ФАЗОВЫЕ ВЗАИМООТНОШЕНИЯ В СИСТЕМЕ CaSiO₃ ДО 100 ГПа И 2500 К

© 2021 г. Д. Н. Сагатова^{*a, b, **}, А. Ф. Шацкий^{*a, b, c*}, Н. Е. Сагатов^{*b*}, К. Д. Литасов^{*c*}

^аНовосибирский государственный университет, ул. Пирогова, 2, Новосибирск, 630090 Россия ^bИнститут геологии и минералогии им. В.С. Соболева СО РАН, просп. Коптюга, 3, Новосибирск, 630090 Россия

^сИнститут физики высоких давлений им. Л.Ф. Верещагина РАН,

Калужское шоссе, стр. 14, Москва, Троицк, 108840 Россия

*e-mail: sagatovadn@igm.nsc.ru Поступила в редакцию 18.12.2020 г. После доработки 20.01.2021 г. Принята к публикации 22.01.2021 г.

На основе теории функционала плотности с помощью метода решеточной динамики в квазигармоническом приближении впервые комплексно исследованы фазовые взаимоотношения в одной из ключевых петрологических систем, CaSiO₃, в интервале давлений 0-100 ГПа и температур 0-2500 К. Результаты исследований показали, что при атмосферном давлении и 0 К CaSiO₃ стабилен в структуре волластонита, который выше температуры 1250 К переходит в высокотемпературную модификацию псевдоволластонит. Выше давления 4 ГПа CaSiO₃ стабилизируется в структуре брейита. Линия фазового равновесия имеет отрицательный наклон к оси давления с $dP/dT = -0.6 \text{ M}\Pi a/\text{K}$. При 8 ГПа CaSiO₃ распадается на ассоциацию Ca₂SiO₄-ларнита и CaSi₂O₅ со структурой титанита. Линия фазового равновесия имеет положительный наклон к оси давления с dP/dT = 1.35 МПа/К. При давлении 13 ГПа Ca₂SiO₄-ларнит реагирует с CaSi₂O₅, образуя фазу с перовскитоподобной структурой — CaSiO₃-перовскит. Давление данного фазового перехода практически не зависит от температуры. В низкотемпературной области Са-перовскит стабилен в тетрагональной модификации CaSiO₃-14/*тст*. Выше 340 К при 13 ГПа Са-перовскит стабилизируется в кубической модификации $CaSiO_3$ - $Pm\overline{3}m$. С увеличением давления до 100 ГПа, температура фазового перехода возрастает до 755 К. Также впервые рассчитаны термодинамические параметры для фаз волластонита, псевдоволластонита и CaSi₂O₅ со структурой титанита.

Ключевые слова: волластонит, брейит, перовскит, ларнит, мантия, теория функционала плотности, квазигармоническое приближение **DOI:** 10.31857/S0016752521080070

введение

Известно, что в пределах верхней мантии Земли силикат кальция CaSiO₃ стабилизируется в нескольких полиморфных модификациях: волластонит, псевдоволластонит, брейит и фаза со структурой перовскита — CaSiO₃-перовскит (Ca-*pv*). При нормальных условиях CaSiO₃ стабилен в структуре волластонита (CaSiO₃-*P*1). При температуре ~1400 К он переходит в структуру псевдоволластонита (CaSiO₃-*C*2/*c*) (Essene, 1974). По мере повышения давления до ~3 ГПа при температуре ~1250—1500 К стабилизируется более плотная модификация CaSiO₃, брейит (CaSiO₃-*P*1) (Essene, 1974; Brenker et al., 2018). Далее при ~9 ГПа и 1750 К брейит распадается на две сосуществующие фазы, Ca_2SiO_4 -ларнит ($P2_1/c$) и $CaSi_2O_5$ со структурой титанита (C2/c). далее для краткости мы будем обозначать его как CaSi₂O₅-титанит (Gasparik et al., 1994). С дальнейшим повышением давления в системе CaSiO₃ наблюдаются наибольшие разногласия в экспериментальных данных. Изначально считалось, что термодинамическое поле стабильности данной ассоциации ограничено давлением 11–12 ГПа, по достижении которого при температуре порядка 1250–1750 К эти фазы переходят в структуру Ca-pv (Gasparik et al., 1994; Sueda et al., 2006; Wang, Weidner, 1994). Однако, согласно экспериментам, представленным в работе Shim et al. (2000), предельное давление реакции может достигать ~16 ГПа. Термодинамические оценки на основе калориметрических расчетов определяют среднее значение для давления перехода порядка 14 ГПа (Akaogi et al., 2004). Таким образом, неопределенность положения реакции Ca_2SiO_4 (ларнит) + $CaSi_2O_5$ (титанит) = = $3CaSiO_3$ (перовскит) составляет ~5 ГПа. Также имеется большая неопределенность экспериментальных данных относительно наклона линии фазового перехода к оси давления.

При температурах выше 1000 К и давлениях выше 11–16 ГПа Са-*ру* стабилизируется в кубической модификации $Pm\overline{3}m$ (Gasparik et al., 1994; Liu, Ringwood, 1975; Mao et al., 1989; Tamai, Yagi, 1989). Согласно теоретическим и экспериментальным результатам, данная фаза не закаливается при нормальных условиях (Stixrude et al., 1996; Wang, Weidner, 1994). Расчеты, выполненные в работе (Stixrude et al., 1996), показали, что данная фаза при низких температурах динамически нестабильна, т.е. фононный спектр имеет мнимые частоты. Однако, недавние результаты, полученные на основе молекулярно-динамических расчетов, продемонстрировали динамическую стабилизацию данной фазы при 1000 К (Sun et al., 2014).

