	Катионы радионуклидов, водорастворимые комплексы с органическими				
лированная)	низкомолекулярными, фульвокислотами, и неорганическими соединени-				
	ями, гидроксокомплексы и др.				
Обменная (1 M CH_3COONH_4 ,	Радионуклиды, входящие в состав обменных соединений на поверхности				
pH 4.8)	почвенных частиц.				
	"Недоступные" формы соединений				
Подвижная (1 M HCl)	Радионуклиды ассоциированные с аморфными и слабоокристаллизован-				
	ными оксидами и гидроксидами металлов (Al, Fe, Mn и др.), частично сорби-				
	рованные органическим веществом (гумусовыми кислотами, связанными с				
	полуторными окидами), частично сорбированные почвенными минералами,				
	но не захваченные кристаллической решеткой.				
Кислоторастворимая (6 М HCl)	Радионуклиды, необменно сорбированные на поверхности кристаллической				
	решетки глинистых минералов.				
Остаток после извлечения	Радионуклиды, прочносвязанные с минеральной частью почв, "захвачен-				
предыдущих фракций	ные" кристаллической решеткой глинистых минералов, например ¹³⁷ Cs,				
	фиксированные в межпакетном пространстве, связанные с гуминами.				

Таблица 2. Схема выделения физико-химических форм радионуклидов в почве методом последовательной экстракции

* По Павлоцкой и др., 2003; Горяченковой и др., 2005. На доступные и недоступные формы нахождения делят по возможности их поглощения растениями.

отобраны из следующих горизонтов: 1 – элювиальный горизонт Е (5-10 см), серовато-белесый, представленный рыхлым и бесструктурным песком, являющийся горизонтом разрушения и вымывания минеральных частиц и химических элементов, залегающий непосредственно под лесной подстилкой; 2 – иллювиальный горизонт B1f (10-18 см), коричневато-ржаво-бурый, песчаный, бесструктурный. Этот горизонт образован вследствие вмывания и накопления материала из выше расположенного горизонта, обогащен коллоилно-лисперсными глинными минералами и соединениями R₂O₃; 3-горизонт С (40-54 см) почвообразующая порода, светло-серая со слабым зеленоватым оттенком, по гранулометрическому составу близок к разнозернистому песку. Почвенные горизонты, образцы из которых были взяты для исследования, обладают максимальными различиями по химическим и морфологическим свойствам (Морозова и др., 2008).

Почвенные образцы высушены и просеяны через сито с диаметром пор 1 мм. Физико-химические свойства почв были определены стандартными методами: содержание гумуса – методом Тюрина; pH водной суспензии (pH H₂O) и pH солевой суспензии (pH KCl) – потенциометрически; гидролитическая кислотность – по Каппену в модификации ЦИНАО (обработка почв 1 M CH₃COONa); содержание подвижных форм калия – по Кирсанову; гранулометрический состав – методом лазерной дифракции (Воробьева, 1998). Радионуклиды ¹³⁷Сs и ²³⁹Pu вносили в одну воздушно-сухую навеску почв, ⁹⁰Sr и ²³⁷Np — в отдельные навески. Масса каждой навески составляла 20 г. Азотнокислые растворы, содержащие радионуклиды, внесены в минимальных объемах в следующих концентрациях (в скобках указаны активности внесенных меток): ¹³⁷Cs — 0.1 мл (6000 Бк), ⁹⁰Sr — 0.5 мл (2000 Бк), ²³⁹Pu — 0.03 мл (1500 Бк), ²³⁷Np — 0.3 мл (3.3 × 10⁻⁵ г/мл). В почвы с внесенными радионуклидами регулярно добавляли дистиллированную воду в количестве около 4 мл, добиваясь влажной консистенции, и тщательно перемешивали. По мере высыхания воду добавляли снова. Перемешивание длилось 4 месяца.

