ПОСТШПИНЕЛЕВЫЕ ФАЗЫ В МАНТИИ ЗЕМЛИ

© 2022 г. А. В. Искрина^{*a*, *b*, *, А. В. Бобров^{*a*, *b*, *c*}, А. В. Спивак^{*b*}}

^а Московский государственный университет им. М.В. Ломоносова Геологический факультет, Ленинские Горы, 1, Москва, 119991 Россия

 $^b \Phi$ едеральное государственное бюджетное учреждение науки Институт экспериментальной минералогии

им. академика Д.С. Коржинского Российской академии наук,

ул. Академ. Осипьяна, 4, Московская обл., Черноголовка, 142432 Россия

 c Федеральное государственное бюджетное учреждение науки Ордена Ленина и Ордена Октябрьской Революции

Институт геохимии и аналитической химии им. В.И. Вернадского Российской академии наук (ГЕОХИ РАН),

ул. Косыгина, 19, Москва, 119991 Россия

*e-mail: iskrina@iem.ac.ru

Поступила в редакцию 22.05.2021 г. После доработки 04.10.2021 г. Принята к публикации 04.10.2021 г.

К постшпинелевым фазам относятся соединения со стехиометрией $A^{2+}B_2^{3+}O_4(A_2^{2+}B^{4+}O_4)$ и структурами кальциоферрита CaFe₂O₄, кальциотитаната CaTi₂O₄ и марокита CaMn₂O₄. Внутри этого семейства родственных по топологии структур с "марокитовым" каналом, образованным шестью октаэдрами, выделяются структуры с центрированной *Cmcm* (*Bbmm*) и с примитивными *Pnma* (*Pmcn*), *Pbcm* (*Pmab*) ячейками. Позиции *A* и *B* заняты различными катионами, в частности, Cr, Al, Mg, Fe, Ca, Ti, Fe, Na, Si, что предполагает формирование твердых растворов широкого диапазона составов. В природе подобные фазы высокого давления были обнаружены в метеоритах, в качестве включений в кристаллах алмаза и в некоторых метаморфических комплексах. В данном обзоре приводится характеристика природных минералогических находок, результатов экспериментального изучения постшпинелевых фаз различного состава и их твердых растворов, а также кристаллохимического моделирования и оценки возможных составов и областей стабильности соединений с "марокитовым" каналом. Несоответствие между результатами отдельных изоструктурных переходов, а, в конечном итоге, усовершенствования классификации постшпинелевых фаз.

Ключевые слова: постшпинелевые фазы, алюминаты, титанаты, манганаты, структура, "марокитовый" канал, высокие давления, фазовая диаграмма, мантия Земли DOI: 10.31857/S0016752522040021

введение

Шпинель — широко распространенный минерал со стехиометрией $A^{2+}B_2^{3+}O_4(A_2^{2+}B^{4+}O_4)$, изучение которого, благодаря обилию в породах различных геологических формаций, имеет большое

значение в науках о Земле. Также структура шпинели представляет петрологический и геохимический интерес благодаря способности вмещать как трехвалентные, так и двухвалентные катионы, такие, например, как Fe²⁺ и Fe³⁺. Однако, стабильность фаз со структурой шпинели ограничена, так как уже в условиях переходной зоны происходит фазовый переход и изменение структуры.

Под воздействием высокого давления большинство шпинелей разлагаются до образующих их оксидов (Reid, Ringwood, 1969) либо испытывают структурные фазовые переходы. В качестве постшпинелевых фаз различные исследователи рассматривают соединения со структурами кальциоферрита CaFe₂O₄ (Decker, Kasper, 1957), кальциотитаната CaTi₂O₄ (Rogge et al., 1998) и марокита CaMn₂O₄ (Giesber et al., 2001). Структура шпинели

Условные обозначения, принятые в статье: $\alpha - \phi$ аза α -NaAlO₂; Brd – бриджманит; B3LYP функционал – вид обменного функционала; Ca-Pv – CaSiO₃ со структурой перовскита; Cor – корунд; CF – структура кальциоферрита; CM – структура марокита; CT – структура кальциотитаната; Esk – эсколаит; Grl – гранат; hp-фаза – фаза высокого давления; Hex.P – гексагональная алюминиевая фаза; Jd – жадеит; Lgt – лингунит; LDA функционал – функционал приближения локальной плотности; Maj – мэйджорит; mLd – фаза с модифицированной структурой людвигита; NAL – новая гексагональная алюмосодержащая фаза; Ol – оливин; Per – периклаз; Pv – MgSiO₃ со структурой перовскита; PPv – MgSiO₃ со структурой пост-перовскита; Rwd – рингвудит; Sp – шпинель

Рис. 1. Три структурных типа постшпинелевых фаз: (а) $CaMn_2O_4(CM)$, (б) $CaFe_2O_4(CF)$, (в) $CaTi_2O_4(CT)$. Атомы Mn, Fe и Ti находятся в октаэдре, а атомы Ca восьмикоординированы.

преобразуется в структуру CF при давлениях выше 9–12 ГПа, с последующим переходом в структуру CT при давлении выше 20 ГПа (Akaogi et al., 1999; Chen et al., 2008). В свою очередь, CaMn₂O₄ трансформируется в структурный тип марокита при давлении около 30 ГПа, а CaTi₂O₄ – при 39 ГПа.

Следует отметить, что не все минеральные фазы шпинели имеют высокобарные полиморфные модификации. Одним из определяющих критериев появления структуры типа СF является отношение r_B/r_A , где r_B и r_A —ионные радиусы *B* и *A*, соответственно. Оксиды CF с $r_B/r_A < 0.53$ не были обнаружены (Müller-Buschbaum, 2003). Структурные соединения типа CT менее изучены из-за более высоких давлений их синтеза.

Структура постшпинелевых фаз образована краевыми и угловыми октаэдрами с полыми каналами, параллельными оси b (структура CF) и оси a (структура CT), соответственно. Эти две структуры содержат восьмивершинники AO_8 и октаэдры BO_6 . Существует два типа октаэдрических позиций BO_6 в структуре CF и один тип октаэдрической позиции BO_6 в структуре CT (рис. 1). Внутри этого семейства родственных по топологии структур с "марокитовым" каналом, образованным шестью октаэдрами выделяются структуры с центрированной *Стст* (*Bbmm*) и с примитивными *Pnma* (*Pmcn*), *Pbcm* (*Pmab*) ячейками.

В настоящее время постшпинелевые фазы, их свойства и способность образовывать ряды твердых растворов, к сожалению, изучены недостаточно. Необходимо расширить область экспериментального изучения этих фаз и уточнять наши представления о них. В данной работе приводится анализ и систематизация данных по структурным особенностям и фазовым переходам постшпинелевых фаз.

ПРИРОДНЫЕ ПОСТШПИНЕЛЕВЫЕ ФАЗЫ

Природные постшпинелевые фазы были обнаружены в качестве включений в алмазах, что подтверждает их мантийное происхождение.

