КОЛЕБАТЕЛЬНЫЕ СПЕКТРЫ ДВОЙНЫХ К–Са, К–Мg, Na–Mg КАРБОНАТОВ ПОД ДАВЛЕНИЕМ

© 2022 г. Ю. Н. Журавлев*

Кемеровский государственный университет, Красная, 6, Кемерово, 650000 Россия *e-mail: zhur@kemsu.ru Поступила в редакцию 22.03.2022 г. После доработки 18.05.2022 г. Принята к публикации 18.05.2022 г.

Методами теории функционала плотности с гибридным функционалом B3LYP и базисом линейной комбинации локализованных атомных орбиталей программного кода CRYSTAL17 проведено исследование зависимостей от давления структурных и колебательных свойств двойных карбонатов $K_2Ca(CO_3)_2$, $K_2Mg(CO_3)_2$, $Na_2Mg(CO_3)_2$. Определены параметры уравнения состояния Берча-Мурнагана третьего и второго порядка и линейные модули сжимаемости. Показана сильная анизотропия, когда сжимаемость вдоль оси *с* больше в 2–4 раза, чем вдоль оси *а*. Связи С–О практически не сжимаемые, а расстояния Ca(Mg)–O и K(Na)–O изменяются с давлением значительно быстрее. Рассчитаны частоты и интенсивности нормальных длинноволновых колебаний, по которым путем гауссова уширения построены спектры инфракрасного поглощения (ИК) и комбинационного рассеяния света (KP). Показано, что в решеточной области максимумы полос смещаются в сторону больших частот для карбонатов с меньшей атомной массой катиона. В области внутримолекуляр-

ных колебаний атомов $CO_3^{2^-}$ в ИК будет доминировать полоса, образованная асимметричным растяжением v3 с частотой ~1420 см⁻¹, в КР самой интенсивной является симметричное растяжение v1 с частотой ~1100 см⁻¹. С ростом давления частоты колебаний увеличиваются по близкому к линейному закону, а модовые параметры Грюнайзена для решеточных колебаний значительно больше, чем для внутримолекулярных. Наибольшую скорость возрастания частот с давлением имеют моды v3, а частоты внеплоскостных деформаций v2 уменьшаются с ростом давления. Установленные зависимости частот в ИК- и КР-спектрах могут использоваться для идентификации двойных карбонатов под давлением.

Ключевые слова: бючлиит, эйтелит, фононы, давление, уравнение состояния, инфракрасное поглощение, комбинационное рассеяние, параметр Грюнайзена DOI: 10.31857/S0016752522110115

введение

Известно, что карбонаты щелочных, щелочноземельных металлов играют важную роль в процессах частичного плавления мантийного вещества, алмазообразования в глубинном цикле углерода (Шацкий и др., 2015). Например, K_2CO_3 –CaCO₃– MgCO₃ является наиболее простой системой, на основе которой можно реконструировать фазовый состав и *PT*-условия возникновения калиевых карбонатитовых включений в алмазах (Arefiev et al., 2019). Карбонаты Na₂CO₃–MgCO₃ могут играть существенную роль в мантийных метасоматических процессах за счет снижения температуры плавления мантийных перидотитов (Podborodnikov et al., 2018).

С практической точки зрения карбонаты могут быть интересны для решения проблемы сокращения выбросов двуокиси углерода за счет ее улавливания и секвестрации. Известно, что CaO и MgO широко изучались в качестве сорбентов CO_2 из-за их потенциально высокой емкости и низкой стоимости. Однако, несмотря на теоретическую высокую способность улавливать CO_2 , на практике немодифицированный MgO имеет низкие показатели. Исследования (Zhang et al., 2013) показали, что в случае легирования MgO карбонатами щелочных металлов, его способность захватывать CO_2 увеличивается, а его максимальная температура поглощения повышается. При абсорбции и десорбции диоксида углерода на активированном Na₂CO₃ оксиде магния образуется двойная соль Na₂Mg(CO₃)₂.

Бючлиит, $K_2Ca(CO_3)_2$ и эйтелит, $Na_2Mg(CO_3)_2$ являются природными минералами, $K_2Mg(CO_3)_2$ в природе не встречается и имеет искусственное происхождение. При атмосферном давлении $K_2Ca(CO_3)_2$ и $K_2Mg(CO_3)_2$ кристаллизуются в тригональную решетку с пространственной группой R3m (Pabst, 1974); Hesse, Simons, 1982), $Na_2Mg(CO_3)_2$ – в решетку с симметрией R-3 (Pabst, 1973). Топологии бючлиита и эйтелита сходны, но разная ориентация карбонатных групп и разные координационные полиэдры щелочных металлов приводят к наличию или отсутствию зеркальной плоскости.

1090

Фазовые диаграммы простых, бинарных и тройных щелочных-щелочноземельных карбонатов при высоких давлениях позволяют выявить ряд новых двойных карбонатов (Litasov et al., 2020), в том числе тех, которые еще предстоит открыть (Hazen et al., 2016). Например, в (Taniguchi et al., 1996) выполнен синтез кубического алмаза в системе графит-карбонат магния и графит- $K_2Mg(CO_3)_2$ при давлениях в диапазоне 9–10 ГПа. Структурные свойства двойных карбонатов под давлением изучались с помощью синхротронного излучения в (Golubkova et al., 2015), где установлено, что сжимаемость $K_2Mg(CO_3)_2$ и Na₂Mg(CO₃)₂ ниже, чем у магнезита и доломита, а К-Мg двойной карбонат переходит в моноклинную полиморфную форму при 8.05 ГПа. Исследования (Shatskiy et al., 2013) показали. что эйтелит является стабильной полиморфной модификацией, по крайней мере, до 6.6 ГПа.

Для уточнения кристаллической структуры карбонатных минералов широко используется спектроскопия комбинационного рассеяния света (КР) (Арефьев и др., 2019; Shatskiy et al., 2013; Sharygin et al., 2021; Logvinova et al., 2019) и инфракрасного поглощения (ИК). Так спектр КР бючлиита характеризуется интенсивной полосой при 1093 см⁻¹ (Арефьев и др., 2019), а спектры эйтелита – очень интенсивной полосой при 1105 см⁻¹, относящейся к CO_3^{2-} симметричному растяжению (Sharygin et al., 2013). Спектроскопия ближнего инфракрасного диапазона и спектроскопия среднего инфракрасного диапазона позволяют идентифицировать минералы, в том числе на поверхности планетных тел (Fastelli et al., 2021).