Последовательная экстракция форм нахождения радионуклидов проводилась с использованием схемы, приведенной в табл. 2 (Ф.И. Павлоцкая и др., 2003; Горяченкова и др., 2005). Экстракция форм радионуклидов проводили однократно из навески 2 г, соотношение твердой и жидкой фаз 1 : 10, время контакта – 1 ч при комнатной температуре.

Удельные активности ¹³⁷Сѕ в почвенных вытяжках измеряли на гамма-спектрометре "Сапberra" с широкополосным германиевым блоком детектирования, ⁹⁰Sr и ²³⁹Pu- – на альфа-бета радиометре "УМФ-2000" из отдельных аликвот почвенных вытяжек; Активность ²³⁷Np определяли мембранно-люминесцентным методом с использованием кристаллофосфоров и последующим измерением на фотометрическом анализаторе ЛФФ-5 (Новиков и др., 2009).

Рис. 1. рН H₂O и рН КСl в почве.

ХАРАКТЕРИСТИКА ОБРАЗЦОВ И ОБСУЖДЕНИЕ РЕЗУЛЬТАТОВ ЭКСПЕРИМЕНТА

Физико-химические параметры образцов

Физико-химические характеристики исходных образцов подзола приведены в табл. 3, на рис. 1 и 2. Почвы обладают кислой средой, pH водных вытяжек составляют в горизонтах E, B1f и C 4.1, 5.0 и 5.8 соответственно, значения pH солевых суспензий приведены на рисунке 1 (рис. 1). Гидролитическая кислотность, характеризующая общую кислотность почвы, имеет более низкие значения и составляет в горизонтах E, B1f и C 3.1, 4.5 и 0.9 ммоль/100 г соответственно. По значениям актуальной и гидролитической кислотности изучаемые почвы относятся к сильнокислым.

В исследуемом типе почв четко выражена элювиально-иллювиальная дифференциация профиля по содержанию органического вещества с выносом его из элювиального подзолистого горизонта и накоплением в иллювиальном горизонте Blf (табл. 3). Почва относится к подзолам иллюви-

Рис. 2. Профильное распределение подвижных форм калия в почве.

ально-среднегумусовым, так как содержание гумуса в горизонте B1f находится в пределах 1–3%, при этом органическое вещество представлено в основном низкомолекулярными органическими соединениями неспецифической природы и фульвокислотами (Морозова и др., 2008) и характеризуется легким гранулометрическим составом, что является типичным признаком для подзолов. В целом, почву фоновой площадки можно охарактеризовать как обладающую кислой реакцией среды, бедную органическим веществом, обменными катионами и илом, что характерно для подзолов северных регионов Кольского полуострова (Копцик и др., 2007; Попова и др., 2020).

Исходная активность радионуклидов в изученных образцах фоновой площадки КоАЭС не превышает фоновых значений, за исключением ^{239, 240}Ри (табл. 3). По литературным данным активность радионуклидов в почвах Северного по-

-	Плотность сложения, г/см ³	Гумус	Ил (<0.001 мм)	Гидролитиче-		¹³⁷ Cs	⁹⁰ Sr	^{239,240} Pu
Горизонт (глубина, см)		%		ская кислотность, ммоль/100 г	Подвижный К, мг/100г	Бк/кг		
E (5–10)	1.5	0.4	1.0	3.1	0.7	7.2	3.7	_
$B_1f(10-18)$	1.36	1.4	1.4	4.5	1.0	2.3	2.9	10.7
B ₂ f (18–30)	1.65	1.3	1.3	2.1	0.8	0.9	_	_
BC (30-40)	1.69	0.1	1.2	1.1	0.8	0.8	_	_
C (40–54)	1.78	0.1	1.5	0.9	0.6	0.9	3.0	—

Таблица 3. Некоторые физико-химические характеристики почв и содержание радионуклидов

Прочерк означает, что измерение удельной активности в этом горизонте не проводилось.

ГЕОХИМИЯ том 66 № 10 2021

ПОПОВА и др.