Согласно более поздним работам (Adams, Oganov. 2006: Akber-Knutson et al., 2002: Caracas et al., 2005; Jung, Oganov, 2005; Li et al., 2006; Magyari-Köpe et al., 2002; Stixrude et al., 1996; Stixrude et al., 2007), при низких температурах $CaSiO_3$ имеет искаженную структуру кубического Са-ру, и в качестве потенциальных модификаций были предложены структуры с тетрагональной (*I4/mcm*, *P4/mbm*) или ромбической (*Pnma*, *Imma*) симметрией. Данные структуры характеризуются небольшими искажениями, вызванными поворотом SiO₆-октаэдров. Структурное сходство этих фаз с исходной кубической усложняет их экспериментальную идентификацию (Shim et al., 2002). Недавние эксперименты с использованием алмазных наковален, показали, что при комнатной температуре в интервале давлений 27-156 ГПа Са-ру стабилизируется в тетрагональной модификации CaSiO₃-I4/mcm (Chen et al., 2018; Komabayashi et al., 2007; Ono et al., 2004; Sun et al., 2016). Выше 500 К Са-ру переходит в кубическую модификацию CaSiO₃- $Pm\overline{3}m$ во всем рассмотренном интервале давлений.

Предшествующие экспериментальные исследования можно условно подразделить на две группы. Первая группа — это исследования до 20 ГПа с применением различного оборудования, цилиндр-поршень, многопуансонный пресс и алмазные наковальни. Вторая группа — это эксперименты при давлениях 20 ГПа и выше с использованием алмазных наковален. В рамках настоящей работы мы проводим комплексное теоретическое исследование по определению термодинамических полей устойчивости и уравнений состояния известных модификаций CaSiO₃ в широком интервале давлений и температур, а именно 0–100 ГПа и 0– 2500 К, и сопоставляем полученные данные с результатами предшествующих экспериментальных работ.

МЕТОДИКА ИССЛЕДОВАНИЯ

Все расчеты выполнены в рамках теории функционала плотности с использованием метода проекционных присоединенных волн (PAW) (Blöchl, 1994), в качестве программного пакета использовался VASP (Kresse, Furthmüller, 1996; Kresse, Joubert, 1999). Обменно-корреляционное взаимодействие учитывалось в приближении обобщенного градиента (GGA) по схеме Пердью-Бюрке-Эрнцерхофа (PBE) (Perdew et al., 1996). Для получения уравнения состояния кубического Ca-pv совместно с приближением GGA был проведен расчет с помощью приближения локальной плотности LDA. Параметры оптимизации были следующими: энергия обрезания плоских волн — $600 \Rightarrow B$, сетка *k*-точек Монкхорста-Пака (Monkhorst, Pack, 1976) с плотностью 0.2 Å⁻¹, электронное размытие – по схеме Гаусса с параметром 0.05 эВ. Использованы псевдопотенциалы со следующими валентными электронными конфигурациями: 3*s*²3*p*⁶4*s*² для Са, 3*s*²3*p*² для Si и 2*s*²2*p*⁴ для О.

Для учета температурного эффекта использовался метод решеточной динамики в квазигармоническом приближении. Для этой цели были рассчитаны частоты колебаний решетки. Энергия обрезания плоских волн в этом случае была увеличена до 800 эВ. При расчетах данным методом свободная энергия Гельмгольца системы объемом V при температуре T имеет вид:

$$F(V,T) = F_0(V) + F_{vib}(V,T),$$

где $F_0(V)$ — энергия статичной решетки, $F_{vib}(V,T)$ — вклад колебаний в свободную энергию. Колебательный вклад в квазигармоническом приближении можно записать как:

$$F_{vib}(V,T) = \sum_{q,i} \left[\frac{1}{2} \hbar \omega_{q,i} + k_B T \ln \left(1 - e^{-\frac{\hbar \omega_{q,i}}{k_B T}} \right) \right],$$

где \hbar — постоянная Планка, k_B — постоянная Больцмана, $\omega_{q,i}$ — частота колебаний і-ой моды в q-точке и T — температура.

Рассчитав зависимость свободной энергии Гельмгольца от объема при заданной температуре, можно определить давление: $P = -\left(\frac{\partial F}{\partial V}\right)_T$. Таким образом, зная зависимости давления от объема и температуры, можно рассчитать свободную энергию Гиббса G = F + PV.

Термодинамические параметры были получены с помощью расчета полной энергии и давле-

Рис. 1. Фононные дисперсионные кривые исследуемых фаз.

ния для различных значений объема элементарной ячейки и аппроксимированы по уравнению состояния Винэ (Vinet et al., 1987).

Для расчета фононных дисперсионных кривых был использован программный код PHONOPY (Togo, Tanaka, 2015).

Структурные данные всех фаз, кроме CaSiO₃-*I4/mcm* (Adams, Oganov, 2006; Stixrude et al., 1996), были взяты из кристаллографической базы данных (COD) (Merkys et al., 2016; Quirós et al., 2018).

Для расчета фононного спектра CaSiO₃-*Pm3m*, свободного от мнимых частот, мы использовали теорию самосогласованных фононов (SCPH) с микроскопическими ангармоническими силовыми константами, реализованную в программе

ГЕОХИМИЯ том 66 № 8 2021

ALAMODE (Tadano et al., 2014; Tadano, Tsuneyuki, 2015). В расчете учитывались ангармонические члены до 4-го порядка. Для расчета гармонических и кубических членов рассматривались все возможные межатомные силовые константы, присутствующие в суперячейке $2 \times 2 \times 2$. Члены четвертого порядка учитывались с точностью до третьей ближайшей оболочки соседних атомов. Количество q-точек в SCPH-расчете было равным $6 \times 6 \times 6$, параметр смешивания $\alpha = 0.05$.

РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ

В первую очередь мы оценили динамическую стабильность исследуемых фаз путем расчета их фононных дисперсионных кривых. Результаты,

Рис. 2. Фононные дисперсионные кривые CaSiO₃-*Pm* $\overline{3}m$ при 25 ГПа. Серая пунктирная линия – результат расчета без учета температуры (замороженные фононы). Черная сплошная линия – результат расчета при температуре 500 К.

приведенные на рис. 1, свидетельствует о динамической устойчивости структур $CaSiO_3$ -волластонита, $CaSiO_3$ -псевдоволластонита, $CaSiO_3$ брейита, Ca_2SiO_4 -ларнита, $CaSi_2O_5$ -титанита и CaSiO₃-*I*4/*mcm* при давлениях, соответствующих их полям устойчивости.

Расчет фононных дисперсионных кривых CaSiO₃-*Pm*3*m* с помощью модели "замороженных" фононов показал, что в точках М и R зоны Бриллюэна имеются мнимые частоты (рис. 2), что соответствует результатам работы (Stixrude et al., 1996). Высокотемпературная фаза CaSiO₃- $Pm\overline{3}m$ является типичным случаем, когда подход теории возмущений не работает из-за мнимых частот гармонических фононов. Чтобы преодолеть это ограничение, необходимо использовать непертурбативный подход для обработки ангармонических эффектов. Впервые достичь динамической стабилизации данной фазы с учетом ангармонизмов удалось с помощью метода молекулярной динамики (Sun et al. 2014). В настоящем исследовании мы использовали менее ресурсоемкий метод для подобного расчета. В результате чего был получен фононный спектр CaSiO₃- $Pm\overline{3}m$, не содержащий мнимых частот (рис. 2).

На следующем этапе был проведен расчет фазовых взаимоотношений в системе CaSiO₃. Результаты суммированы на рис. 3. При нормальных условиях CaSiO₃ термодинамически стабилен в структуре волластонита. Выше температуры 1250 К волластонит переходит в высокотемпературную модификацию, псевдоволластонит. При 0 К CaSiO₃ в структуре волластонита термодинамически стабилен до 4 ГПа, после чего переходит в

Рис. 3. Фазовые взаимоотношения в системе CaSiO₃. Черная сплошная линия – данная работа. Серые пунктирные линии – экспериментальные результаты: Е-74 – (Essene, 1974); G-94 – (Gasparik et al., 1994); K-97 – (Kubo et al., 1997). Серая сплошная линия – мантийная адиабата по (Litasov, Shatskiy, 2018).

более энергетически выгодную структуру брейита. Линия фазового равновесия имеет отрицательный наклон к оси давления dP/dT = -0.6 МПа/К. При 0 К поле стабильности брейита ограничено давлением 8 ГПа, выше которого наблюдается его распад на ассоциацию Ca₂SiO₄-ларнита и CaSi₂O₅-титанита. Линия фазового равновесия имеет положительный наклон к оси давления dP/dT = 1.35 МПа/К. Полученные результаты хорошо согласуются с имеющимися экспериментальны-ми данными (Essene, 1974; Gasparik et al., 1994; Kubo et al., 1997).

На рис. 4 вынесена рассчитанная нами фазовая граница между ассоциацией Ca₂SiO₄-ларнит + + CaSi₂O₅-титанит и Ca-pv относительно имеющихся данных (Akaogi et al., 2004; Gasparik et al., 1994; Kanzaki et al., 1991; Kubo et al., 1997; Shim et al., 2000; Sueda et al., 2006; Tamai, Yagi, 1989; Wang, Weidner, 1994). Детали данных экспериментов приведены в табл. 1. Согласно проведенным расчетам, давление фазового перехода составляет 13 ГПа и практически не меняется с ростом температуры. Полученная граница находится примерно посередине между результатами работ (Wang, Weidner, 1994) и (Shim et al., 2000), дающими крайние значения давления перехода порядка 11 и 16 ГПа при 1500 К. Согласно этим работам, линия фазового перехода имеет положительный наклон к оси давления, тогда как в настоящей работе она субвертикальна. Наибольшие несоответствия наблюдаются между нашими значениями и результатами работы (Shim et al., 2000), полученными с использованием алмазных наковален с лазерным нагревом. Однако с учетом неточности определения температуры, до 200 К, и, как следствие, давления, до 5 ГПа, данные различия находятся в пределах ошибки экспериментов. С другой стороны, характер и положение рассчитанной нами фазовой границы при температурах 1400-1600 К хорошо согласуются с результатами работы (Kubo et al., 1997), при этом разница давлений составляет ~0.7 ГПа. При более высоких температурах наибольшее соответствие наблюдается с результатами одного из последних экспериментов с использованием многопуансонного аппарата и синхротронного излучения in situ (Sueda et al., 2006). Стоит отметить, что эксперименты с использованием многопуансонных аппаратов характеризуются наибольшей точностью. Данное преимущество обусловлено более точным определением температуры с помощью термопары и давления с использованием известных уравнений состояния MgO и Au.