Помимо экспериментальных методов физикохимические свойства двойных карбонатов изучались и методами компьютерного моделирования. Методами теории функционала плотности (DFT) с локальным и градиентным функционалами структурные, термодинамические и динамические свойства двойного Na—Ca карбоната шорита исследовались в (Inerbaev et al., 2017). Однако, микроскопическое исследование структурных и колебательных свойств под давлением отсутствуют. Поэтому в настоящей работе первопринципными методами DFT с гибридным функционалом и базисом локализованных орбиталей вычисляются кристаллическая структура и колебательные спектры $K_2Mg(CO_3)_2$, $K_2Ca(CO_3)_2$ и $Na_2Mg(CO_3)_2$, как при обычных условиях, так и под давлением до 10 ГПа.

МЕТОД ВЫЧИСЛЕНИЙ

Исследования зависимостей структурных и колебательных свойств двойных карбонатов от лавления выполнены из первых принципов методами теории Хартри–Фока (HF) и теории функционала плотности, которые хорошо сочетаются в программном коде CRYSTAL17 (Dovesi et al., 2018). Использовался гибридный функционал B3LYP, который сочетает в себе 20% обмен по HF с обменным функционалом BECKE (Becke, 1993) и корреляционным функционалом LYP (Lee et al., 1988), который ранее (Zhuravlev, Atuchin, 2020) хорошо зарекомендовал себя в расчетах карбонатов щелочноземельных металлов. Базисные функции выбирались в виде линейной комбинации локализованных атомных орбиталей гауссова типа. Были использованы полноэлектронные базисные наборы для атомов углерода, кислорода, магния, кальция из (Valenzano et al., 2006), натрия, калия (Dovesi et al., 1991).

Обратное пространство дискретизируется с использованием Monkhorst-Pack (Monkhorst, Pack, 1976) сетки с 216 независимыми **k**-точками в неприводимой части зоны Бриллюэна. Точность процедуры самосогласования была не меньше чем 10^{-9} ае (1 ае = 27.21 эВ).

Вычисление частот гармонических колебаний атомов решетки проводилось с помощью процедуры (Pascale et al., 2004). Гармонические частоты фононов, в точке Γ ($\mathbf{k} = 0$, центр первой зоны Бриллюэна) получаются из диагонализации масс-взвешенной матрицы вторых производных энергии по атомным смещениям *u* (Baima et al., 2016):

$$W_{ai,bj}^{\Gamma} = \frac{H_{ai,bj}^{0}}{\sqrt{M_a M_b}}, \quad H_{ai,bj}^{0} = \left(\frac{\partial^2 E}{\partial u_{ai}^0 \partial u_{bi}^0}\right),$$

где атомы *a* и *b* с массами M_a и M_b смещаются в элементарной ячейке (индекс 0), вдоль *i*-го и *j*-го декартовых направлений из положений равновесия, соответственно. Производные первого порядка вычисляются аналитически, тогда как производные второго порядка получаются численно. Интенсивность инфракрасного поглощения рассчитывается с помощью тензора эффективного заряда Борна, который характеризует изменение электронной конфигурации при смещении атома и является его динамической характеристикой. Интенсивность линии Стокса фононной моды Q_p , активной вследствие компоненты α_{ii} тензора поляризуемости, пропорциональна $I_{ii}^p \propto (\partial \alpha_{ii}/\partial Q_p)^2$.

Таблица 1. Постоянные решетки *a*, *c* (Å), объем V (Å³) гексагональной элементарной ячейки, средние расстояния между атомами металла М: калия К, натрия Na и кислорода О, магния Mg (кальция Ca) и кислорода, углерода С и кислорода (все в Å), рассчитанные гибридными функционалами B3LYP и измеренные экспериментально Exp(Ref) в *a* – (Duan et al., 2014), *b* – (Golubkova et al., 2015), *c* – (Pabst, 1973), *d* – (Knobloch et al., 1980), *f* – (Effenberger, Langhof, 1984)

Метод	a, Å	c, Å	$V, Å^3$	$\langle M-O(9) \rangle$	Mg(Ca)–O(6)	C-O(3)
K ₂ Mg(CO ₃) ₂						
$\operatorname{Exp}\left(a\right)$	5.1543	17.307	398.2	2.8037	2.0949	1.2839
$\operatorname{Exp}\left(b\right)$	5.154(1)	17.288(1)	397.7(4)	2.797 (6)	2.096(4)	1.288(3)
$\operatorname{Exp}\left(c ight)$	5.150(1)	17.290(3)	397.137	2.801 (2)	2.093(1)	1.283(1)
B3LYP	5.1769	17.7162	411.192	2.8342	2.1163	1.2901
$K-Ca(CO_3)_2$						
$\operatorname{Exp}\left(d\right)$	5.387	18.16	456.395	2.8788	2.3256	1.2847
Exp (<i>f</i>)	5.3822	18.156	455.481	2.8779	2.3214	1.2843
B3LYP	5.4060	18.5737	470.085	2.9091	2.3427	1.2897
$Na_2Mg(CO_3)_2$						
$\operatorname{Exp}\left(b\right)$	4.939	16.382	346.0	2.6287	2.077	1.282
$\operatorname{Exp}\left(c ight)$	4.942	16.406	347.007	2.6284	2.0524	1.2826
B3LYP	4.9564	16.5559	352.224	2.6455	2.0948	1.2885

Относительные интенсивности КР пиков вычисляются аналитически путем использования схемы, которая представляет собой расширение аналитического расчета ИК интенсивности (Maschio et al., 2013).

Для описания зависимости частот от давления *P* используется модовый параметр Грюнайзена (Grzechnik et al., 1999): $\gamma_i = (B_0/v_i)(\partial v_i/\partial P)$, где v_i – волновое число *i*-колебательной моды (см⁻¹), *V* – соответствующий объем элементарной ячей-ки (Å³), B_0 – изотермический объемный модуль сжатия (ГПа), который определяется из уравнения состояния в форме Берча–Мурнагана третье-

го порядка (Birch, 1978):
$$P(V) = \frac{-6}{2} \times (x^{-7} - x^{-5}) \left(1 + \frac{3}{4} (B_1 - 4) (x^{-2} - 1) \right), \quad x = (V/V_0)^{1/3},$$

 $B_1 = (\partial B/\partial P)_T$ первая производная модуля по давлению при x = 1. Если положить $B_1 = 4$, то получиться уравнение второго порядка, которое часто используется при анализе экспериментальных зависимостей P(V). Производная dv_i/dP по давлению рассчитывается численно из квадратичной интерполяции $v_i(P)$. Температура в настоящих расчетах не учитывалась и по умолчанию всюду равна нулю.