Таблица 4. Результаты эксперимента по внесению растворов изотопов в почвенные образцы

Радионуклид	Горизонт	Фракция	Активность, Бк	Погрешность, Бк	Доля фракции, %	Химический выход, %
¹³⁷ Cs	Е	F1	8.3	0.3	3	92.7
		F2	38.9	1.4	14	
		F3	16.7	0.6	6	
		F4	64.0	4.0	23	
		F5	150.2	9.0	54	
	B1f	F1	2.1	0.1	1	68.6
		F2	28.8	1.0	14	
		F3	26.8	0.9	13	
		F4	113.2	3.8	55	
	C	F3	35.0	1.4	1/	02.1
	C		22.4	0.9	9	83.1
		Г2 Е3	54.0	2.4	24	
		F4	72.3	2.2	22	
		F5	39.9	1.5	16	
239,240 D	E	F1	2.0	0.3	3.0	88 3
· ru	L	F2	16.6	2.5	25.0	00.5
		F3	13.2	2.0	20.0	
		F4	19.9	3.0	30.0	
		F5	13.9	2.1	21.0	
	B1f	F1	0.5	0.1	1.0	64.9
		F2	18.5	2.8	38.0	
		F3	11.7	1.8	24.0	
		F4	15.6	2.3	32.0	
		F5	2.4	0.4	5.0	
	С	F1	1.7	0.3	3.0	77.2
		F2	12.7	1.9	22.0	
		F3	20.9	3.1	36.0	
		F4	15.6	2.3	27.0	
	_	F5	7.0	1.0	12.0	
⁹⁰ Sr	E	F1	58.3	8.7	64.0	91.1
		F2	16.4	2.5	18.0	
		F3	7.3	1.1	8.0	
		F4	4.6	0.7	5.0	
	D 10	F5	4.6	0.7	5.0	(0.0
	BII	FI F2	34.7	5.2	51.0	68.0
		F2 F2	13.0	2.0	20.0	
		Г3 Е4	10.9 8 2	1.0	10.0	
		F5	0.2	0.1	12.0	
	C	F1	50.0	7.5	61.0	82.0
	\sim	F2	14.8	2.2	18.0	02.0
		F3	7.4	1.1	9.0	
		F4	5.7	0.9	7.0	
		F5	3.3	0.5	4.0	

ГЕОХИМИЯ том 66 № 10 2021

Радионуклид	Горизонт	Фракция	Активность, Бк	Погрешность, Бк	Доля фракции, %	Химический выход, %
²³⁷ Np	Е	F1	0.0000005960	0.00000029800	40	90.3
		F2	0.0000004321	0.000000021605	29	
		F3	0.0000000745	0.00000003725	5	
		F4	0.000000298	0.000000001490	2	
		F5	0.0000003427	0.000000017135	23	
	B1f	F1	0.0000002925	0.000000014625	25	70.9
		F2	0.0000003276	0.000000016380	28	
		F3	0.0000002457	0.000000012285	21	
		F4	0.0000001755	0.00000008775	15	
		F5	0.0000001170	0.00000005850	10	
	С	F1	0.0000005632	0.00000028160	44	77.6
		F2	0.0000002304	0.000000011520	18	
		F3	0.0000001152	0.000000005760	9	
		F4	0.0000002816	0.000000014080	22	
		F5	0.000000896	0.00000004480	7	

лушария, сформированная вследствие глобальных выпадений, колеблется в следующих пределах: 90 Sr – 5–12; 137 Cs – 3–10; ${}^{239, 240}$ Pu – 0.2–2 и 237 Np – до 1 Бк/кг (Павлоцкая и др., 1985; Novikov, 2010, Лавринович и др., 2014).