Для Са-*pv* были рассчитаны энергии основного состояния известных модификаций (*Pnma*, *Imma*, *I4/mcm*, *P4/mbm*, $Pm\overline{3}m$), среди которых наиболее выгодной при низких температурах является фаза CaSiO₃-*I4/mcm*. Таким образом, выше давления

ГЕОХИМИЯ том 66 № 8 2021

Рис. 4. Фазовая граница между ассоциацией Ca_2SiO_4 -ларнит + $CaSi_2O_5$ -титанит и Ca-*pv*. Черная сплошная линия с залитыми треугольниками – данная работа. Открытый и залитый квадраты – Ca_2SiO_4 -ларнит + $CaSi_2O_5$ -титанит и Ca-*pv*, соответственно, по результатам работы Капzaki et al. (1991). Серые пунктирные и точечные линии – другие данные: W-94 – (Wang, Weidner, 1994); G-94 – (Gasparik et al., 1994); K-97 – (Kubo et al., 1997); S-06 – (Sueda et al., 2006); T-89 – (Tamai, Yagi, 1989); A-04 – (Akaogi et al., 2004); S-00 – (Shim et al., 2000).

Таблица 1. Экспериментальные работы по определению фазовой границы между ассоциацией Ca_2SiO_4 ларнит + $CaSi_2O_5$ -титанит и Ca-*pv*

Автор	Техника	Калибрант давления		
Tamai, Yagi (1989)	DAC	Рубин		
Kubo et al. (1997)	MA 6-8	_		
Kanzaki et al. (1991)	MA 6-8	_		
Wang, Weidner (1994)	SR-MA DIA	NaCl		
Gasparik et al. (1994)	MA 6-8	—		
Shim et al. (2000)	LH-DAC	Pt		
Sueda et al. (2006)	SR-MA DIA	MgO и Au		

Примечания. DAC – *In situ* рентгенодифракционные эксперименты в ячейке с алмазными наковальнями, в том числе с лазерным нагревом (LH-DAC); MA 6–8 – многопуансонный аппарат с ячейкой Каваи; MA DIA – многопуансонный аппарат с ячейкой Осуги (или DIA), в том числе *in situ* рентгенодифракционных экспериментов с использованием синхротронной техники.

Рис. 5. Фазовая диаграмма Са-*pv*. Черная сплошная линия с кругами – данная работа. Серые пунктирные линии – другие данные: К-07 – (Komabayashi et al., 2007); О-04 – (Ono et al., 2004). Открытые и залитые квадраты – тетрагональная и кубическая модификации Са-*pv* по результатам работы (Kurashina et al., 2004). Открытые и залитые и кубическая модификации Са-*pv* по результатам работы (Sun et al., 2016). Открытые и залитые тетрагональная и кубическая модификации Са-*pv* по результатам работы (Sun et al., 2016). Открытые и залитые треугольники – тетрагональная и кубическая модификации Са-*pv* по результатам работы (Thomson et al., 2019). Серая сплошная линия – мантийная адиабата по (Litasov, Shatskiy, 2018).

13 ГПа в области низких температур более энергетически выгодной модификацией Ca-*pv* является CaSiO₃-*I*4/*mcm*, а в области высоких температур —

 $CaSiO_3$ -*Pm* $\overline{3}m$. Переход от тетрагональной модификации к кубической соответствует общему правилу повышения симметрии при нагревании. При давлении 20 ГПа фазовый переход осуществляется при температуре 360 К (рис. 5). С увеличением давления до 100 ГПа температура фазового перехода монотонно возрастает до 755 К. Характер фазовой кривой согласуется с экспериментальными данными (Komabavashi et al., 2007; Ono et al., 2004). Рассчитанная фазовая граница сдвинута в область низких температур на 100 и 400 К при 50 ГПа относительно экспериментальных результатов в работах (Komabayashi et al., 2007) и (Ono et al., 2004), соответственно. В то же время расположение границы фазового перехода отлично воспроизводит результаты экспериментов Киrashina et al. (2004) и Sun et al. (2016).

На заключительном этапе исследования были определены равновесный объем (V_0), объемный модуль упругости (K_0) и его производная по дав-

лению (K'_0) для всех исследованных фаз. Результаты расчета суммированы в таблице 2 и проил-

люстрированы на рис. 6 и 7. Впервые на основе квантово-химических расчетов получены термодинамические параметры для фаз волластонита (рис. 6а), псевдоволластонита (рис. 6б) и CaSi₂O₅титанита (рис. 6г). Полученные нами значения для фаз псевдоволластонита (рис. 6б), брейита (рис. 6в) и Ca₂SiO₄-ларнита (рис. 6д) отклоняются от экспериментальных в среднем на 3-5% (Апzolini et al., 2016; Joswig et al., 2003; Xiong et al., 2016). Эта разница может быть уменьшена при усреднении результатов, полученных с помощью расчетов в приближениях GGA и LDA. Хорошо известно, что первое приближение несколько завышает, а второе занижает реальный объем ячейки. Такой подход мы успешно применяли ранее для карбонатных фаз (Gavryushkin et al., 2019). В данной работе подобное усреднение применено для фазы Са-ру, для которой имеется большее количество литературных данных (рис. 7), (табл. 2). В результате, при температурах 300 и 2000 К большинство экспериментальных значений находятся в хорошем соответствии с рассчитанной нами средней кривой зависимости объема элементарной ячейки от давления. Кривая, полученная в приближении LDA, хорошо согласуется с результатами экспериментов (Ricolleau et al., 2010) и теоретических работ (Kawai, Tsuchiya, 2014) и Li et al. (2006) (рис. 7б). Отметим, что зависимости объема элементарной ячейки от давления, рассчитанные для $CaSiO_3$ -*I4/mcm* и $CaSiO_3$ -*Pm* $\overline{3}m$, аналогичны. На рис. 7 для сравнения представлены экспериментальные значения как для кубической (Mao et al., 1989; Sun et al., 2016; Wang et al., 1996), так и для тетрагональной модификаций (Chen et al., 2018; Ricolleau et al., 2010; Shim et al., 2002).