Многофазное минеральное включение в алмазе из района Juina, Бразилия, описано в работе (Kaminsky et al., 2015). Оно содержит агрегат карбида железа (Fe–N–Si–C), богатый Fe периклаз (твердый раствор с магнезиоферритом), графит, а Mg-Cr-Fe оксил также с формулой $(Mg_{0.90}Mn_{0.18})_{\Sigma 1.08}(Cr_{1.37}Fe_{0.39}^{3+}V_{0.11}Al_{0.05})_{\Sigma 1.92}O_4$ (ромб.) и оксид Ca–Cr с формулой $(Ca_{1.07}Mg_{0.02}Mn_{0.02})_{\Sigma 1.11}(Cr_{1.71}Fe_{0.06}^{3+}V_{0.06}Ti_{0.03}Al_{0.03})_{\Sigma 1.89}O_4$ (ромб.). Помимо основных элементов присутствуют незначительные примеси: Mg, Al (~0.80 ат. %), Ті, Vи Fe (~1.93 ат. %) в оксиде Ca–Cr; Al (~1.58 ат. %) и V в оксиде Mg-Cr-Fe.

В сверхглубинных алмазах из кимберлитов Juina-5, Бразилия, в качестве включений были обнаружены полиминеральные ассоциации, формирующиеся при кристаллизации расплава состава MORB в нижнемантийных условиях (Walter et al., 2011). Было описано несколько высокобарных фаз: фаза со структурой CF; новая гексагональная алюмосодержащая фаза (*NAL*); Мg-перовскит, богатый Al, Ti и Fe; и Ca-перовскит, богатый Ti.

Полиминеральное включение в алмазе Ju5-20 по составу сходно с фазой CF, а включения Ju5-67 и Ju5-89 соответствуют *NAL*-фазе, образованной в условиях нижней мантии. Синтетические фазы отличаются значительными концентрациями калия в *NAL*-фазе, в то время как природные CF-фазы калия не содержат (Walter et al., 2011). Природная фаза со структурой кальциоферрита (CF) содержит до 7.15 мас. % Al_2O_3 , 0.04 мас. % CaO, 2.11 мас. % FeO. *NAL*-фазы содержат 7.56 и 6.41 мас. % Al_2O_3 , 0.06 и 0.15 мас. % CaO, 1.80 и 2.23 мас. % FeO, соответственно.

Кроме находок природных постшпинелевых фаз в качестве включений в алмазах, в ряде работ описываются минералы со структурами кальциоферрита и кальциотитаната, обнаруженные в метеоритах и в импактных кратерах (табл. 1).

Так, маохокит (MgFe₂O₄), постшпинелевый полиморф магнезиоферрита со структурой CF (Pnma), был обнаружен в импактированном гнейсе кратера Сюянь в Китае (Chen et al., 2019). Данная фаза сосуществует с алмазом, рейдитом, TiO₂-II, а также с диаплектовыми стеклами кварца и полевого шпата и образовалась в результате субсолидусного разложения анкерита $Ca(Fe^{2+},Mg)(CO_3)_2$ при давлении 25-45 ГПа и температуре 800-900°С. Ксиеит (FeCr₂O₄) — природный ромбический полиморф хромита со структурой кальциоферрита, обнаружен в ударных жилах метеорита Суйчжоу (Chen et al., 2008). Он сформировался в результате твердофазового перехода хромита под действием высоких давлений и температур, в ассоциации с другими высокобарными минералами: рингвудитом, мэйджоритом и др. Согласно фазовой диаграмме (Agee et al., 1995), превращение хромита в ксиеит происходит при 18-23 ГПа и 1800–1950°С. Ченмингит (FeCr₂O₄) – минерал высокого давления со структурой CF (Pnma), встречающийся в виде пластинок в зернах хромита вместе с ксиеитом и Fe, Cr-насыщенной ульвошпинелью, вблизи расплавных импактитов, образованных ударным воздействием марсианского метеорита Тиссинт. Области образования ксиеита всегда находятся в контакте с зонами расплава, а пластинки ченмингита встречаются только внутри хромита, в нескольких микрометрах от этих зон. Такое расположение позволяет предположить, что ченмингит образовался при тех же

ГЕОХИМИЯ том 67 № 4 2022

давлениях, что и ксиеит, но при более низких температурах, что согласуется с экспериментальными исследованиями (Ma et al., 2019). Щаунерит (Fe²⁺)(Fe²⁺Ti⁴⁺)O₄ — высокобарный полиморф ульвошпинели. Этот минерал со структурой СТ был найден в центральной части измененных ульвошпинель-ильменитовых зерен марсианского шерготита Tissint (Ma, Prakapenka, 2018).

Как правило, для природных постшпинелевых фаз характерны высокие давления. Тем не менее, некоторые природные фазы с постшпинелевой структурой образовались при низких давлениях (табл. 1). Среди них присутствуют эллинаит (CaCr₂O₄), который был выявлен в геленит-ранкинитовых паралавах в южной части Хатрурим Бэзин (пустыня Негев, Израиль) (Sharygin, 2019), марокит ($CaMn_2O_4$), найденный в отвалах жилы 2 Тачгагальтского месторождения (Gaudefroy et al., 1963), хармунит (CaFe₂O₄) – природный кальциоферрит CaFe₂O₄, обнаруженный в ларнитсодержащих (высокотемпературных) метаморфических породах (Galuskina et al., 2014), вернеркраусеит ($CaFe_2^{3+}Mn^{4+}O_6$) – еще один минерал "низкого давления" с туннельной структурой (Pnma), обнаруженный в измененных ксенолитах щелочных базальтов вулкана Беллерберг, Эйфель, Германия (Galuskin et al., 2016).

Находки постшпинелевых фаз среди включений в глубинных алмазах, в особенности их обнаружение в срастании с другими мантийными минералами иллюстрируют возможность их образования в алмазообразующих очагах и присутствия в качестве акцессорных в мантии Земли. Весьма широкий диапазон их состава свидетельствует о том, что они могут служить концентраторами алюминия, щелочей и целого ряда элементовпримесей при высоких температурах и давлениях, соответствующих переходной зоне и нижней мантии Земли (Irifune, Ringwood, 1993; Kesson et al., 1994; Perrillat et al., 2006). В свою очередь, повышенные концентрации указанных элементов могут быть геохимическими индикаторами корового вещества в мантии Земли.

ЭКСПЕРИМЕНТАЛЬНОЕ ИЗУЧЕНИЕ ПОСТШПИНЕЛЕВЫХ ФАЗ

В экспериментальных исследованиях определены условия образования, границы фазовых переходов (табл. 2) и изменение физических свойств постшпинелевых фаз в различных химических системах в широком диапазоне давлений и температур. Сводная *PT* диаграмма стабильности и фазовых переходов постшпинелевых фаз представлена на рис. 2.