Результаты изучения форм нахождения радионуклидов, внесенных в разные генетические горизонты подзола

В табл. 4 приведены результаты, полученные при экспериментальном изучении форм нахождения радионуклидов в трех генетических горизонтах иллювиально-железистого подзола. В водной вытяжке содержание радионуклидов изменяется в ряду: 90 Sr (51-64%) > 237 Np (25-44%) > 137 Cs $(1-9\%) \ge ^{239}$ Pu (1-3%). Содержание ¹³⁷ Cs в водной вытяжке из разных горизонтов в целом оказалось выше, чем в почвах Европейской части России, при этом наиболее высокий результат получен для почвообразующей породы (горизонт С). Известно, что конкурентами ¹³⁷Сs за связь с почвенно-поглощающем комплексе (ППК) в подзолах являются, в первую очередь, ионы К⁺ (рис. 2). Это подтверждается и в нашем эксперименте: вниз по профилю почвы количество подвижного калия убывает, наименьшее его количество найдено в горизонте С, в то время как содержание не только водорастворимого, но и обменного ¹³⁷Cs в этом горизонте увеличивается (табл. 3).

В водорастворимой форме аналогично 137 Cs найдено незначительное количество 239 Pu (1–3%). Основным процессом, определяющим поведение 239 Pu в составе водорастворимой формы, является

ГЕОХИМИЯ том 66 № 10 2021

гидролиз, в результате которого образуются продукты, способные поглощаться в разной степени прочности органоминеральной фазой почвы по необменному механизму (Павлоцкая, 1997). Наименьшее количество плутония в водорастворимой форме отмечено в иллювиальном горизонте (B1f), что, вероятно, связано с некоторой обогащённостью этого слоя почвы компонентами, способствующими более прочному закреплению ²³⁹Ри, а именно аморфными оксидами Fe и Al, органическим веществом и глинистыми минералами. Содержание ²³⁹Ри в водной вытяжке в эксперименте превысило известные на данный момент в литературе концентрации этого элемента в водорастворимой форме других типов почв (табл. 1). Это может свидетельствовать о весьма высокой миграционной подвижности, что может привести к повышенной доступности растениям ²³⁹Ри в подзолах. В отличие от ¹³⁷Cs и ²³⁹Pu, ⁹⁰Sr и ²³⁷Np во всех изученных генетических горизонтах подзола обнаружены преимущественно в водорастворимом состоянии, что указывает на высокую подвижность этих радионуклидов в данном типе почв. Для всех радионуклидов характерно снижение содержания в водной вытяжке из иллювиального горизонта B1f, что указывает на удерживающую роль органического вещества и аморфных оксидов Fe и Al, характерных для этого горизонта (табл. 4). Найденный в эксперименте процент водорастворимой формы ¹³⁷Сѕ превышает значения, известные по литературе для других почв в 2-5 раз, ²³⁹⁰Ри – в 3–5 раз, ⁹⁰Sr – в 3–4 раза, однако по ²³⁷Np – превышает незначительно.

Рис. 3. Формы нахождения радионуклидов в доступных (водорастворимой и обменной) формах, %.

По доле ²³⁹Pu, ⁹⁰Sr и ²³⁷Np в водной вытяжках изученные генетические горизонты подзола располагаются в следующем порядке: $E \cong C > B1f$, а содержание ¹³⁷Cs выше в горизонте C по сравнению с горизонтами E и B1f, что указывает на увеличение относительной подвижности этого радионуклида в нижней части почвенного профиля (табл. 4).

В обменной форме доля радионуклидов в генетических горизонтах подзола существенно выше, чем в других типах почв. В этой форме значительное количество ²³⁹Ри найдено в горизонте B1f (38%), что вероятно обусловлено вхождением радионуклида в состав легкорастворимых органических низкомолекулярных соединений и фульвокислот, которые способствуют его миграции вниз по почвенному профилю. В результате в составе более прочносвязанных форм (кислоторастворимой и остатке) найдено всего 37–51% ²³⁹Pu. что существенно ниже, чем по литературным данным фиксировано в дерново-подзолистых, черноземах и серых лесных почвах. Таким образом, в эксперименте показано, что в подзолах ²³⁹Ри гораздо более подвижен, чем других типах почв России. В обменной форме подзолов найдено также более высокое содержание ⁹⁰Sr, ²³⁷Np (18–29%) и ¹³⁷Cs (14–24%) по сравнению с активностью этих радионуклидов в составе обменной формы других типов почв.