ЗАКЛЮЧЕНИЕ

Са-*pv* является одним из основных соединений нижней мантии Земли и согласно последним геофизическим данным составляет до 7% от ее объема (Irifune et al., 2010; O'Neill, Jeanloz, 1990; Ringwood, 1975). Кроме этого, CaSiO₃ является важным типом включений в природных алмазах (Joswig et al., 1999; Woodland et al., 2020), в силу чего он также важен и для моделирования алмазобразующих карбонатно-силикатных систем (Fedoraeva et al., 2019; Zedgenizov et al., 2014).

В настоящей работе представлены результаты теоретического исследования фазовых взаимоотношений и уравнений состояния в системе CaSiO₃ при давлениях до 100 ГПа и температурах до 2500 К на основе теории функционала плотности и метода решеточной динамики в рамках квазигармонического приближения. Рассчитанные фазовые переходы хорошо согласуются с имеющимися экспериментальными результатами. Согласно выполненным расчётам, ассоциация Ca₂SiO₄-ларнит +

-	-	-	-					
Волластонит			Псевдоволластонит					
Исследование	V_0 , Å ³	<i>K</i> ₀ , GPa	K'_0	Исследование	V_0 , Å ³	<i>K</i> ₀ , GPa	K'_0	
Теория				Теория				
Данная работа (GGA)	410.48	91.5	5.5	Данная работа (GGA)	811.65	74.3	4.7	
Эксперимент				Эксперимент				
Chatterjee et al. (1984) 396	396.44	—	-	Yang, Prewitt (1999)	796.9(1)	86(1)	3.8(4)	
				Chatterjee et al. (1984)	798.28	—	_	
Брейит				CaSi ₂ O ₅ -титанит				
Исследование	$V_0, \text{\AA}^3$	<i>K</i> ₀ , GPa	K'_0	Исследование	$V_0, Å^3$	<i>K</i> ₀ , GPa	K'_0	
Теория				Теория				
Данная работа (GGA)	380.069	70.38	4.3	Данная работа (GGA)	329.324	155.2	4.2	
Joswig et al. (2003) (GGA)	383.18	_	-					
				Эксперимент				
_	_	—	-	Angel (1997)	320.1(4)	—	_	
—	_	—	-	Kanzaki et al. (1991)	320.4	—	_	
Ca ₂ SiO ₄ -ларнит				CaSiO ₃ -pv				
Исследование	V_0 , Å ³	<i>K</i> ₀ , GPa	K'_0	Исследование	V_0 , Å ³	<i>K</i> ₀ , GPa	K'_0	
Теория				Теория				
Данная работа (GGA)	353.053	100.96	4.53	Данная работа (LDA)	44.702	244	4.2	
Xiong et al. (2016)	355.0(1)	92.2	4.9	Данная работа (GGA)	46.828	212	4.2	
Xiong et al. (2016) (LDA)	325.94	123(3)	4.4	Li et al. (2006) (GGA)	45.56	237	3.99	
Эксперимент			Jung Ogenov (2005) (GGA)	46.9	219	4 08		
Xiong et al. (2016)	375.16	114(1)	4	Julig, Ogullov (2003) (OOP)	10.9	219	1.00	
Holland, Powell (1998)	342.68	120	4	Akber-Knutson et al. (2002) (VIBC*)	45.90(2)	228(2)	4.3(1)	
Yamnova et al. (2011)	345.2	_	-	Karki, Crain (1998) (LDA)	45.35	241	4.14	
Jost et al. (1977)	343.9	_	_	Chizmeshya et al. (1996) (LAPW-LDA*)	45.62	227	4.29	
_	_	_	_	Wolf, Bukowinski (1987) (MEG*)	55.74	263	4.13	
_	_	_	-	Zhang et al. (2006)**	45.58	242	4.18	
_	_	_	-	Эксперимент				
_	_	_	-	Ono et al. (2004)	45.38	248(8)	4	
_	_	_	-	Shim et al. (2000)	45.58(4)	236(4)	3.9(2)	
—	_	_	-	Wang et al. (1996)	45.58(4)	232(8)	4.8(3)	
—	—	-	-	Mao et al. (1989)	45.37(8)	281(4)	4	
—	—	-	-	Tamai, Yagi (1989)	45.58(7)	352(10)	4	
-	—	-	-	Ricolleau et al. (2010)	45.58	223	4	
_	_	-	-	Hirose et al. (2005)	45.6(2)	245(6)	4	

Таблица 2. Термодинамические параметры исследуемых фаз при комнатной температуре

* VIBC – *ab initio* модель Гордона–Кима; LAPW-LDA – метод линеаризованных расширенных плоских волн; MEG – моди-фицированный метод электронного газа. ** В расчетах использованы эмпирические потенциалы.

ГЕОХИМИЯ том 66 № 8 2021

Рис. 6. Зависимости относительного объема элементарной ячейки от давления при 300 К для волластонита (а), псевдоволластонита (б), брейита (в), CaSi₂O₅-титанита (г) и Ca₂SiO₄-ларнита (д).

Рис. 7. Зависимости объема элементарной ячейки от давления для CaSiO₃-*pv* при 300 K (а) и 2000 K (б).