СаFe_2O_4. В 1957 г. в работе (Decker, Kasper, 1957) был описан синтез соединения Ca Fe_2O_4 и

Тип фазы		Фаза (название/формула/место	Структура	Условия	Ссылки
Фазы высокого	Мантийные фазы	СаСг ₂ О ₄ Включение в алмазе	CT (?)	≥85—86 ГПа	Kaminsky et al., 2015
давления		(Juina, Бразилия)			
		MgCr ₂ O ₄	СТ	≥85—86 ГПа	Kaminsky et al.,
		Включение в алмазе (Juina, Бразилия)	(?)		2015
		CF-фаза Полиминеральное включение в алмазе (Juina-5, Бразилия)	CF (?)	_	Walter et al., 2011
	Фазы метеоритов и импакти- тов	Ксиеит FeCr ₂ O ₄	CF (Bbmm)	18—23 ГПа и 1800—1950°С;	Chen et al., 2008
		Meteopиt Suizhou (Китай)			
		Маохокит MgFe ₂ O ₄	CF (Pnma)	25—45 ГПа и 800—900°С	Chen et al., 2019
		Импактные гнейсы из кратера Xiuyan (Китай)			
		Ченмингит FeCr ₂ O ₄	CF (Pnma)	>16—18 ГПа <1800°С;	Ma et al., 2019
		Марсианский метеорит Tissint (Марокко)			
		Щаунерит (Fe ²⁺)(Fe ²⁺ Ti ⁴⁺)O ₄ Марсианский метеорит Shergotty (Индия)	CT (<i>Cmcm</i>)	_	Ma, Prakapenka, 2018
Фазы низкого давления		Эллинаит	CF	1000-1300°C	Sharygin et al.,
		СаСг ₂ О ₄ Паралавы в Хатрурим Бэзин (Израиль)	(Pnma)		2019; Xue et al., 2021
		Вернеркраусеит CaFe ₂ ³⁺ Mn ⁴⁺ O ₆ Измененные ксенолиты в щелочных базальтах вулкана Беллерберг, Эйфель (Германия)	CF (Pnma)	<i>T</i> < 850—900°С, низкие давления (до атмосфер- ного), высокая фугитивность кислорода	Galuskin et al., 2016
		Хармунит СаFe ₂ O ₄ пирометаморфические лар- нитовые породы (Израиль)	CF (?)	900–1200°C	Galuskina et al., 2014
		Марокит СаМп ₂ O ₄ Рудное поле Ташгагальт в Антиатласе (Марокко)	CM (Pmab/P2 ₁ ab)		Gaudefroy et al., 1963

Таблица 1. Природные постшпинелевые фазы

была расшифрована его структура, которая оказалась изоморфна структуре CaV_2O_4 . При исследовании этой фазы методом монокристальной рентгеновской дифракции было выяснено, что, как и у многих других оксидов железа, при давлении ~50 ГПа происходит резкое уменьшение её объема (Merlini et al., 2010). Показано, что при давлении 51 ГПа образуется новая высокобарная фаза CaFe₂O₄ (Yamanaka et al., 2008). При переходе пространственная группа не меняется, но происходит сдвиг в каждом третьем катионном слое. В результате меняются параметры ячейки: a == 0.0032(11) Å, b = 8.5046(7) Å, c = 2.8366(13) Å при давлении 50.2 ГПа и a = 9.5834(9) Å, b == 8.2689(13) Å, c = 2.7895(18) Å при давлении 52.9 ГПа. При этом зафиксировано изменение

ПОСТШПИНЕЛЕВЫЕ ФАЗЫ В МАНТИИ ЗЕМЛИ

		1 1	•	*	
	Фаза	Структура (пр. группа)	РТ-параметры	Ссылки	
$A^{2+}Ee^{3+}O$	CaFe ₂ O ₄	CF (Pnam)	1250°C	Decker, Kasper, 1957	
$A \rightarrow C_2 \cup C_4$		hp-фаза (Pnam)	>51ГПа	Yamanaka et al., 2008	
	MgFe ₂ O ₄	CM (Pbcm)	25ГПа ~2227°С	Uenver-Thiele et al., 2017 и	
		hp-фаза (<i>Pmcn</i>)	>1527°C	ссылки в ней	
	$\frac{\text{Fe}_{3}\text{O}_{4}}{(\text{Fe}^{2+}\text{Fe}^{3+}_{2}\text{O}_{4})}$	CT (Bbmm)	>35 ГПа	Lazor et al., 2004 и ссылки в ней	
	MnFe ₂ O ₄	CM (?)	~18—39.55 ГПа	Ye et al., 2015	
	ZnFe ₂ O ₄	CM/CT (<i>Pbcm/Cmcm</i>)	25—37 ГПа	Levy et al., 2000	
	CoFe ₂ O ₄	CF (Pnma)	32.5—94 ГПа	Wang et al., 2003a	
$A^{2+}Cr_2^{3+}O_4$	FeCr ₂ O ₄	CF (Pnma)	~12.5 ГПа 2000°С	Chen et al., 2008	
		CT (Cmcm)	>20 ГПа 2000°С	-	
		CF/CT (<i>Pnma/Cmcm</i>)	17—19 ГПа	Enomoto et al., 2009; Ishii et al., 2014	
	MgCr ₂ O ₄	CT (<i>Cmcm</i>)	23 ГПа 1600°С	Ishii et al., 2015;Bindi et al., 2014	
	β-CaCr ₂ O ₄	CF (Pnam)	<16.2 ГПа	Zhai et al., 2016 и ссылки в ней	
	β-CdCr ₂ O ₄	CF (Pnam)	>10 ГПа >1100°C	Hill et al., 1956; Arevalo-Lopez et al., 2010	
	ZnCr ₂ O ₄	CF/CT (Pnma/Cmcm)	>17.5—35 ГПа	Wang et al., 2002b	
$A^{2+}Al_2^{3+}O_4$	CaAl ₂ O ₄	CF (Pnma)	8-10 ГПа 800-900°С	Ito et al.,1980; Akaogi et al., 1999	
			15 ГПа 1600°С	Iskrina et al., 2020	
		CF (Pnma)	19—200 ГПа	Eremin et al., 2016	
	MgAl ₂ O ₄	CF (Pbnm)	>26-27 ГПа	Enomoto et al., 2009; Kojitani et al.,	
			1400–1900°C	2007 и ссылки в ней	
	C M O	CT (Cmcm)	45–117 I 11a	Ono et al., 2006	
$A^{2+}Mn_2^{3+}O_2$	CaMn ₂ O ₄	CI (Bbmm)	>35 1 11a	Yamanaka et al., 2008 и ссылки в	
		Sp + CI	<u> </u>		
	MgMn.O.	(I4./adm)	<15.6 ГПа	Malayasi et al. 2005	
	Nigitili204	$(\Pi \mu \mu a m)$	×15.6. 30 ГПа		
	ZnMn ₂ O	$\frac{CWI(I mub)}{Tetrnar}$	>23_52 ГПа	Срој ет ај 2006 и ссылки в ней	
	LiMn ₂ O ₄	CE(Pnma)	>6 ГПа >1100°C	Vamaura et al. 2006	
	Mn O	CM (Pmab)	<u>10 38 7 ГПа</u>	Paris et al. 1002	
2. 21	CuPh O	$\frac{P_{\rm OM}(1mab)}{P_{\rm OM}(2,2,2,2)}$	<u>10</u> =38.7 Π1a	Obgushi et al. 2006	
$A^{2+}B_2^{3+}O_4$	Cultin ₂ O ₄	$T_{0}(12_{1}2_{1}2_{1})$	2 FTIa 000°C		
		Terpar. (?)	2 Г Па 900 С, 4 ГПа 1350°С		
	ZnGa ₂ O ₄	Тетраг. (?)	31.2—55 ГПа	Errandonea et al., 2009	
	2	CM (Pbcm)	>55 ГПа		
	CaTi ₂ O ₄	CT (Bbmm)	>39.6-80 ГПа	Yamanaka et al., 2008	
$A_2^{2+}B^{4+}O_4$	Fe ₂ TiO ₄	Tetpar. $(I4_1/amd)$	>~9ГПа	Куопо et al.,2011 и ссылки в ней;	
	2 7	CT (<i>Cmcm</i>)	> $12-16 \Gamma\Pi a$ Wu et al., 2012		
		hp-фаза (?)	>48ГПа	1	
	Zn ₂ TiO ₄	CT (<i>Cmcm</i>)	>23.7 ГПа	Zhang et al., 2017 и ссылки в ней	
	Co ₂ TiO ₄	CM (Pbcm)	22—35 ГПа	Zhang et al., 2019	
	_ '	CT (<i>Cmcm</i>)	>35 ГПа		
	γ-Fe ₂ SiO ₄	hp-фаза (<i>Rm</i>)	>30 ГПа	Greenberg et al., 2011	
		$I-\text{Fe}_2\text{SiO}_4$ (<i>Imma</i>)	>34 ГПа	Yamanaka et al., 2015	

Таблица 2. РТ-параметры образования и фазовых переходов постшпинелевых фаз

Рис. 2. Сводная *РТ* диаграмма стабильности и фазовых переходов постшпинелевых фаз. Сплошные и пунктирные линии – границы фазовых переходов, заштрихованные области – поля стабильности соответствующих фаз, точки – *РТ*-параметры образования отдельных фаз.