КРИСТАЛЛИЧЕСКАЯ СТРУКТУРА ПОД ДАВЛЕНИЕМ

- Для определения параметров кристалличе - ской структуры карбонатов проведена полная оп

ГЕОХИМИЯ том 67 № 11 2022

тимизация постоянных решетки и координат атомных позиций. В качестве начальных значений использованы известные из литературы данные для $K_2Mg(CO_3)_2$ (далее – K–Mg) (Duan et al., 2014), K₂Ca(CO₃)₂ (бючлиит, K-Ca) (Effenberger, Langhof, 1984), Na₂Mg(CO₃)₂ (эйтелит, Na-Mg) (Pabst, 1973)). Полученные из первых принципов структурные данные приведены в табл. 1. Элементарная ячейка К-Са карбоната изображена на рис. 1. Имеет место хорошее согласие теоретических и экспериментальных данных и среднеквадратичное отклонение от (Duan et al., 2014) не превышают в К-Мg 1.4%, а от полученных методом синхротронной монокристаллической дифракции данных (Golubkova et al., 2015) 1.5%. В K-Ca отклонение от данных (Effenberger, Langhof, 1984) равно 1.3%, Na-Mg (Golubkova et al., 2015) - 0.9%.

В ромбоэдрической структуре К—Са карбоната каждый атом калия окружен шестью атомами кислорода на расстоянии 2.8471 Å и тремя атомами кислорода на расстоянии 3.033 Å. Каждый атом кальция окружен шестью атомами кислорода на расстоянии 2.3427 Å. Карбонат-ион имеет пирамидальное строение с высотой 0.011 Å. Химическая связь характеризуется ионным взаимодействием между атомами катиона и анионами и ковалентным внутри аниона. Рассчитанные по схеме Малликена заряды атомов калия равны +0.93 |e| (e - заряд электрона), атомов кальция<math>+1.72 |e|, заряд аниона -1.79 |e|. О ковалентном характере свидетельствует наличие электронного заряда на линии связи С–О и заселенность ее пе-

Рис. 1. Ромбоэдрическая элементарная ячейка K₂Ca(CO₃)₂.

рекрывания равна 0.39 е. В структуре Na–Mg карбоната атом натрия окружен тремя атомами кислорода на расстоянии 2.3297 Å, тремя на 2.6232 Å и еще тремя на 2.9836 Å. Высота пирамидального карбонат-иона больше, чем в K–Ca и равна 0.022 Å, а его электронный заряд меньше –1.77 |e|. Заряд атома натрия равен +0.93 |e|, магния +1.68 |e|, а заселенность перекрывания на линии связи 0.35 е. Установленные параметры химической связи карбонатов объясняют их поведение при внешнем давлении.

Для исследования влияния всестороннего сжатия на кристаллическую структуру задавалось давлением *P* в интервале 0–10 ГПа, а затем полу-

ченная структура оптимизировалась при сохранении объема ячейки *V*. Полученные зависимости *V*(*P*) использовались для определения параметров уравнения состояния Берча-Мурнагана третьего порядка (EoS BM3): V₀, B₀, B₁ или Берча-Мурнагана второго порядка (EoS BM2): V₀, B₀. Полученные зависимости постоянных решетки a(P), c(P), междуатомных расстояний метал-кислород $R_{M-O}(P)$, углерод-кислород $R_{C-O}(P)$ использовались для определения линейных модулей сжатия $B_i = -x \partial P / \partial x (x; a, c, R_{M-O}, R_{C-O})$. Производная вычислялась из квадратичной интерполяшии соответствующей зависимости. Полученные указанным способом параметры уравнения состояния и линейные модули сжимаемости приведены в табл. 2.

Имеет место удовлетворительное совпадение рассчитанных и экспериментальных значений V_0 , B_0 для EoS BM2. Аналогичные значения для EoS BM3 отличаются, так здесь для аппроксимации кривой V(P) используется не два, а три параметра. Скорость возрастания объемного модуля с давлением B_1 примерно одинакова для K-Mg и K-Ca карбонатов и она больше для Na-Mg. Для этого кристалла большим будет и объёмный модуль B_0 , а, следовательно, сжимаемость $k = 1/B_0$ меньшей. В двойных карбонатах щелочных-щелочноземельных металлов объёмный модуль меньше, чем в одинарных со структурой кальцита, двойных со структурой доломита и сопоставим с карбонатами со структурой арагонита (Zhuravlev, Atuchin, 2021).

С ростом давления постоянные решетки и междуатомные расстояния практически линейно убывают, так что модули B_a в 2–4 раза больше, чем B_c . Рис. 2. иллюстрирует зависимость от давления отношений параметров решетки к своим равновесным значениям для теоретического расчета и экспериментальных измерений (Golubkova et al., 2015).

Значительно меньшая сжимаемость вдоль оси a связана с тем, что в этом направлении располагаются анионы CO_3^{2-} , в которых связи С–О практи-

Таблица 2. Параметры уравнения состояния Берча–Мурнагана третьего порядка (EoS BM3): V_0 , B_0 , B_1 и второго порядка (EoS BM2): V_0 , B_0 , ($B_1 = 4.0$), рассчитанные с помощью функционала B3LYP и из экспериментальных данных (Golubkova et al., 2015) (Exp). B_a , B_c – линейные модули упругости

Карбонат	Метод	EoS BM3			EoS BM2		Р ГПа	
		$V_0, Å^3$	<i>В</i> ₀ , ГПа	<i>B</i> ₁	$V_0, Å^3$	<i>B</i> ₀ , ГПа	$\boldsymbol{D}_a, 1$ 111a	D_c , 111a
$K_2Ca(CO_3)_2$	B3LYP	470.340	45.09	5.25	470.093	48.13	273.3	70.77
$K_2Mg(CO_3)_2$	B3LYP	411.290	51.71	5.26	410.896	55.99	374.3	78.15
	Exp	-	-	-	396.2(4)	57.0(10)	351.5	73.42
$Na_2Mg(CO_3)_2$	B3LYP	352.336	65.21	6.93	352.414	68.55	270.1	127.5
	Exp	_	_	_	347.1(13)	68.6(13)	336.8	132.0

1093

Рис. 2. Зависимость от давления *P* отношений a/a_0 постоянной решетки *a* к равновесному значению a_0 (кружки), c/c_0 (треугольники) и объема ячейки V/V_0 для $K_2Mg(CO_3)_2$ (слева) и $Na_2Mg(CO_3)_2$ (справа). Сплошная линия – расчет (красный цвет), отдельные фигуры – эксперимент (Golubkova et al., 2015) (синий цвет).

чески несжимаемы, о чем свидетельствуют соответствующие модули. В Na–Mg карбонате B_{C-O} наибольший и он равен 1328 ГПа, а в К–Са наименьший 1023 ГПа. Катионы и анионы располагаются слоями, перпендикулярно оси *c*, поэтому сжимаемость вдоль нее существенно меньше, так что в К–Мg модули $B_{K-O(6)}$ и $B_{K-O(3)}$ равны соответственно 246.8 и 70.7 ГПа, модуль $B_{Mg-O(6)}$ 209.4 ГПа. В К–Са, в котором радиус катиона Ca²⁺ в октаэдре CaO₆ равен 1.00 Å, что больше чем радиус Mg²⁺ 0.72 Å, модуль $B_{Ca-O(6)}$ меньше 181.6 ГПа, а сжимаемость, соответственно, больше. Такие закономерности не установлены для ионов натрия и калия, где разница радиусов для координационного окружения из девяти атомов кислорода, также велика 1.24 и 1.55 Å (Shannon, 1976).