+ CaSi₂O₅-титанит переходит в Ca-*pv* при 13 ГПа. Фазовая граница расположена субвертикально к оси давления. Выше 13 ГПа при комнатной температуре Са-ру устойчив в тетрагональной модификации І4/тст. При высоких температурах, характерных для нижней мантии Земли, Са-ру стабилизируется в кубической структуре *Рт*<u>3</u>т. Кроме этого, получены зависимости объема элементарной ячейки от давления для всех исследованных фаз. которые хорошо согласуются с экспериментальными данными. Впервые теоретически рассчитаны термодинамические параметры фаз волластонита, псевдоволластонита и CaSi₂O₅титанита. Параметры уравнения Винэ для волластонита $V_0 = 410.48$ Å³, $K_0 = 91.5$ ГПа, $K'_0 = 5.5$; для псевдоволластонита – $V_0 = 811.65$ Å³, $K_0 = 74.3$ ГПа, $K'_0 = 4.7$; для CaSi₂O₅-титанита – $V_0 = 329.324$ Å³, $K_0 = 155.2 \ \Gamma \Pi a, K'_0 = 4.2.$

Авторы выражают благодарность Информационно-вычислительному Центру Новосибирского Государственного Университета за предоставление доступа к ресурсам кластера.

Исследование выполнено по государственному заданию ИГМ СО РАН и при финансовой поддержке РФФИ в рамках научного проекта № 20-35-90043.

СПИСОК ЛИТЕРАТУРЫ

Adams D.J., Oganov A.R. (2006) Ab initio molecular dynamics study of CaSiO₃ perovskite at P-T conditions of Earth's lower mantle. *Phys. Rev. B.* **73**(18), 184106.

Akaogi M., Yano M., Tejima Y., Iijima M., Kojitani H. (2004) High-pressure transitions of diopside and wollastonite: phase

ГЕОХИМИЯ том 66 № 8 2021

equilibria and thermochemistry of $CaMgSi_2O_6$, $CaSiO_3$ and $CaSi_2O_5$ – $CaTiSiO_5$ system. *Phys. Earth Planet. Inter.* **143–144**, 145-156.

Akber-Knutson S., Bukowinski M.S.T., Matas J. (2002) On the structure and compressibility of $CaSiO_3$ perovskite. *Geophys. Res. Lett.* **29**(3), 1034.

Angel R.J. (1997) Transformation of fivefold-coordinated silicon to octahedral silicon in calcium silicate, $CaSi_2O_5$. *Am. Mineral.* **82**(7–8), 836-839.

Anzolini C., Angel R.J., Merlini M., Derzsi M., Tokár K., Milani S., Krebs M.Y., Brenker F.E., Nestola F., Harris J.W. (2016) Depth of formation of CaSiO₃-walstromite included in super-deep diamonds. *Lithos.* **265**, 138-147.

Blöchl P.E. (1994) Projector augmented-wave method. *Phys. Rev. B.* **50**(24), 17953-17979.

Brenker F., Nestola F., Brenker L., Peruzzo L., Secco L., Harris J.W. (2018). Breyite, IMA 2018-062, CNMNC Newsletter No. 45, October 2018. *Eur. J. Mineral.* **30**, 1037-1043.

Caracas R., Wentzcovitch R., Price G.D., Brodholt J. (2005) CaSiO₃ perovskite at lower mantle pressures. *Geophys. Res. Lett.* **32**(6), L06306.

Chatterjee N.D., Johannes W., Leistner H. (1984) The system $CaO-Al_2O_3-SiO_2-H_2O$: New phase equilibria data, some calculated phase relations, and their petrological applications. *Contrib. Mineral. Petrol.* **88**(1–2), 1-13.

Chen H., Shim S.-H., Leinenweber K., Prakapenka V., Meng Y., Prescher C. (2018) Crystal structure of $CaSiO_3$ perovskite at 28–62 GPa and 300 K under quasi-hydrostatic stress conditions. *Am. Mineral.* **103**(3), 462-468.

Chizmeshya A.V.G., Wolf G.H., McMillan P.F. (1996) First-principles calculation of the equation-of-state, stability, and polar optic modes of CaSiO₃ perovskite. *Geophys. Res. Lett.* **23**(20), 2725-2728.

Essene E. (1974) High-pressure transformations in CaSiO₃. *Contrib. to Mineral. Petrol.* **45**(3), 247-250.

Fedoraeva A.S., Shatskiy A., Litasov K.D. (2019) The join $CaCO_3$ -CaSiO₃ at 6 GPa with implication to Ca-rich lithologies trapped by kimberlitic diamonds. *High Press. Res.* **39**(4), 547-560.

Gavryushkin P.N., Bekhtenova A., Lobanov S.S., Shatskiy A., Likhacheva A.Y., Sagatova D., Sagatov N., Rashchenko S.V., Litasov K.D., Sharygin I.S. (2019) High-pressure phase diagrams of Na₂CO₃ and K₂CO₃. *Minerals.* **9**(10), 599.

Gasparik T., Wolf K., Smith C.M. (1994) Experimental determination of phase relations in the $CaSiO_3$ system from 8 to 15 GPa. *Am. Mineral.* **79**(11–12), 1219-1222.

Hirose K., Takafuji N., Sata N., Ohishi Y. (2005) Phase transition and density of subducted MORB crust in the lower mantle. *Earth Planet. Sci. Lett.* **237**(1), 239-251.

Holland T.J.B., Powell R. (1998) An internally consistent thermodynamic data set for phases of petrological interest. *J. Metamorph. Geol.* **16**(3), 309-343.