объема фазы с 241.3(4) до 221.1(6) Å³. В новой фазе плотность увеличивается на 8.3%. Было показано, что этот переход связан со сменой высокоспинового состояния Fe^{3+} низкоспиновым (Greenberg et al., 2013).

MgFe₂O₄. Экспериментально показано, что MgFe₂O₄ со структурой шпинели при достижении давления ~17.7 ГПа начинает трансформироваться в фазу со структурой CaMn₂O₄ (CM). Линии дифракции магнезиоферрита со структурой шпинели остаются четкими до 27.2 ГПа. что свидетельствует о смешении фаз низкого давления и высокого давления между 17.7 и 27.2 ГПа. При последующем повышении давления вплоть до 46 ГПа стабильна фаза высокого давления MgFe₂O₄ со структурой СМ. Установлено, что поведение $MgFe_2O_4$ зависит от температуры: при $T < 1600^{\circ}C$ происходит распад MgFe₂O₄ на Fe₂O₃ и MgO, а при $T > 1600^{\circ}$ С фаза MgFe₂O₄ непосредственно превращается в высокобарную фазу hp-MgFe₂O₄. Предположительно, такое двойственное поведение объясняется неоднородными условиями во время экспериментов в алмазных ячейках. Есть мнение, что магнезиоферрит трансформируется из фазы hp-MgFe₂O₄ во время апвеллинга. Но фазовые отношения MgFe₂O₄ исключают возможность прямого перехода из hp-MgFe₂O₄ в магнезиоферрит. Также нет подтверждения тому, что стабильность hp-MgFe₂O₄ сохраняется в условиях *P* = 18 ГПа и *T* = 1000–1500°С и выше. Хотя фаза называется "магнезиоферритом", анализ состава показывает, что она является твердым раствором $(Mg_{0.5}Fe_{0.5}Fe_{2}O_{4})$. При более высоких давлениях в системе присутствуют фазы с отличной стехиометрией: Mg₂Fe₂O₅ и Mg₃Fe₄O₉ (Uenver-Thiele et al., 2017

и ссылки в ней). В работе (Ishii et al., 2020) показано, что при давлениях 12-19 ГПа в системе присутствует ассоциация $Mg_2Fe_2O_5$ (*Cmcm*) + Fe_2O_3 , при давлениях 19-22 ГПа – ассоциация Mg₃Fe₄O₉ (C2/m) + Fe₂O₃, а при дальнейшем повышении давления становится стабильной фаза MgFe₂O₄ (Рпта). Однако, структура последней фазы, несмотря на одинаковую пространственную группу Pnma, не относится к структурному типу CF. Структура фазы MgFe₂O₄ (Pnma) имеет искаженный Z-образный каркас, построенный из соединеннных ребрами октаэдров (Mg, Fe)O₆. Октаэдры создают каналы, параллельные оси b, которые содержат две октаэдрические и одну тетраэдрическую позиции. Катионы Mg и Fe, не занимающие октаэдры каркаса, случайным образом распределяются в октаэдрических и тетраэдрической позициях каналов, что приводит к частичной заселённости этих трех позиций. Предполагается, что фаза с такой структурой может образовываться в импактных кратерах и метеоритах. Авторы подчеркивают необходимость тщательной фазовой идентификации фаз высокого давления путем уточнения кристаллической структуры как при экспериментальных исследованиях, так и в природных образцах, ввиду кристаллографического сходства постшпинелевых структур.

 Fe_3O_4 ($Fe^{2+}Fe_2^{3+}O_4$). Магнетит переходит в фазу высокого давления около 25 ГПа. Bassett et al. (1967) предположили, что у фазы высокого давления Fe_3O_4 должна быть моноклинная симметрия. В других исследованиях фазовый переход высокого давления также был установлен в диапазоне 25–32.4 ГПа, и была определена его температурная зависимость. Магнитные свойства и электрическое сопротивление при фазовом переходе также подвержены изменению. Было выдвинуто предположение, что фаза высокого давления Fe_3O_4 кристаллизуется в структурном типе СМ. Позже для этой фазы стали рассматривать структурный тип CaTi₂O₄ (*Bbmm*). Согласно термодинамическим расчетам, Fe_3O_4 должен распадаться на FeO и Fe_2O_3 при 13.3 ГПа, а затем переходить в фазу высокого давления при 35 ГПа (Lazor et al., 2004 и ссылки в ней).

ZnFe₂O₄. Фаза ZnFe₂O₄, имеющая минеральное название "франклинит", была изучена до 37 ГПа (Levy et al., 2000). До давлений ~25 ГПа стабильна фаза со структурой шпинели. Новая ZnFe-фаза впервые фиксируется при 24.4 ГПа. Доля фазы со структурой шпинели в двухфазном агрегате уменьшается с давлением (при 36.6 ГПа установлено ее минимальное количество). По результатам сравнения с другими постшпинелевыми структурами, авторами выдвинуто предположение, что франклинит претерпевает трансформацию, ведущую от шпинелеобразной структуры к структуре типа CaTi₂O₄ или CaMn₂O₄.

СоFe₂O₄. Фаза СоFe₂O₄ была изучена до давления 93.6 ГПа (Wang et al., 2003а). До 32.5 ГПа соединение имеет структуру шпинели, при дальнейшем повышении давления происходит переход в фазу со структурой СF, стабильной до ~94 ГПа. Ромбическая высокобарная фаза на 14.7% плотнее тетрагональной фазы при нормальных условиях.

МпFe₂O₄. Поведение якобсита $MnFe_2O_4$ исследовано до давления 39.55 ГПа при комнатной температуре (Ye et al., 2015). Шпинель состава $MnFe_2O_4$ претерпевает фазовый переход при ~18 ГПа с образованием более плотного полиморфа со структурой СМ. Высокобарная модификация стабильна до 39.55 ГПа и сохраняется после декомпрессии.

 $MgCr_2O_4$. Опираясь на данные рентгеновской дифракции и КР-спектроскопии при высоком давлении (Yong et al., 2012), было показано, что изменение симметрии с кубической на тетрагональную в шпинели MgCr₂O₄ происходит примерно при 20 ГПа и комнатной температуре. Согласно другим данным (Ishii et al., 2015 и ссылки в ней), шпинель состава MgCr₂O₄ при давлениях 14-19 ГПа и температуре 1000-1600°С превращается в ассоциацию фазы с модифицированной структурой людвигита Mg₂Cr₂O₅ и эсколаит Cr₂O₃. При дальнейшем увеличении давления и температуры происходит переход в фазу со структурой кальциотитаната СТ (рис. 2) (Sirotkina et al., 2018), который был впервые синтезирован при 23 ГПа и 1600°С и структурно изучен в работе (Bindi et al., 2014).