КОЛЕБАТЕЛЬНЫЕ СПЕКТРЫ ПОД ДАВЛЕНИЕМ

Ромбоэдрическая элементарная ячейка двойных карбонатов содержит одиннадцать атомов и, таким образом, всего будет 33 колебательные моды, из которых 3 акустические и 30 – оптические. Для кристаллов симметрии R3m (R-3) это будут 4(5) однократные моды симметрии $A_{1g}(A_g)$ и 5 двукратно вырожденные симметрии E_g активны в КР-спектрах, а столько же мод симметрии $A_{2u}(A_u)$ и Е, будут активны в ИК-спектрах. Частоты пяти мод будут проявляться в решеточной области 0-400 см⁻¹ и четырех мод в области внутримолекулярных колебаний атомов CO₃²⁻. Колебательные моды симметрии $A_{2u}(A_u)$ будут иметь поляризацию $\mathbf{E} \| \mathbf{z}, E_u - \mathbf{E} \| \mathbf{x} \mathbf{y}$, ось \mathbf{z} направлена вдоль оси симметрии третьего порядка. Моды симметрии $A_{1g}(A_g)$ активны для компонент α_{xx} , α_{yy} , α_{zz} тензора поляризуемости, моды E_g симметрии – α_{xx} , α_{yy} , $\alpha_{xy}, \alpha_{xz}, \alpha_{yz}$

ГЕОХИМИЯ том 67 № 11 2022

На рис. 3 приведены спектры инфракрасного поглощения и комбинационного рассеяния света для двойных K–Mg, K–Ca, Na–Mg карбонатов, полученные путем гауссова уширения рассчитанных нормальных длинноволновых колебаний. Их волновые числа приведены в табл. 3.

Имеет место удовлетворительное согласие между рассчитанными и экспериментальными спектрами комбинационного рассеяния света, которые получены в условиях окружающей среды для бючлиита в (Арефьев и др., 2019; Logvinova et al., 2019), эйтелита в (Podborodnikov et al., 2018; Sharygin et al., 2021; Bekhtenova et al., 2021; Logvinova et al., 2019; Shatskiy et al., 2013) и они отличаются от любых других карбонатных фаз, содержащих Na, K, Са и/или Mg (Arefiev et al., 2018). Для К-Са карбоната среднеквадратичное отклонение Δ теоретических частот от данных (Арефьев и др., 2019) равно 13%, в K-Mg от данных (Bekhtenova et al., 2021) – 3%. Расчеты частот для Na-Mg карбоната дают отклонения от экспериментальных (Bekhtenova et al., 2021; Sharygin et al., 2021) 10 и 8% соответственно. Такого же порядка значения Δ будут и для пяти частот, измеренных в (Shatskiy et al., 2013; Logvinova et al., 2019).

Важной энергетической характеристикой фононных спектров кристаллов является энергия нулевых колебаний $E_{ZP} = \sum_{i=1}^{N} hvi/2$. Для К–Са карбоната она равна 92.30 кДж/моль, К–Мд 95.87 кДж/моль и для Na–Mg 100.16 кДж/моль. В (Duan et al., 2014) на основе расчетов методом псевдопотенциала в базисе присоединенных плоских волн и обменно-корреляционного функционала PW91 термодинамических свойств двойных карбонатов Na₂Mg(CO₃)₂, K₂Mg(CO₃)₂ и CaMg(CO₃)₂) были исследованы свойства улавливания CO₂ сорбентными системами M1O (M1: Mg, Ca), M₂CO₃ (M: Na, K). Было показано, что

Рис. 3. Рассчитанные спектры инфракрасного поглощения света (ИК, слева) и комбинационного рассеяния света (КР, справа) для решеточной области колебаний атомов в двойных карбонатах.

изменения энергии нулевых колебаний ΔE_{ZP} должны учитываться при термодинамическом анализе реакций захвата CO₂: MgO + Na₂CO₃ + + CO₂ = Na₂Mg(CO₃)₂ (1), MgO + K₂CO₃ + CO₂ = = K-Mg(CO₃)₂ (2), CaO + K₂CO₃ + CO₂ = = K₂Ca(CO₃)₂ (3).

В настоящей работе, описанным выше методом, были выполнены расчеты структуры и колебательных спектров одинарных карбонатов Na₂CO₃ симметрии *C*2/*m* (Dusek et al., 2003) и K₂CO₃ симметрии *P*21/*c* (Duan et al., 2014). В результате оптимизации структуры для карбоната натрия получены следующие кристаллографические параметры (в скобках эксперимент): *a* = 8.896 (8.920) Å, *b* = 5.3047 (5.245) Å, *c* = 6.067 (6.050) Å, β = 102.43° (101.35°), *V* = 279.586 (277.516) Å³. Аналогичные значения для карбоната калия (в скобках эксперимент): *a* = 5.6696 (5.6396) Å, *b* = 9.7775 (9.8391) Å, *c* = 7.0260 (6.8741) Å, β = 98.518° (98.703°), *V* = 385.184 (377.042) Å³. *E*_{ZP} для Na₂CO₃ равна 96.43 кДж/моль, К₂СО₃ кДж/моль. Следует иметь в виду, что в элементарной ячейке карбоната натрия две формульные единицы, в карбонате калия – четыре. Кроме того, для двуокиси углерода получены r_{C-O} = 1.1596 Å, E_{ZP} = 30.47 кДж/моль. Мы также использовали данные (Zhuravlev, Atuchin, 2021) для карбонатов щелочноземельных металлов, где для MgCO₃ E_{ZP} = 102.43 кДж/моль, CaCO₃ E_{ZP} = 94.48 кДж/моль.