Водорастворимую и обменную формы радионуклидов можно объединить в группу "доступные". Радионуклиды, входящие в состав этих форм, могут поглощаться растениями, а также они достаточно мобильны и при определенных условиях переходят из одной формы в другую: обменная форма представляет собой главное депо для пополнения водорастворимой (Filgueiras et al., 2002; Федотов, Спиваков, 2011). Учитывать количество радионуклидов, находящихся в состав этих двух форм, особенно важно с экологической точки зрения, так как они могут накапливаться растительностью, мигрировать по пищевым цепочкам либо вниз по почвенному профилю, достигая грунтовых вод и в конечном случае попадать в организм человека. На рис. 3 представлены усредненные значения концентраций радионуклидов в доступной растениям форме. Порядок расположения радионуклидов по проценту присутствия в доступных формах, уменьшается в эксперименте аналогично их водорастворимой форме: 90 Sr > 237 Np > 239 Pu > 137 Cs. Полученная закономерность не противоречит литературным данным как для дерново-подзолистых почв, так и для почв других типов.

Для всех радионуклидов наблюдается более высокое содержание подвижной формы в иллювиальном горизонте B1f по сравнению с вышезалегающим горизонтом, а для ²³⁹Pu и ¹³⁷Cs отмечена тенденция увеличения их содержания и в горизонте С (табл. 4). В эту форму переходят радионуклиды, преимущественно связанные с аморфными оксидами и гидроксидами металлов (Al, Fe, Mn и др.), органическим веществом и другими соединениями (табл. 2). Таким образом, экспериментально установлено, что содержание радионуклидов в водорастворимой, обменной и подвижной формах в иллювиально-железистом подзоле выше, чем в других типах почв.

В составе малоподвижных и неподвижных (кислоторастворимая и остаток) форм доля радионуклидов в подзолах изменяется в следующем порядке: 137 Cs (45–77%) > 239 Pu (37–51%) > 237 Np (25–29%) > $>^{90}$ Sr (10–13%), что ниже, чем в других типах почв и указывает на потенциально повышенную подвижность радионуклидов в подзолах (табл. 1). По генетическим горизонтам в труднорастворимой форме высокое содержание 137 Cs (54%) найдено в горизонте Е, что, по всей вероятности, связано с обедненностью подзолистого горизонта полуторными оксидами и органическим веществом, из-за отмытости минеральных частиц почвы от пленок этих соединений. Это обстоятельство приводит к тому, что ¹³⁷Cs имеет доступ к глинистым минералам и входит в межпакетное пространство кристаллической решетки минералов почвы, в большей степени, чем в горизонтах B1fиC.

Установленные экспериментальным путем особенности показали, что поведение радионуклидов в иллювиально-железистых подзолах определяется физико-химическими особенностями почв: кислой реакцией среды, повышающей подвижность радионуклидов, низким содержанием органического вещества и преобладанием подвижных фульвокислот в его составе, низким содержанием илистых частиц, в составе которых в

Горизонт, (глубина, см)	¹³⁷ Cs	⁹⁰ Sr	^{239,240} Pu
E (5–10)	7.2	3.7	_
$B_1 f (10-18)$	2.3	2.9	10.7
C (40–54)	0.9	3.0	—

Таблица 5. Содержание радионуклидов в почвах, Бк/кг

основном сосредоточены глинистые минералы, обладающие высокой поглотительной способностью. Наиболее прочно сорбируются подзолами ¹³⁷Cs и ²³⁹Pu, ²³⁷Np и ⁹⁰Sr более подвижны и легкорастворимы, поэтому последние два радионуклида представляют наибольшую опасность при загрязнении ими природной среды.

ЗАКЛЮЧЕНИЕ

Впервые было проведено экспериментальное исследование форм нахождения техногенных радионуклидов в подзолах района расположения КоАЭС посредством искусственного внесения радиоизотопов в почвенные образцы. Оно показало, что в доступных формах их содержание уменьшается в ряду 90 Sr > 237 Np > 239 Pu > 137 Cs. Для всех радионуклидов найдены их более высокие доли содержания в водорастворимой и обменной формах по сравнению с другими почвами Европейской части России. В кислоторастворимой и прочносвязанной формах в иллювиально-железистых подзолах фиксируется меньшая доля радионуклидов, чем в других типах почв.