По данным КР-спектроскопии было установлено сосуществование двух фаз в широком диапазоне давлений (14.2—30.1 ГПа) (Wang et al., 2002а). Стабильность фазы высокого давления прослежена вплоть до 76.4 ГПа.

 $FeCr_2O_4$. Хромит $FeCr_2O_4$ переходит в $Fe_2Cr_2O_5 + Cr_2O_3$ примерно при 14 ГПа и 1200°С, а при более высоком давлении в CF- или CT-фазу (Ishii et al., 2014). Φ aза Fe₂Cr₂O₅, так же как и $Mg_2Al_2O_5$, имеют одну и ту же структуру, названную модифицированной структурой людвигита (mLd) (Pbam), в которой краевые и угловые (Fe,Cr)O₆ (или (Mg,Al)O₆) октаэдры располагаются параллельно оси c, а ионы Fe²⁺ (или Mg²⁺) занимают пустоты в каналах, образованных октаэдрами (Enomoto et al., 2009; Ishii et al., 2014). Образец природного хромита, аналогичный по составу образцу из метеорита Суичжоу, был изучен при высоком давлении (Chen et al., 2008). Показано, что FeCr₂O₄ со структурой шпинели превращается в СГ при 12.5 ГПа, а затем при давлении выше 20 ГПа переходит в структуру СТ.

β-CaCr₂O₄. Существуют два полиморфа CaCr₂O₄ (α и β), являющиеся высоко- и низкотемпературной формами, соответственно. В отличие от большинства хромитов, имеющих структуру шпинели, α - и β -CaCr₂O₄ кристаллизуются в ромбической сингонии, первое в пространственной группе *Pmmn*, второе – в *Pnam*. Фаза β -CaCr₂O₄ была изучена до 16.2 ГПа. В этом диапазоне не наблюдаются фазовые переходы, и сохраняется структура CF. Также отмечено, что по оси *a* структура более сжимаема, чем по осям *b* и *c*, что показывает анизотропную упругость для β -CaCr₂O₄ (Zhai et al., 2016 и ссылки в ней).

СdCr₂O₄. Полиморф β-CdCr₂O₄ кристаллизуется в структурном типе кальциоферрита (Hill et al., 1956), соотношение в нем $r_{Cr}/r_{Cd} \approx 0.56$. Экспериментально установлено, что шпинель CdCr₂O₄ при 10 ГПа и 1100°С полностью трансформируется в соединение β-CdCr₂O₄ со структурой CF (Arévalo-López et al., 2010).

ZnCr₂O₄. В работе (Wang et al., 2002b) было установлено, что фаза $ZnCr_2O_4$ со структурой шпинели в диапазоне 17.5–35 ГПа трансформируется в постшпинелевую фазу со структурой CF или CT.

NiCr₂O₄. Экспериментально показано, что при 13.1 ГПа NiCr₂O₄ шпинель разлагается на оксиды Cr_2O_3 и NiO, присутствие которых было прослежено *in situ* до давления 57.1 ГПа (Wang et al., 2003b).

CaAl₂O₄. В системе CaAl₂O₄ до давлений 9– 10 ГПа сосуществуют области стабильности двух фаз — низкотемпературной CA-III и высокотемпературной CA-IV (Ito et al., 1980; Akaogi et al.,

1999). При повышении давления обе фазы переходят в фазу со структурой СF. Эта фаза была ранее получена нами при 15 ГПа и 1600°С в ассоциации с соединением Ca₂Al₆O₁₁ (Iskrina et al., 2020). Сравнение CF-фазы, описанной в работе Akaogi et al. (1999), и фазы, полученной Iskrina et al. (2020), показывает, что все структурные параметры в последней работе несколько меньше. Это приводит к заниженному значению плотности CF-фазы ($\rho = 3.975$ г/см³) из работы (Akaogi et al., 1999) по сравнению с величиной, полученной нами ($\rho =$ = 4.08 г/см³) (Iskrina et al., 2020). Такие отличия возможны ввиду разных методик расшифровки структуры в рассматриваемых работах.

MgAl₂O₄. Фаза MgAl₂O₄ со структурой СF была синтезирована при 25 ГПа и 1600°С (Yutani et al., 1997). Ранее был экспериментально установлен прямой переход шпинели MgAl₂O₄ в CF фазу при давлениях более 26 ГПа. Эти параметры, по-видимому, близки нижнему пределу стабильности MgAl₂O₄ со структурой CF, так как в ряде работ было показано, что при повышении давления шпинель MgAl₂O₄ разлагается на Mg₂Al₂O₅ с модифицированной структурой людвигита (*mLd*) и Al₂O₃ примерно при 20 ГПа и 2000°С (Enomoto et al., 2009; Коjitani et al., 2007 и ссылки в ней).

В работе (Опо et al., 2006) было показано, что фаза $MgAl_2O_4$ со структурой шпинели при давлении 30 ГПа превращается в фазу со структурой CF. В диапазоне 40—45 ГПа наблюдается фаза ϵ -MgAl_2O₄, предположительно, с ромбической симметрией, наблюдаемая ранее выше 25 ГПа. При этом было обнаружено, что ϵ -тип MgAl₂O₄ сосуществует с периклазом и корундом. Дифракционные пики от ϵ -типа MgAl₂O₄ не могут быть идентифицированы в рамках ромбической структуры. В настоящий момент структура фазы ϵ -MgAl₂O₄ и точная область ее стабильности не определены (Ono et al., 2006 и ссылки в ней).

FeAl₂O₄. Герцинит FeAl₂O₄ не стабилен при давлении выше 12 ГПа и 1000°С и диспропорционирует с образованием корунда и вюстита. В более поздних работах верхний предел стабильности герцинита был опущен до 8.0 ГПа при 1450°С. При 18 и 24 ГПа и 1400 и 1600°С, соответственно, также происходил распад герцинита, но новая высокобарная фаза не была обнаружена. Таким образом, согласно экспериментальным данным, полиморф высокого давления FeAl₂O₄ с постшпинелевым типом структуры маловероятен (Schollenbruch et al., 2010 и ссылки в ней).

CaMn₂O₄. Соединение CaMn₂O₄ было синтезировано при давлении 2.3 ГПа и температуре 600° С, расшифрована его структура (Giesber et al., 2001). Данная фаза была изучена до давления 73.7 ГПа. При давлении ~35 ГПа начинается преобразование структуры в структурный тип СТ. В диапазоне 35-45 ГПа наблюдалось сосуществование двух фаз – исходной CaMn₂O₄ и высокобарной фазой со структурой СТ. При дальнейшем повышении давления вплоть до 73.7 ГПа модификация со структурой СТ остается стабильной. Yamanaka et al. (2008) изучили фазу $CaMn_2O_4$ до 75 ГПа и уточнили, что переход в структуру СТ происходит при 30 ГПа, объем элементарной ячейки уменьшается на 3.8%. Также при этом давлении был исследован возможный электронно-спиновый переход Mn³⁺ в октаэдрической позиции, так как высокоспиновое состояние может измениться на низкоспиновое. Симметрия октаэдрической позиции MnO₆ повышается с "1" в пространственной группе *Pmab* до "..m" в *Bbmm*, а затем октаэдр становится более высокосимметричным с почти эквивалентными связями (Yamanaka et al., 2008 и ссылки в ней).