Разность полных энергий $\Delta E = \Delta E_{\text{DFT}} + \Delta E_{ZP}$ реакций двойного солеобразования $M_2\text{CO}_3 + \text{M1CO}_3 =$ $= M_2\text{M1(CO}_3)_2$ (M = Na, K, M1: Mg, Ca)) для двойных K–Ca, K–Mg, Na–Mg карбонатов равны –19.99, –11.45, –15.96 кДж/моль. Это означает, что эти двойные карбонаты стабильны и могут быть образованы двумя одиночными карбонатами. Для этих реакций ΔE_{ZP} очень малы. Для реакций захвата (1)–(3) получим соответственно –87.88, –83.36 и –173.96 кДж/моль и здесь уже разность энергий нулевых колебаний играет значительно большую роль: 14.61, 11.19, 10.05 кДж/моль. Боль-

ний двойных кар <i>b</i> – (Арефьев и д	рбонатов, рассчи цр., 2019), <i>с</i> — (Sł	итанные и измер narygin et al., 202	енные эксперим 1)	ентально (Ехр(Ref) $Ba - (Bekhten)$	ova et al., 2021),
Симметрия	$K_2Mg(CO_3)_2$		K ₂ Ca(CO ₃) ₂		Na ₂ Mg(CO ₃) ₂	
	v_i , (Exp (<i>a</i>))	γ_{i}	v_i , (Exp (b))	γ_{i}	v_i , (Exp (a), (c))	γ_{i}
$E_{\rm g}$	64.9 (70)	3.658	43.7(68)	2.129	106.3(87,91)	5.056
	189.3 (184)	1.057	161.0(167)	1.142	220.2	1.295

219.3(225)

691.0(694)

1401(1402)

101.2(107)

889.3(826)

1097(1093)

239.8

146.2

169.8

269.3

689.6

113.8

279.2

867.2

1093

1421

1.319

0.15

0.213

2.376

1.084

0.021

0.25

2.344

0.029

1.574

0.178

0.241

2.258

1.206

-0.064

0.242

Таблица 3. Волновые числа v_i (см⁻¹), модовые параметры Грюнайзена γ_i нормальных длинноволновых колеба-

шие отрицательнь	ые значе	ения ΔE означа	ают прин-			
ципиальную возм	южност	ъ осуществле	ния реак-			
ций (1)–(3) и, таким образом, образования двой-						
ных карбонатов	путем	поглощения	двуокиси			
углерода.						

225.1(230)

687.8(689)

124.0(122) 265.5(265)

894.4(888)

1101(1099)

186.5

227.5

274.0

686.1

1427

134.5

326.6

876.2

1098

1389

 A_{1g}/A_g

 E_{μ}

 $A_{2\mu}/A_{\mu}$

1.658

0.170

0.220

2.427

1.016

0.035

0.262

1.757

0.558

2.190

0.201

0.248

2.723

1.063

-0.032

0.258

Для K₂Ca(CO₃)₂ в решеточной области ИКспектра моде симметрии А_{2и} с волновым числом 113.8 см⁻¹ отвечают колебания атомов калия в направлении оси z, а атомов кальция и карбонатной группы в противоположном. Долевая амплитуда атомов калия в этом колебании составляет 42%, кальция – 1%. Для моды с волновым числом 279.2 см⁻¹, наоборот, доминируют атомы кальция (65%), что продиктовано атомными массами катионов $M_{\rm K} = 38.96$ amu, $M_{\rm Ca} = 39.96$ amu. Для моды симметрии E_{μ} с волновым числом 146.2 см⁻¹ атомы калия (доля в полной амплитуде 44%) смещаются в направлении x(y), а атомы кальция (4%) и карбонатной группы в противоположном. Для моды с волновым числом 169.8 см⁻¹ направления смещения атомов меняется на противоположное, а доля кальция (15%) становится определяющей. Самому интенсивному в ИК-спектре колебанию будет отвечать мода с волновым числом 269.3 см⁻¹, когда и атомы калия и кальция смещаются в одном направлении, а СО₃ в другом. Дипольный момент

ГЕОХИМИЯ том 67 **№** 11 2022 формульной единицы в этом случае будет максимальным.

278.7(257,262)

713.2(709,710)

1405(1407,1411)

317.5(340)

909.1

206.6

260.1

341.0

715.4

1437

130.8

378.7

877.7

1098

196.5(204,208)

1099(1102,1105)

В спектре комбинационного рассеяния также будут активны пять колебаний, из которых только три моды симметрии E_g имеют относительно высокую интенсивность. Йоды симметрии $A_{1\rho}$ с поляризацией преимущественно вдоль оси z менее интенсивны и на рис. 3 практически не проявляются. Для этих колебаний атомы калия с общей амплитудной долей в 93% смещаются противоположно друг другу, также как и атомы углерода и кислорода двух карбонатных групп. Для второй моды доля калия уменьшается до 1%, поэтому ее волновое число увеличивается до 239.8 см⁻¹. Атомы кальция в активных в КР колебаниях участия не принимают по условиям симметрии. Для дважды вырожденных колебаний смешения атомов происходит аналогичным образом, но в плоскости ху.

В ИК-спектрах K₂Mg(CO₃)₂ характер колебаний атомов в силу симметрии остается прежним, но атомная масса магния $M_{\rm Mg} = 23.98$ amu меньше, чем кальция, поэтому волновые числа смещаются в большую сторону, а их амплитуда увеличивается. Так самого интенсивного колебания с волновым числом 274.0 см⁻¹ доля магния составляет 47%, а для колебания с волновым числом в

1.470

0.256

0.235

1.345

1.126

0.347

1.943

0.982

2.030

0.290

0.220

0.344

1.653

-0.12

0.35

-0.01

Рис. 4. Спектр комбинационного рассеяния света в области внутримолекулярных колебаний атомов в двойных карбонатах.

326.6 см⁻¹ и того больше — 84%. В КР-спектре не наблюдается значительного увеличения волновых чисел и изменения интенсивностей.

В Na₂Mg(CO₃)₂ в решеточной области ИКспектра, в отличие от карбонатов симметрии *R3m*, появляется дополнительно колебание, в котором атомы катионов движутся в одном направлении оси **z**, а не только в разных, как в K—Ca, K—Mg. Это дополнительное колебание имеет волновое число 130.8 см⁻¹ и доминирующий вклад в него вносят смещения атомов натрия. Атомная масса натрия равна 22.99 amu, что меньше, чем у калия, поэтому волновые числа в Na—Mg смещены в большую сторону, чем в K—Mg. В КР- также появляется дополнительное колебание. Однако, оно не связано с особенностями колебаний катионов, поскольку магний в них не участвует, а по условиям симметрии атомы натрия должны двигаться в противоположных направлениях. Волновое число этой моды равно 196.5 см $^{-1}$, а амплитуда столь мала, что в спектре оно не проявляется.

Известно (Кіт et al., 2018), что свободный ион CO_3^{2-} (симметрия D_{3h}) имеет четыре основные ИК-активных колебания: симметричное растяжение v1 (вблизи 1100 см⁻¹), внеплоскостной изгиб v2 (800 см⁻¹), вырожденное асимметричное растяжение v3 (1400 см⁻¹) и вырожденную плоскостную деформационную моду v4 (700 см⁻¹). Такого же типа колебания будут активны и в спектрах комбинационного рассеяния (Арефьев и др., 2019).

В ИК-спектрах исследуемых двойных карбонатов в области внутримолекулярных колебаний атомов CO_3^{2-} доминирует полоса, образованная вырожденной модой симметрии E_u с волновым числом ~1420 см⁻¹. Ее интенсивность составляет в К-Са 5604 км/моль, в К-Мg 5011 км/моль и в Na-Mg 4788 км/моль. В каждом карбонате эта величина была принята за 100% и от нее в процентах определялась интенсивность на рис. 3. Интенсивность моды v4 и v1 не превышает 0.1%, a v2 – менее 2%. В КР-спектре самой интенсивной является мода v1 симметрии $A_{1g}(A_g)$ с волновым числом ~1100 см⁻¹, интенсивность которой принята за 100%. В отличие от ИК- спектров, интенсивность колебаний v2-v4 имеют заметную интенсивность и соответствующие КР-спектры приведены на рис. 4.