Метод искусственного внесения радионуклидов в лабораторных условиях имеет некоторую условность: после внесения добавок в почвенные образцы прошло 4 мес., и не исключено, что в будущем подвижность радионуклидов в них может снизиться. Тем не менее, полученные результаты позволяют судить о сравнительном поведении радионуклидов в разных типах почв и оценить влияние природных факторов на особенности их миграции в объектах природной среды.

В условиях бедности иллювиально-железистых подзолов органическим веществом, обменными катионами и глинистыми минералами техногенные радионуклиды могут проявить в них значительно большую подвижность, чем в ранее изученных почвах России. Соответственно, возникает повышенный риск накопления радионуклидов растительностью, а также на возможность их поступления в грунтовые воды и миграции по пищевым цепям в северных экосистемах.

Эксперимент показал, что физико-химические свойства почв (гранулометрический и химический состав генетических горизонтов почв, содержание и свойства органического вещества, определяющие тип почв), а также химические свойства самих радионуклидов определяют их поведение в почвах. Таким образом, при долгосрочном прогнозировании геохимического поведения изученных в работе радионуклидов в подзолах северных Арктических регионов следует учитывать потенциальную опасность поступления их в биогеоценозы, связанную с высокой подвижностью радионуклидов в этих типах почв, особенно в первые месяцы после загрязнения.

Исследование выполнено при финансовой поддержке РФФИ в рамках научного проекта № 20-34-90103.

СПИСОК ЛИТЕРАТУРЫ

Алексахин Р.М. (1992) Сельскохозяйственная радиоэкология. М.: Экология, 400 с.

Бобовникова Ц.И., Вирченко Е.П., Коноплев А.В. (1990) Химические формы нахождения долгоживущих радионуклидов и их трансформация в почвах зоны аварии на ЧАЭС. *Почвоведение*. (10), 20-25.

Васильева А.Н., Круглов С.В., Козьмин Г.В. (2008) Содержание в почве и подвижность техногенных радионуклидов в районе размещения регионального хранилища радиоактивных отходов. *Радиационная биология*. *Радиоэкология*. 48(1), 102-109.

Воробьева Л.А. (1998) Химический анализ почв. Изд. Московского университета, 272 с.

Горяченкова Т.А., Казинская И.Е., Кларк С.Б., Новиков А.П., Мясоедов Б.Ф. (2005) Методы изучения форм нахождения плутония в объектах окружающей среды. *Радиохимия*. **47**(6), 550-555.

Горяченкова Т.А., Казинская И.Е., Кузовкина Е.В., Новиков А.П., Мясоедов Б.Ф. (2009) Изучение связи радионуклидов с коллоидным веществом почвенных растворов. *Радиохимия*. **51**(2), 178-186.

Горяченкова Т.А., Казинская И.Е., Рылеева В.С. (2013) Миграционная подвижность плутония и америция в почвах в зависимости от добавок природных и модифицированных органических соединений. *Радиохимия*. 55(6), 553-560.

Копцик Г.Н., Лукина Н.В., Смирнова И.Е. (2007) Влияние атмосферного промышленного загрязнения на состав почвенных растворов подзолов. *Почвоведение*. (2), 223-234.

Кундузбаева А.Е., Кабдыракова А.М., Лукашенко С.Н., Ларионова Н.В. (2016) Формы нахождения ⁹⁰Sr в почвах испытательной площадки боевых радиоактивных веществ на семипалатинском испытательном полигоне. *Современные проблемы науки и образования* (4). URL: http://www.science-education.ru/ru/article/view?id=25081 (дата обращения: 11.01.2021)

Лавринович Е.А., Горяченкова Т.А., Абрамова А.В. (2014) Формы нахождения нептуния в почвах. *Радио-химия*. 56(2), 184-188.