MgMn₂O₄. Соединение MgMn₂O₄ было изучено до 30 ГПа (Malavasi et al., 2005). Выяснено, что до 15.6 ГПа фаза имеет тетрагональную структуру $I4_1/adm$. При более высоких давлениях происходит фазовый переход. Высокобарное соединение кристаллизуется в ромбической сингонии и имеет структуру СМ (*Pmab*). Данный переход очень похож на изменение в структуре, происходящее с фазой Mn₃O₄ (Paris et al., 1992).

 $ZnMn_2O_4$. Соединение $ZnMn_2O_4$ было изучено до 52 ГПа (Asbrink et al., 2006). Фаза меняет симметрию на тетрагональную при 23 ГПа и сохраняется вплоть до 52 ГПа. Соединение с постшпинелевой структурой в этом диапазоне не образуется, что отличается от поведения фаз с другими составами. Шпинель ZnMn₂O₄, имеющая активный ион Mn³⁺ Яна-Теллера, проявляет структурный фазовый переход первого порядка при высоком давлении. Отношение с/а в тетрагональной структуре резко снижается с 162 до 1.10 при давлении перехода ~23 ГПа. Высоко-низкоспиновый переход был предложен для ZnMn₂O₄ при изучении методом порошковой дифракции при 23 ГПа и расчетом зонной структуры, однако результаты экспериментов до 100 ГПа не указывают на какое-либо изменение электронного состояния или конфигурации спина до 50 ГПа (Choi et al., 2006 и ссылки в ней).

LiMn₂O₄. Эксперименты по изучению поведения фазы LiMn₂O₄ при давлении 6 ГПа и температурах до 1500°С показали, что при температуре выше 1100°С наблюдается переход в высокобарную модификацию со структурой CF (Yamaura et al., 2006).

MgMn₂O₄. В работе (Malavasi et al., 2005) была изучена система $Mg_{1-x}Mn_{2+x}O_4$, при $0 \le x \le 1$. Делов в том, что шпинель $MgMn_2O_4$ имеет тенденцию к инверсии, таким образом, часть ионов магния может быть найдена в октаэдрической пози-

ции уже при комнатной температуре. Когда большая часть магния занимает тетраэдрическую позицию, при давлении 15.6 ГПа тетрагональная структура шпинели с пространственной группой $I4_1/adm$ переходит в ромбическую структуру СМ-типа (*Pmab*). При увеличении количества магния в октаэдрах граница фазового перехода из тетрагональной структуры в ромбическую смещается до 14.4 ГПа. Установлено также, что за счет увеличения инверсии сжимаемость вдоль оси *с* немного уменьшается, в то время как сжимаемость вдоль оси *а* увеличивается.

 Mn_3O_4 ($Mn^{2+}Mn_2^{3+}O_4$). В работе Paris et al. (1992) фаза Mn_3O_4 была изучена до давления 38.7 ГПа. Показано, что при 10–12 ГПа происходит переход из гауссманита Mn_3O_4 в фазу со структурой СМ, при этом объем уменьшается на 8.7%. Однако, при сравнении с изоструктурным соединением – марокитом, выявлено, что параметры ячейки для Mn_3O_4 (CM) меньше на 1.6– 4.5%. Возможно, это связано с меньшим радиусом Mn^{2+} по сравнению с Ca²⁺. При 1 атм. (10⁻⁴ ГПа) фаза Mn_3O_4 со структурой марокита, в отличие от самого марокита Ca Mn_2O_4 , не стабильна. Предположительно, это связано с тем, что катион Mn^{2+} слишком мал для позиции $A^{(VIII)}$, и при низких давлениях происходит дестабилизация структуры.

ZnGa₂O₄. Шпинель ZnGa₂O₄ была изучена до 56 ГПа при комнатной температуре (Errandonea et al., 2009). При 31.2 ГПа происходит переход от кубической структуры шпинели к тетрагональной структуре. При 55 ГПа происходит второй переход к ромбической структуре марокита (CM). Показано, что ZnGa₂O₄ является одной из наименее сжимаемых шпинелей, изученных на сегодняшний день.

CaTi₂O₄. Исследование фазы CaTi₂O₄ методом порошковой рентгеновской дифракции до давления 80 ГПа выявило, что при 39.6 ГПа происходит переход в высокобарную модификацию (Yamanaka et al., 2008). Пространственная группа высокобарной фазы не меняется, изменяются только параметры ячейки: a = 9.338(6) Å, b = 9.718(4) Å, c = 3.026(1) Å при давлении 29.8 ГПа и a = 9.257(5) Å, b = 9.642(3) Å, c = 8.967(2) Å при давлении 39,8 ГПа. Также изменяется объём фазы с 274.7(3) Å³ до 800.4(2). Механизм перехода очень похож на вышеописанное превращение, обнаруженное в CaFe₂O₄, но, тем не менее, представляет собой просто мартенситную трансформацию с перестановкой атомов в слое.

Zn₂TiO₄. Изучение фазы Zn_2TiO_4 при давлении до 80 ГПа показало, что шпинель состава Zn_2TiO_4 первоначально трансформируется в фазу ромбической (CaTi₂O₄) структуры при 23.7 ГПа, и этот фазовый переход завершается при 32.4 ГПа.

ГЕОХИМИЯ том 67 № 4 2022

Определено, что фаза высокого давления Zn_2TiO_4 имеет более высокое значение объемного модуля упругости 205(6) ГПа, чем у фазы кубической шпинели 162(11) ГПа. При этом фаза Zn_2TiO_4 с ромбической структурой на 2.1% плотнее шпинелевой фазы. Однако, разница в плотности фазы Zn_2TiO_4 (СТ) и фазы Zn_2TiO_4 (Sp) составляет ~10.0% (Zhang et al., 2017 и ссылки в ней).

Fe₂TiO₄. По данным рентгеновской дифракции, Мёссбауэровской и КР-спектроскопии было установлено, что ульвошпинель Fe₂TiO₄ претерпевает серию фазовых переходов от кубической (Fd3m) к тетрагональной ($I4_1/amd$) при ~9 ГПа, а затем к ромбической структуре (*Cmcm*) при 12-16 ГПа. При этом фаза высокого давления (Cmcm) Fe₂TiO₄ сохраняется при декомпрессии до нормальных условий. Во всех полиморфах Fe₂TiO₄ катионы железа обладают свойством высокоспинового состояния, что подтверждается данными мессбауэровской спектроскопии (Wu et al., 2012). При 48 ГПа был обнаружен новый полиморф Fe₂TiO₄ высокого давления, однако его структура не была определена. При понижении давления он возвращается в полиморф Fe₂TiO₄ с орторомбической структурой (Стст). При этом орторомбическая структура Fe₂TiO₄ является изоструктурной CaTi₂O₄ (Kyono et al., 2011 и ссылки в ней; Wu et al., 2012).

Fe₂**SiO**₄. Изучение синтетической фазы γ-Fe₂SiO₄ при давлении до 66 ГПа и при комнатной температуре показало структурный фазовый переход при ~30 ГПа. Фаза высокого давления Fe₂SiO₄ принадлежит к пространственной группе $R\overline{3}m$ (Z = 2) (Greenberg et al., 2011). В работе (Yamanaka et al., 2015) показан переход от кубической структуры шпинели к объемноцентрированной ромбической фазе *I*-Fe₂SiO₄ (*Imma*) при ~34 ГПа. Лазерный нагрев *I*-Fe₂SiO₄ до 1227°С приводит к его разложению на ромбоэдрический FeO и стишовит SiO₂ (Yamanaka et al., 2015).