В спектре комбинационного рассеяния $K_2Ca(CO_3)_2$ наиболее интенсивная полоса v1 имеет максимум при 1097 см⁻¹. Область внеплоскостных колебаний v2 приходится на 889 см⁻¹, но интенсивность её не превышает 1%. Полоса с максимумом 1401 см⁻¹ относится к асимметричной моде растяжения v3, а полоса на 691 см⁻¹ к асимметричному плоскостному колебанию v4. В других двойных карбонатах максимумы полос примерно сохраняют свое положение по волновому числу, однако их интенсивность значительно изменяется.

Сопоставление частот колебаний атомов в кристаллической решетке двойных К—Са, К—Мg, Nа—Мg карбонатов с частотами карбонатов щелочных металлов, карбонатов шелочноземельных металлов (Zhuravlev, Atuchin, 2020) показывает отсутствие видимых совпадений по всему набору v4—v1. Для ИК-спектра частоты v2, v1, v3 увеличиваются $v_{Na-Mg} > v_{K-Mg} > v_{K-Ca}$ в строгом соответствии с уменьшением атомных масс катионов в ряду $M_{K-Ca} > M_{K-Mg} > M_{Na-Mg}$. Для КР-спектра частоты всегда больше для Na—Mg двойного карбоната, но для К—Мg и К—Са такой зависимости нет.

С ростом давления расстояния между атомами сокращаются, а частоты колебаний увеличи-

Рис. 5. Зависимость волновых чисел и интенсивностей дважды вырожденных (кружки), однократных (треугольники) колебательных мод K₂Ca(CO₃)₂ от давления, активных в спектре комбинационного рассеяния (слева, KP) и инфракрасного поглощения (справа, ИК).

ваются. Скорость возрастания энергии нулевых колебаний в K-Mg карбонате является максимальной и равна 0.904 кДж/(моль ГПа), в К-Са кДж/(моль ГПа), а в Na-Mg это 0.853 0.843 кДж/(моль ГПа). На рис. 5 приведены зависимости волновых чисел и интенсивностей от давления для решеточных колебательных мод $K_2Ca(CO_3)_2$, активных в спектрах комбинационного рассеяния и инфракрасного поглощения. Волновые числа всех наблюдаемых в КР мод непрерывно и почти линейно увеличиваются с ростом давления. Исключение составляет самая нижняя мода симметрии Eg, для которой квадратичная зависимость v(P) интерполируется с коэффициентом корреляции всего 0.88. Интенсивность колебательных мод с ростом давления остается практически неизменной. Волновое число наиболее заметной в КР моды симметрии Eg возрастает с увеличением давления со скоростью (dv/dP) 6.42 cm⁻¹/ГПа, а ее интенсивность уменьшается с 27% до 23%. Большую скорость возрастания с давлением 5.76 см⁻¹/ГПа показывает мода симметрии A_{1g} , но ее интенсивность увеличивается лишь с 0.3 до 0.5%. Моды симметрии E_u , A_{2u} в этой области частот с давлением также быстро увеличиваются со скоростями 9.40 и 7.47 см⁻¹/ГПа, так, что при 6 ГПа их порядок следования поменялся на 318.0 и 313.8 см⁻¹.

В К—Мд карбонате линейный характер зависимости v(P) сохраняется — рис. 6. Можно было ожидать, что для мод симметрии A_{2u} скорость возрастания волновых чисел должна быть больше, нежели для мод симметрии E_u , поскольку модули $B_a > B_c$, однако этого не наблюдается. Для волновых чисел, больших, чем 200 см⁻¹, как в ИК-, так и КР-скорости возрастания для мод E_u , E_g 11.61, 7.22 см⁻¹/ГПа выше, чем для A_{2u} , A_{1g} 6.71,

ГЕОХИМИЯ том 67 № 11 2022

5.22 см⁻¹/ГПа. Та же закономерность наблюдается и в двойном Na-Mg карбонате, где соответствующие значения равны 10.61, 6.28 и 9.60, 5.48 см⁻¹/ГПа. Следует обратить внимание на то обстоятельство, что колебания симметрии E_u происходят в перпендикулярном, а колебания симметрии A_{2u} в параллельном оси *z* направлениях, где сжимаемость значительно выше.

Вызванные внешним давлением изменения в структуре карбонатов, проявляются в области внутримолекулярных колебаний. Для них модовый параметр Грюнайзена в табл. 3 не превышает 0.4, а скорости возрастания волновых чисел в ИК- и КР-спектрах примерно одинаковые. Однако, между самими этими модами наблюдается существенные различия. Наибольшую скорость имеют колебания типа v3 в КР-спектре, которые в ряду К-Са, К-Мg, Na-Mg уменьшаются как 6.62, 5.92, 5.06 см⁻¹/ГПа. Для полносимметричного колебания v1 это будут 6.07, 5.57, 5.85 см⁻¹/ГПа и для v4: 2.30, 2.23, 2.80 см⁻¹/ГПа. Особым образом под давлением ведет себя мода v2, которая для двойных карбонатов K-Ca. K-Mg в KP-положительная, а для Na-Mg отрицательная. Волновое число моды v2 в ИК-спектрах уменьшается с ростом давления для всех карбонатов со скоростью в указанном выше ряду -1.21, -0.55, -1.63 см⁻¹/ГПа. Такое аномальное поведение обусловлено характером колебательного движения, когда атомы углерода в карбонатных группах движутся в одном направлении вдоль z, а атомы кислорода в противоположном. Атомы металлов также смешаются в противофазе, но их амплитуды ничтожно малы. Таким образом, при таком колебании происходит

изменение высота пирамиды CO₃²⁻ в сторону ее увеличения. Под давлением высота пирамиды в

Рис. 6. Зависимость волновых чисел дважды вырожденных (кружки), однократных (треугольники) колебательных мод K₂Mg(CO₃)₂ от давления, активных в спектре комбинационного рассеяния (слева, KP) и инфракрасного поглощения (справа, ИК).

K–Mg, наоборот, уменьшается с 0.026 до 0.024 Å при 5 ГПа, что соответствует модулю 72.2 ГПа.

ЗАКЛЮЧЕНИЕ

Исследования зависимостей структурных и колебательных свойств двойных карбонатов $K_2Ca(CO_3)_2$, $K_2Mg(CO_3)_2$, $Na_2Mg(CO_3)_2$ от давления выполнены методами теории функционала плотности с гибридным функционалом B3LYP и базисом линейной комбинации локализованных атомных орбиталей программного кода CRYS-TAL17.