Irifune T., Shinmei T., McCammon C.A., Miyajima N., Rubie D.C., Frost D.J. (2010) Iron partitioning and density changes of pyrolite in Earth's lower mantle. *Science*. **327**(5962), 193-195.

Jost K., Ziemer B., Seydel R. (1977) Redetermination of the structure of β -dicalcium silicate. *Acta Crystallogr. Sec. B: Structural Crystallography and Crystal Chemistry.* **33**(6), 1696-1700.

Joswig W., Paulus E.F., Winkler B., Milman V. (2003) The crystal structure of CaSiO₃-walstromite, a special isomorph of wollastonite-II. *Z. Kristallogr. Cryst. Mater.* **218**(12), 811-818.

Joswig W., Stachel T., Harris J.W., Baur W.H., Brey G.P. (1999) New Ca-silicate inclusions in diamonds – tracers from the lower mantle. *Earth Planet. Sci. Lett.* **173**(1), 1-6.

Jung D.Y., Oganov A.R. (2005) Ab initio study of the highpressure behavior of $CaSiO_3$ perovskite. *Phys. Chem. Miner.* **32**(2), 146-153.

Kanzaki M., Stebbins J.F., Xue X. (1991) Characterization of quenched high pressure phases in $CaSiO_3$ system by XRD and ²⁹Si NMR. *Geophys. Res. Lett.* **18**(3), 463-466.

Karki B.B., Crain J. (1998) First-principles determination of elastic properties of CaSiO₃ perovskite at lower mantle pressures. *Geophys. Res. Lett.* **25**(14), 2741-2744.

Kawai K., Tsuchiya T. (2014) P-V-T equation of state of cubic CaSiO₃ perovskite from first-principles computation. *J. Geophys. Res: Solid Earth.* **119**(4), 2801-2809.

Komabayashi T., Hirose K., Sata N., Ohishi Y., Dubrovinsky L.S. (2007) Phase transition in CaSiO₃ perovskite. *Earth Planet. Sci. Lett.* **260**(3), 564-569.

Kresse G., Furthmüller J. (1996) Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. *Phys. Rev. B.* **54**(16), 11169-11186.

Kresse G., Joubert D. (1999) From ultrasoft pseudopotentials to the projector augmented-wave method. *Phys. Rev. B.* **59**(3), 1758-1775.

Kubo A., Suzuki T., Akaogi M. (1997) High pressure phase equilibria in the system CaTiO₃–CaSiO₃: stability of perovskite solid solutions. *Phys. Chem. Miner.* **24**(7), 488-494.

Kurashina T., Hirose K., Ono S., Sata N., Ohishi Y. (2004) Phase transition in Al-bearing $CaSiO_3$ perovskite: implications for seismic discontinuities in the lower mantle. *Phys. Earth Planet. Inter.* **145**(1), 67-74.

Li L., Weidner D.J., Brodholt J., Alfè D., Price G.D., Caracas R., Wentzcovitch R. (2006) Phase stability of CaSiO₃

perovskite at high pressure and temperature: Insights from ab initio molecular dynamics. *Phys. Earth Planet. Inter.* **155**(3), 260-268.

Litasov K.D., Shatskiy A. (2018) Carbon-bearing magmas in the Earth's deep interior. In: *Magmas Under Pressure* (Eds. Kono Y., Sanloup C.). Elsevier, 43-82.

Liu L.-G., Ringwood A.E. (1975) Synthesis of a perovskitetype polymorph of CaSiO₃. *Earth Planet. Sci. Lett.* **28**(2), 209-211.

Magyari-Köpe B., Vitos L., Johansson B., Kollár J. (2002) Model structure of perovskites: cubic-orthorhombic phase transition. *Comp. Mater. Sci.* **25**(4), 615-621.

Mao H.K., Chen L.C., Hemley R.J., Jephcoat A.P., Wu Y., Bassett W.A. (1989) Stability and equation of state of CaSiO₃-Perovskite to 134 GPa. *J. Geophys. Res: Solid Earth.* **94**(B12), 17889-17894.

Merkys A., Vaitkus A., Butkus J., Okulič-Kazarinas M., Kairys V., Gražulis S. (2016) COD:: CIF:: Parser: an error-correcting CIF parser for the Perl language. *J. Appl. Crystallogr.* **49**(1), 292-301.

Monkhorst H.J., Pack J.D. (1976) Special points for Brillouin-zone integrations. *Phys. Rev. B.* **13**(12), 5188-5192.

O'Neill B., Jeanloz R. (1990) Experimental petrology of the lower mantle: A natural peredottte taken to 54 GPa. *Geophys. Res. Lett.* **17**(10), 1477-1480.

Ono S., Ohishi Y., Mibe K. (2004) Phase transition of Caperovskite and stability of Al-bearing Mg-perovskite in the lower mantle. *Am. Mineral.* **89**(10), 1480-1485.

Perdew J.P., Burke K., Ernzerhof M. (1996) Generalized gradient approximation made simple. *Phys. Rev. Lett.* 77(18), 3865-3868.

Quirós M., Gražulis S., Girdzijauskaitė S., Merkys A., Vaitkus A. (2018) Using SMILES strings for the description of chemical connectivity in the Crystallography Open Database. *J. Cheminformatics.* **10**(1), 23.

Ricolleau A., Perrillat J.-P., Fiquet G., Daniel I., Matas J., Addad A., Menguy N., Cardon H., Mezouar M., Guignot N. (2010) Phase relations and equation of state of a natural MORB: Implications for the density profile of subducted oceanic crust in the Earth's lower mantle. *J. Geophys. Res: Solid Earth.* **115**(B8), B08202.