CuRh₂O₄. В работе (Ohgushi et al., 2006), наряду с тетрагональной фазой CuRh₂O₄, при давлении 4 ГПа и температуре 900°С был синтезирован ее ромбический аналог, причем плотность более низкосимметричной фазы оказалась на 2% выше.

Со₂TiO₄. Фаза Co₂TiO₄ со структурой шпинели стабильна до 21 ГПа, при дальнейшем повышении давления происходит её переход в высокобарную модификацию со структурой СМ, а выше 35 ГПа становится стабильной фаза со структурой СТ (Zhang et al., 2019).

Рис. 3. Фазовые диаграммы для систем: (a) MgAl₂O₄-Mg₂SiO₄ по данным (Kojitani et al., 2007); (б) MgAl₂O₄-CaAl₂O₄ по данным (Akaogi et al., 1999); (в) MgAl₂O₄-NaAlSiO₄ по данным (Ono et al., 2009).

ТВЕРДЫЕ РАСТВОРЫ ПОСТШПИНЕЛЕВЫХ ФАЗ

Система MgAl₂O₄-Mg₂SiO₄. Твердый раствор MgAl₂O₄-Mg₂SiO₄ был изучен до давлений ~27 ГПа и $T = 1600^{\circ}$ С (рис. 3a) (Kojitani et al., 2007). В лиапазоне лавлений ло 23 ГПа в рассматриваемой системе существуют две ассоциации: Cor + Per при большем содержании компонента Mg_2SiO_4 , а также *Cor* + *Per* + *Grt* при повышенном содержании MgAl₂O₄. При повышении давления среди фаз появляется CF фаза, а поле Cor + Per, не содержащее CF, постепенно выклинивается при увеличении давления до ~26.5 ГПа. Сосуществование граната и CF при 23 ГПа предполагает, что фазовый переход между ассоциациями Grt + Per + Corи Cor + Per + CF или Grt + Per + CF происходит как раз при этом давлении. Когда содержание MgAl₂O₄ превышает ~23 мол. %, в системе при давлении выше 26.5 ГПа остается лишь фаза CF.

Система MgAl₂O₄-CaAl₂O₄. Твердый раствор MgAl₂O₄-CaAl₂O₄ был изучен до давлений ~26 ГПа и T = 1200°С (рис. 36) (Akaogi et al., 1999). При давлениях выше 8 ГПа фаза СА-IV переходит в фазу со структурой кальциоферрита CF, в то время как фаза MgAl₂O₄ продолжает сохранять структуру шпинели (Ito et al., 1980; Akaogi et al., 1999). Соединение MgAl₂O₄ трансформируется в фазу со структурой кальциоферрита при 26-27 ГПа и находится в ассоциации с гексагональной алюминиевой фазой (*Hex.P*). Фазы CaAl₂O₄ и $MgAl_2O_4$ имеют разные параметры решетки, следовательно, в системе, несмотря на отсутствие установленных областей несмесимости, нет полной серии твердых растворов. Однако, растворимость Mg-компонента в CF фазе увеличивается при повышении давления. Следовательно, магний все же может входить в структуру кальциевых алюминатов, но только в условиях высоких давлений.

313

Система NaAlSiO₄-MgAl₂O₄. Твердый раствор NaAlSiO₄-MgAl₂O₄ был изучен до давлений ~30 ГПа и T = 1600°С (рис. 3в) (Ono et al., 2009). При давлениях выше ~17 ГПа фаза NaAlSi₂O₆ Jd разлагается с образованием фазы NaAlSiO₄ со структурой калыноферрита (СГ). Эта фаза стабильна вплоть до крайних изученных в данной работе давлений в 30 ГПа с условием, что примесь Мд-компонента не превышает 30 мол. %. При большем вхождении магния в структуру NaAlSiO₄, кроме СГ-фазы, образуется также гексагональная алюминиевая фаза Hex. Р. Стоит отметить, что содержание Na/(Mg + Na) в CF-фазе выше, чем в сосуществующей с ней фазе Нех. Р. Это объясняется тем, что большая часть магния, как уже было сказано, перераспределяется в перовскитоподобные фазы. тогла как в остатке начинает превалировать натрий, что, соответственно, способствует образованию богатой Na кальциоферритовой структуры с Mg, Na-содержащей hp-фазой в высокобарной ассоциации для состава MORB. В работе (Guignot, Andrault, 2004) также подтверждается предположение, что NaAlSiO₄ – компонент доминирует в фазе со структурой кальциоферрита, а MgAl₂O₄ – компонент – в гексагональной фазе. Опираясь на то, что натрий предпочитает входить в СГ-фазу, можно предположить, что при высоких давлениях вполне возможно образование твердых растворов и смешение (вероятно, частичное) компонентов NaAlSiO₄ и CaAl₂O₄.

Система Mg_2SiO_4 — $MgCr_2O_4$. В работе (Bindi et al., 2018) при давлении 20 ГПа и температуре 1600°С в системе Mg₂SiO₄-MgCr₂O₄ проведен синтез хромсодержащего рингвудита (4.23 мас. % Сг₂О₃) с обращенной структурой. Обращенный рингвудит характеризуется вхождением кремния в октаэдрическую позицию и разупорядоченным заселением октаэдров и тетраэдров магнием. Предположительно, обращенная структура стабилизируется примесью хрома, распределенного по октаэдрическим и тетраэдрическим позициям. Ранее рингвудит со структурой обращенной шпинели был обнаружен в хромититах из офиолитов района Luobusa (Тибет, Китай) (Griffin et al., 2016). В качестве фазы, за счет которой формируется высокобарическая модификация (Mg,Fe)₂SiO₄, pacсматривается Mg(Mg,Cr,Si)₂O₄ с искаженной ромбической структурой СТ, полученной в работе (Sirotkina et al., 2018) в широком диапазоне давлений (13-18 ГПа) в ходе экспериментального изучения модельной системы Mg₂SiO₄-MgCr₂O₄.

Также в рассматриваемой системе при давлении 16 ГПа и 1600°С был получен твердый раствор Mg[(Cr,Mg)(Si,Mg)]O₄, который имеет искаженную структуру СТ и пространственную группу *Cmc*2₁ (Bindi et al., 2015).

РЕЗУЛЬТАТЫ КОМПЬЮТЕРНОГО МОДЕЛИРОВАНИЯ ПОСТШПИНЕЛЕВЫХ ФАЗ

С помощью квантовохимических расчетов было показано, что при 7-8 ГПа наблюдается полиморфный переход CaAl₂O₄ со сменой пространственной группы $P2_1/m$ на группу *Рита* (Eremin et al., 2016), что подтверждают экспериментальные данные (Lazić et al., 2006). Результаты полуэмпирического моделирования методом межатомных потенциалов приводят к более высоким величинам границы перехода (18–19 ГПа). Также было показано, что в условиях мантии Земли энергетически более выгодна Рпат "марокитовая" модификация. Судя по значению энтальпии, Вытт фаза с базоцентрированной ячейкой менее предпочтительна в изучаемых условиях. Это же касается моноклинной гипотетической фазы, построенной на основе "а-PbO2"-мотива, которая предположительно появляется при >130 ГПа, но, менее выгодна, чем структуры с "марокитовым" каналом (Марченко, 2019).