Объемный модуль упругости убывает в ряду $Na_2Mg(CO_3)_2$, $K_2Mg(CO_3)_2$, $K_2Ca(CO_3)_2$ как 65.2, 51.7, 45.1, а его производная по давлению 6.93, 5.26, 5.25. Имеет место сильная анизотропия, так что сжимаемость вдоль оси *с* больше, чем вдоль оси *a* в 2.12, 3.86, 4.79 раза. Связи С–О практически не сжимаемые, а модуль сжимаемости для расстояний Mg–O(6) в $K_2Mg(CO_3)_2$ равен 209 ГПа, что меньше, чем для K–O(6) в 247 ГПа, но больше, чем K–O(3) в 71 ГПа.

Разность полных энергий $\Delta E = \Delta E_{\text{DFT}} + \Delta E_{ZP}$, где ΔE_{ZP} энергия нулевых колебаний, для реакций образования двойных карбонатов из одинарных для K₂Ca(CO₃)₂, Na₂Mg(CO₃)₂, K₂Mg(CO₃)₂, отрицательные: -19.99, -15.96, -11.45 кДж/моль, что означает принципиальную возможность их осуществления. Для реакций захвата двуокиси углерода оксидом щелочноземельного металла и карбонатов получены значения ΔE соответственно -87.88, -173.96, -83.36 кДж/моль.

Максимумы полос спектров инфракрасного поглощении (ИК) и комбинационного рассеяния (КР) смещаются в сторону больших частот для карбонатов с меньшей атомной массой катиона. В области внутримолекулярных колебаний ато-

мов CO_3^{2-} в ИК-спектре будет доминировать полоса, образованная асимметричным растяжением v3 с частотами 1421, 1427, 1437 см⁻¹. В КР-спектре самой интенсивной является мода типа v1 симметрии A_{1g} с частотами 1097, 1101, 1099 см⁻¹ в ряду $K_2Ca(CO_3)_2$, $K_2Mg(CO_3)_2$, $Na_2Mg(CO_3)_2$.

С ростом давления Р частоты решеточных колебаний увеличиваются по близкому к линейному закону v(P). Для волновых чисел, больших 200 см⁻¹, как в ИК-, так и КР-спектрах скорости возрастания частот для мод симметрии Е_и выше, чем для $A_{2\mu}$, несмотря на противоположную сжимаемость соответствующих осей. Для внутримолекулярных колебаний модовый параметр Грюнайзена не превышает 0.4 и наибольшую скорость возрастания волновых чисел с давлением имеют в КР-асимметричные моды растяжения v3. Частоты внеплоскостных деформаций v2 в ИК-уменьшаются с ростом давления для всех карбонатов. Полученные зависимости волновых чисел колебательных мод, могут быть использованы для идентификации карбонатов в условиях внешних давлений.

СПИСОК ЛИТЕРАТУРЫ

Арефьев А.В., Подбородников И.В., Шацкий А.Ф., Литасов К.Д. (2019) Синтез и рамановские спектры К–Са карбонатов: $K_2Ca(CO_3)_2$ Бючлиита, файрчильдита и $K_2Ca_2(CO_3)_3$ при 1 атм. *Геохимия*. **64**(9), 967-973. Arefiev A.V., Podborodnikov I.V., Shatskiy A.F., Litasov K.D. (2019) Synthesis and Raman Spectra of K–Ca Double Carbonates: $K_2Ca(CO_3)_2$ Bütschliite, Fairchildite, and $K_2Ca_2(CO_3)_3$ at 1 Atm. *Geochem. Int.* **57**(9), 981-987.

Шацкий А.Ф., Литасов К.Д., Пальянов Ю.Н. (2015) Фазовые взаимоотношения в карбонатных системах при *P-T* параметрах литосферной мантии: обзор экспериментальных данных. *Геология и геофизика*. **56**(1– 2), 149-187.

Arefiev A.V., Shatskiy A., Podborodnikov I.V., Litasov K.D. (2018) Melting and subsolidus phase relations in the system K_2CO_3 -MgCO₃ at 3 Gpa. *High Pressure Res.* **38**. 422-439.

Arefiev A.V., Shatskiy A., Podborodnikov I.V., Litasov K.D. (2019) The K_2CO_3 –CaCO₃–MgCO₃ System at 6 GPa: Implications for Diamond Forming Carbonatitic Melts. *Minerals.* **9**(9), 558.

Baima J., Ferrabone M., Orlando R., Erba A., Dovesi R. (2016) Thermodynamics and phonon dispersion of pyrope and grossular silicate garnets from ab initio simulations. *Physics and Chemistry of Minerals.* **43**, 137-139.

Becke A.D. (1993) Density-functional thermochemistry. III The role of exact exchange. J. Chem. Phys. 98, 5648.

Bekhtenova A., Shatskiy A., Podborodnikov I.V., Arefiev A.V., Litasov K.D. (2021) Phase relations in carbonate component of carbonatized eclogite and peridotite along subduction and continental geotherms. *Gondwana Research*. 94, 186-200.

Birch F. (1978) Finite strain isotherm and velocities for single-crystal and polycrystalline NaCl at high pressures and 300 K. *J. Geophysical Research.* **83**(B3), 1257-1268.

Dovesi R., Roetti C., Freyria Fava C., Prencipe M., Saunders V.R. (1991) On the elastic properties of lithium, sodium and potassium oxide. An ab initio study. *Chem. Phys.* **156**, 11-19.

Dovesi R., Erba A., Orlando R., Zicovich-Wilson C.M., Civalleri B., Maschio L., Rérat M., Casassa S., Baima J., Salustro S., Kirtman B. (2018) Quantum-mechanical condensed matter simulations with CRYSTAL. *WIREs Comput Mol Sci.* e1360.

https://doi.org/10.1002/wcms.1360

Duan Y., Zhang K., Li X.S., King D.L., Li B., Zhao L., Xiao Y. (2014) *Ab initio* Thermodynamic Study of the CO₂ Capture Properties of M_2CO_3 (M = Na, K)- and CaCO₃-Promoted MgO Sorbents Towards Forming Double Salts. *Aerosol and Air Quality Research.* **14**, 470-479.

Dusek M., Chapuis G., Meyer M., Petricek V. (2003) Sodium carbonate revisited Locality: synthetic Sample: Gamma phase, T = 295 K. *Acta Crystallographica B*, **59**(3), 337-352.

Effenberger H., Langhof H. (1984) On the aplanarity of the CO_3 group in buetschlite, dipotassium calcium dicarbonate, $K_2Ca(CO_3)_2$: a further refinement of the atomic arrangement. *Acta Crystallographica C.* **40**(7), 1299-1300.