Ringwood A.E. (1975) Composition and Petrology of the Earth's Mantle. *MacGraw-Hill* **618**.

Shim S.-H., Duffy T.S., Shen G. (2000) The stability and P-V-T equation of state of CaSiO₃ perovskite in the Earth's lower mantle. *J. Geophys. Res: Solid Earth.* **105**(B11), 25955-25968.

Shim S.H., Jeanloz R., Duffy T.S. (2002) Tetragonal structure of $CaSiO_3$ perovskite above 20 GPa. *Geophys. Res. Lett.* **29**(24), 2166.

Stixrude L., Cohen R.E., Yu R., Krakauer H. (1996) Prediction of phase transition in $CaSiO_3$ perovskite and implications for lower mantle structure. *Am. Mineral.* **81**(9-10), 1293-1296.

Stixrude L., Lithgow-Bertelloni C., Kiefer B., Fumagalli P. (2007) Phase stability and shear softening in $CaSiO_3$ perovskite at high pressure. *Phys. Rev. B.* **75**(2), 024108.

Sueda Y., Irifune T., Yamada A., Inoue T., Liu X., Funakoshi K.I. (2006) The phase boundary between $CaSiO_3$ perovskite and $Ca_2SiO_4 + CaSi_2O_5$ determined by in situ X-ray observations. *Geophys. Res. Lett.* **33**(10), L10307.

ГЕОХИМИЯ том 66 № 8 2021

Sun N., Mao Z., Yan S., Wu X., Prakapenka V.B., Lin J.-F. (2016) Confirming a pyrolitic lower mantle using self-consistent pressure scales and new constraints on CaSiO₃ per-ovskite. *J. Geophys. Res: Solid Earth.* **121**(7), 4876-4894.

Sun T., Zhang D.-B., Wentzcovitch R.M. (2014) Dynamic stabilization of cubic CaSiO₃ perovskite at high temperatures and pressures from ab initio molecular dynamics. *Phys. Rev. B.* **89**(9), 094109.

Tadano T., Gohda Y., Tsuneyuki S. (2014) Anharmonic force constants extracted from first-principles molecular dynamics: applications to heat transfer simulations. *J. Phys. Condens. Matter.* **26**(22), 225402.

Tadano T., Tsuneyuki S. (2015) Self-consistent phonon calculations of lattice dynamical properties in cubic $SrTiO_3$ with first-principles anharmonic force constants. *Phys. Rev. B.* **92**(5), 054301.

Tamai H., Yagi T. (1989) High-pressure and high-temperature phase relations in CaSiO₃ and CaMgSi₂O₆ and elasticity of perovskite-type CaSiO₃. *Phys. Earth Planet. Inter.* **54**(3), 370-377.

Thomson A.R., Crichton W.A., Brodholt J.P., Wood I.G., Siersch N.C., Muir J.M.R., Dobson D.P., Hunt S.A. (2019) Seismic velocities of $CaSiO_3$ perovskite can explain LLSVPs in Earth's lower mantle. *Nature*. **572**(7771), 643-647.

Togo A., Tanaka I. (2015) First principles phonon calculations in materials science. *Scripta Mater.* **108**, 1-5.

Vinet P., Ferrante J., Rose J.H., Smith J.R. (1987) Compressibility of solids. *J. Geophys. Res: Solid Earth.* **92**(B9), 9319-9325.

Wang Y., Weidner D.J. (1994) Thermoelasticity of $CaSiO_3$ perovskite and implications for the lower mantle. *Geophys. Res. Lett.* **21**(10), 895-898.

Wang Y., Weidner D.J., Guyot F. (1996) Thermal equation of state of CaSiO₃ perovskite. *J. Geophys. Res: Solid Earth.* **101**(B1), 661-672.

Wolf G.H., Bukowinski M.S. (1987) Theoretical study of the structural properties and equations of state of $MgSiO_3$ and $CaSiO_3$ perovskites: Implications for lower mantle composition. *High-Pres. Res. in Miner. Phys., Geophys. Monogr. Ser.* **39**, 313-331.

Woodland A.B., Girnis A.V., Bulatov V.K., Brey G.P., Höfer H.E. (2020) Breyite inclusions in diamond: experimental evidence for possible dual origin. *Eur. J. Mineral.* **32**(1), 171-185.

Xiong Z., Liu X., Shieh S.R., Wang S., Chang L., Tang J., Hong X., Zhang Z., Wang H. (2016) Some thermodynamic properties of larnite (β -Ca₂SiO₄) constrained by high T/P experiment and/or theoretical simulation. *Am. Mineral.* **101**(2), 277-288.

Yamnova N.A., Zubkova N.V., Eremin N.N., Zadov A.E., Gazeev V.M. (2011) Crystal structure of larnite β -Ca₂SiO₄ and specific features of polymorphic transitions in dicalcium orthosilicate. *Crystallogr. Rep.* **56**(2), 210-220.

Yang H., Prewitt C.T. (1999) Crystal structure and compressibility of a two-layer polytype of pseudowollastonite (CaSiO₃). *Am. Mineral.* **84**(11–12), 1902-1905.

Zedgenizov D.A., Shatskiy A., Ragozin A.L., Kagi H., Shatsky V.S. (2014) Merwinite in diamond from São Luiz, Brazil: A new mineral of the Ca-rich mantle environment. *Am. Mineral.* **99**(2–3), 547-550.

Zhang Y., Zhao D., Matsui M., Guo G. (2006) Equations of state of CaSiO₃ Perovskite: a molecular dynamics study. *Phys. Chem. Miner.* **33**(2), 126-137.