Морозова О.В., Заугольнова Л.Б., Исаева Л.Г., Костина В.А. (2008) Классификация бореальных лесов севера Европейской России. *Растительность России*. 1(13), 61-81.

Новиков А.П., Лавринович Е.А., Могилевский А.Н., Фабелинский Ю.И. (2009) Люмисцентный анализ подземных вод Карачаевского ореола загрязнения на

ГЕОХИМИЯ том 66 № 10 2021

содержание и формы нахождения в них нептуния. *Ра- диохимия*. **51**(5), 469-472.

Павлоцкая Ф.И. (1974) Миграция радиоактивных продуктов глобальных выпадений в почвах. М.: Атомиздат, 215 с.

Павлоцкая Ф.И., Федорова З.М., Емельянов В.В. (1985) Содержание плутония в почвах Советского союза. *Атомная энергия*. **59**(5), 382-383.

Павлоцкая Ф.И. (1997) Поведение плутония в почвах уральского региона. Экология. (4), 268-272.

Павлоцкая Ф.И., Горяченкова Т.А., Казинская И.Е., Новиков А.П., Кузнецов Ю.В., Легин В.К., Струков В.Н., Шишкунова Л.В., Мясоедов Б.Ф. (2003) Формы нахождения и миграционное поведение Ри и Ат в пойменных почвах и донных отложениях реки Енисей. *Радиохимия.* **45**(5), 471-478.

Попова М.Б., Манахов Д.В., Кизеев А.Н., Ушамова С.Ф., Липатов Д.Н., Чирков А.Ю., Орлов П.С., Мамихин С.В. (2020) Содержание и распределение 137Сs в подзолах в районе расположения Кольской атомной электростанции. *Почвоведение*. (7), 891-900.

Рачкова Н.Г., Шуктомова И.И. (2015) Миграция в почве и поглощение растениями продуктов мирного ядерного взрыва в Пермской области. *Радиационная биология. Радиоэкология.* 55(1), 71-81.

Санжарова Н.И., Сысоева А.А., Исамов Н.Н. (2005) Роль химии в реабилитации сельхозугодий, подвергшихся радиоактивному загрязнению. *Российский химический журн.* (3), 26-34. Семенков И.Н., Усачева А.А., Мирошников А.Ю. (2015) Распределение цезия-137 глобальных выпадений в таежных и тундровых катенах бассейна реки Обь. *Геолосия рудных месторождений*. 57(2), 154-173.

Федотов П.С., Спиваков Б.Я. (2008) Статические и динамические методы фракционирования форм элементов в почвах, илах и донных отложениях. *Успехи химии*. **77**(7), 690-703.

Филонова А.А., Серёгин В.А. (2014) Миграция техногенных радионуклидов в почвах и донных отложениях прибрежной полосы пункта временного хранения СевРАО и ее влияние на возможное загрязнение морской акватории. *Гигиена и санитария*. (2), 18-22.

Фридланд В.М., Иванова Е.Н. (1977) Классификация и диагностика почв СССР. М.: Колос, 225 с.

Filgueiras A.V., Lavilla I. and Bendicho C. (2002) Chemical sequential extraction for metal partitioning in environmental solid samples. *J. Environ. Monit.* (4), 823-857.

Goryachenkova T.A., Pavlotskaya F.I., Myasoedov B.F. (1991) Forms of occurrence of plutonium in soils. *J. Radioanal. Nucl. Chem.* **147**(1), 153-157.

Novikov A.P. (2010) Migration and concentration of artificial radionuclides in environmental objects. *Geochem. Int.* **48**(13), 1263-1388.

Novikov A.P., Goryachenkova T.A., Sobakin P.I., Kazinskaya I.E., Ryleeva V.S. (2016) Speciation of plutonium and americium in the soils affected by Kraton-3 accidental underground nuclear explosion in Yakutia (Russia). *J. Radioanal. Nucl. Chem.* **307**(1), 691-697.