Fastelli M., Zucchini A., Comodi P., Maturilli A., Alemanno G., Palomba E., Piergallini R. (2021) NIR-MID Reflectance and Emissivity Study at Different Temperatures of Sodium Carbonate Minerals: Spectra Characterization and Implication for Remote Sensing Identification. *Minerals.* **11**(8), 845.

Golubkova A., Merlini M., Schmidt M.W. (2015) Crystal structure, high-pressure, and high-temperature behavior of carbonates in the $K_2Mg(CO_3)_2-Na_2Mg(CO_3)_2$ join. *American Mineralogist.* **100**(11–12), 2458-2467.

Grzechnik A., Simon P., Gillet P., McMillan P. (1999) An infrared study of MgCO₃ at high pressure. *Physica B: Condens Matter.* **262**(1–2), 67-73.

Hazen M.R., Hummer D.R., Hystad G., Downs R.T., Golden J.J. (2016) Carbon mineral ecology: Predicting the undiscovered minerals of carbon. *American Mineralogist.* **101**, 889-906.

Hesse K.-F., Simons B. (1982) Crystal structure of synthetic $K_2Mg(CO_3)_2$. Zeitschrift für Kristallographie. **161**, 289-292.

Inerbaev T., Gavryushkin P., Litasov K., Abuova F., Akilbekov A. (2017) *P-V-T* equation of state and thermoelastic properties of shortite Na₂Ca₂(CO₃)₂ from first principles. *Вестник Карагандинского университета. Серия* "Физика". **88**(4), 24-34.

Knobloch D., Pertlik F., Zemann J. (1980) Crystal structure refinements of buetschlite and eitelite: a contribution to the stereochemistry of trigonal carbonate minerals Note: synthetic. *Neues Jahrbuch fur Mineralogie, Monatshefte.* **1980**, 230-236.

Kim K.-Y., Kwak J.-S., Oh K.-R., Atila G., Kwon Y.-U. (2018) Formation and crystal structure of a new double carbonate phase between Na and Cd. *J. Solid State Chemistry.* **267**, 63-67.

Lee C., Yang W., Parr R.G. (1988) Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. *Phys. Rev. B.* **37**, 785-789.

Litasov K., Shatskiy A., Podborodnikov I., Arefiev A. (2020) Phase Diagrams of Carbonate Materials at High Pressures, with Implications for Melting and Carbon Cycling in the Deep Earth. In book: Carbon in Earth's Interior, Geophysical Monograph 249, Edited by Craig E. Manning, Jung-Fu Lin, and Wendy L. Mao. 137-165. https://doi.org/10.1002/9781119508229.ch14

Logvinova A.M., Shatskiy A., Wirth R., Tomilenko A.A., Ugap'eva S.S., Sobolev N.V. (2019) Carbonatite melt in type Ia gem diamond. *Lithos.* 342–343, 463-467.

Maschio L., Kirtman B., Rerat M., Orlando R., Dovesi R. (2013) *Ab initio* analytical Raman intensities for periodic systems through a coupled perturbed Hartree-Fock/Kohn-Sham method in an atomic orbital basis. I. Theory. *J. Chem. Phys.* **139**, 164101.

https://doi.org/10.1063/1.4824442

Monkhorst H.J., Pack J.D. (1976) Special points for Brillouin-zone integrations. *Phys. Rev. B.* 13, 5188.

Pabst A. (1973) The crystallography and structure of eitelite, $Na_2Mg(CO_3)_2$. *American Mineralogist.* **58**, 211-217.

Pabst A. (1974) Synthesis, properties and structure of $K_2Ca(CO_3)_2$, buetschlite. *American Mineralogist.* **59**, 353-358.

Pascale F., Zicovich-Wilson C.M., Lopez F., Civalleri B., Orlando R., Dovesi R. (2004) The calculation of the vibration frequencies of crystalline compounds and its implementation in the CRYSTAL code. *J. Comput. Chem.* **25**, 888-897.

Podborodnikov I.V., Shatskiy A., Arefiev A.V., Chanyshev A.D., Litasov K.D. (2018) The system Na₂CO₃-MgCO₃ at 3 Gpa. *High Pressure Research.* **38**(2), 281-292.

Shannon R.D. (1976) Revised Effective Ionic Radii and Systematic Studies of Interatomic Distances in Halides and Chalcogenides. *Acta Cryst.* **A32**, 751-767.

Sharygin I.S., Golovin A.V., Korsakov A.V., Pokhilenko N.P. (2013) Eitelite in sheared peridotite xenoliths from Udachnaya-East kimberlite pipe (Russia) – a new locality and host rock type. *Eur. J. Mineral.* **25**, 825-834.

Sharygin I.S., Golovin A.V., Tarasov A.A., Dymshits A.M., Kovaleva E. (2021) Confocal Raman spectroscopic study of melt inclusions inolivine of mantle xenoliths from the Bultfontein kimberlite pipe (Kimberley cluster, South Africa): Evidence for alkali rich carbonate melt in the mantle beneath Kaapvaal Craton. J. Raman Spectrosc. **53**(3), 508-524.

Shatskiy A., Gavryushkin P.N., Sharygin I.S., Litasov K.D., Kupriyanov I.N., Higo Y., Borzdov Y.M., Funakoshi K., Palyanov Y.N., Ohtani E. (2013) Melting and subsolidus phase relations in the system $Na_2CO_3-MgCO_3 \pm H_2O$ at 6 Gpa and the stability of $Na_2Mg(CO_3)_2$ in the upper mantle. *American Mineralogist.* **98**, 2172-2182.

Taniguchi T., Dobson D., Jones A.P., Rabe R., Milledge H.J. (1996) Synthesis of cubic diamond in the graphite-magnesium carbonate and graphite- $K_2Mg(CO_3)_2$ systems at high pressure of 9–10 GPa region. *J. Mater. Res.* **11**(10), 2622-2632. Valenzano L., Torres F.J., Doll K., Pascale F., Zicovich-Wilson C.M., Dovesi R. (2006) *Ab Initio* study of the vibrational spectrum and related properties of crystalline compounds; the case of CaCO₃ calcite. *Zeitschrift für Physikalische Chemie*. **220**(7), 893-912.

Zhang K., Li X.S., Duan Y., King D.L., Singh P., Li L. (2013) Roles of double salt formation and NaNO₃ in Na₂CO₃-promoted MgO absorbent for intermediate temperature CO₂ removal. *International J. Greenhouse Gas Control.* **12**, 351-358.

Zhuravlev Yu.N., Atuchin V.V. (2020) Comprehensive Density Functional Theory Studies of Vibrational Spectra of Carbonates. *Nanomaterials*, **10**(11), 2275.

https://doi.org/10.3390/nano10112275

Zhuravlev Y.N., Atuchin V.V. (2021) First-Principle Studies of the Vibrational Properties of Carbonates under Pressure. *Sensor.* **21**, 3644.

https://doi.org/10.3390/s21113644