Методом самосогласованного поля Хартри-Фока были исследованы уравнения состояния нормальных шпинелей MgCr₂O₄, MnCr₂O₄ и ZnCr₂O₄ и их реакция разложения на оксиды компонентов Cr₂O₃ (эсколаит) и MO (NaCl) (Catti et al., 1999). Прогнозируемые давления разложения хромовых шпинелей Mg, Mn и Zn составляют 19, 23 и 34 ГПа, соответственно. Структура шпинели становится более стабильной по отношению к компонентным оксидам по мере увеличения атомных чисел металлов. Этот эффект особенно заметен для ZnCr₂O₄. Такое поведение, вероятно, связано с большей относительной стабильностью тетраэдрической (шпинель) и октаэдрической (NaCl) координаций для Zn²⁺, чем для других катионов M²⁺, что согласуется с существованием тетраэдрической фазы вюрцита только для ZnO (Catti et al., 1999).

В работе (Catti, 2001) была изучена фаза $MgAl_2O_4$. Согласно результатам *ab initio* моделирования (LDA и B3LYP функционалы) определено, что кубическая структура шпинели (*Fd3m*) при повышении давления переходит в ассоциацию $MgO + Al_2O_3$ при давлениях от 6.4—17.3 ГПа до 38.5—57.2 ГПа (в каждом из диапазонов первое число получено методом LDA, второе — методом B3LYP, соответственно), а дальше трансформируется в фазу со структурой СТ. По экспериментальным данным описанный выше диапазон составляет 15—(>)40 ГПа (Irifune et al., 1991; Funamori et al., 1998). Стоит отметить, что Catti (2001) не рассматривалась фаза MgAl₂O₄ со структурой CF.

ЗНАЧЕНИЕ ПОСТШПИНЕЛЕВЫХ ФАЗ В МАНТИИ ЗЕМЛИ

Высокобарные минералы со структурой шпинели с переходными элементами являются важными составляющими нижних частей мантии Земли. Их распространенность является предпосылкой для всестороннего изучения фазовой стабильности и структуры в условиях высокого давления и высоких температур, в особенности последующих полиморфных модификаций. Начиная с переходной зоны Земли, структура шпинели перестает быть стабильной и трансформируется в набор простых оксидов или переходит в структуры с "марокитовым каналом" (CM, CF, CT). Данное обстоятельство является основной причиной как минералогического, так и геофизического интереса к фазам высокого давления с постшпинелевыми типами структур.

Структура типа CaFe₂O₄ рассматривается как высокобарная форма многих шпинелей в условиях. соответствующих переходной зоне и верхней границе нижней мантии Земли (Kesson, 1994: Kirby et al., 1996; Funamori et al., 1998). Экспериментальное изучение природных образцов базальта (Perrillat et al., 2006 и ссылки в ней) показало формирование двух богатых Al фаз со структурой CaFe₂O₄ совместно с бриджманитом, Са-перовскитом и стишовитом (Akaogi et al., 1999). Ранее был проведен синтез подобных постшпинелевых Al-фаз (Gasparik et al., 2000; Litasov, Ohtani, 2005). Вхождение Si и Na в богатые Al фазы повышает стабильность CF-структуры (Irifune, Ringwood, 1993; Kesson, 1994), так как NaAlSiO₄ принимает эту структуру при давлениях >18 ГПа (Liu, 1977). Аl-фазы оказались фазами-концентраторами щелочных элементов, таких как Na и К. Таким образом, эти постшпинелевые минеральные фазы рассматриваются как потенциальный геохимический резервуар для щелочей и других крупных катионов в условиях мантии Земли.

Наряду с наиболее распространенными минералами, такими как оливин (вадслеит, рингвудит) и клиноэнстатит (ильменит), шпинель (постшпинелевые) фазы могут вносить свой вклад в сейсмические неоднородности в результате стагнации субдуцированной литосферы на глубинах переходной зоны (Kirby et al., 1996). Этот интервал глубин характеризуется быстрым увеличением сейсмических скоростей в результате преобразования минералов верхней мантии в высокобарные фазы. Это объясняет, почему глубинная сейсмичность возникает только в приблизительном диапазоне глубин переходной зоны мантии, где минералы опускающихся плит должны приобретать структуры шпинели и ильменита. Даже если плита проникает в нижнюю мантию, сейсмическая неоднородность не должна проявляться на глубинах около 700 км, поскольку основные

сейсмически чувствительные фазовые превращения будут уже завершены (Kirby et al., 1996). Тем не менее, изучение и определение различных характеристик постшпинелевых фаз является необходимым, в том числе, и для понимания природы локальных сейсмических неоднородностей нижней мантии. Моделирование *ab initio* упругих свойств фаз NaAlSiO₄, MgAl₂O₄ и (Mg,Fe)Al₂O₄ со структурой кальциоферрита позволило определить скорости и плотность океанической коры вдоль различных мантийных геотерм (Wang et al., 2020). Можно предположить, что достижение субдуцированной океанической коры значительных глубин может быть причиной локальных сейсмических неоднородностей нижней мантии в результате продолжающихся трансформаций шпинелей в постшпинелевые фазы. Кроме того, обосновано формирование постшпинелевой фазы Mg₂SiO₄-CT при высоком давлении в результате взаимодействия MgSiO₃ со структурой постперовскита *PPv* и MgO со структурой NaCl (Zhang et al., 2017). Из-за недостаточного объема нашей планеты дальнейший высокобарный фазовый переход ассоциации MgSiO₃(PPv) + MgO(NaCl) может представляться не столь важным в процессе изучения мантии Земли. Однако это может иметь решающее значение для уточнения внутренних динамических процессов некоторых экзопланет с массами, в 10 раз превышающими массу Земли.

ЗАКЛЮЧЕНИЕ

Постшпинелевые фазы — обширная группа, насчитывающая более 30 минеральных фаз, преимущественно со стехиометрией $A^{2+}B_2^{3+}O_4$. Боль-

шая часть из них синтетические, и их природные аналоги пока не обнаружены. Тем не менее, за последние годы в природе найдено 6 новых минералов с "марокитовым" каналом (хармунит, вернеркраусеит, щаунерит, маохокит, ченмингит и эллинаит). Главным образом поля стабильности природных постшпинелевых фаз располагаются в областях высоких давлений. Обнаружение природных фаз с постшпинелевой структурой в метеоритах и включениях в алмазах подтверждает предположение о том, что эти соединения входят в фазовый состав мантии Земли и других планет Солнечной системы. Таким образом, изучение условий образования, возможных систем твердых растворов соединений с "марокитовым" каналом помогут уточнить процесс эволюции состава вещества планет земной группы и, в частности, оценить влияние субдукции и погружения океанической коры базальтового состава на глубину на гетерогенность переходной зоны и нижней мантии Земли.

Авторы выражают особую благодарность профессору Баварского Геоинститута (г. Байройт, Германия) Л.С. Дубровинскому и профессору Байройтского Университета (кафедра Физики материалов и технологий при экстремальных условиях, г. Байройт, Германия) Н.А. Дубровинской за помощь в проведении исследований и ценные научные рекомендации. Авторы благодарны м. н. с. ИСАН Н.Н. Кузьмину за советы и замечания по кристаллографическому описанию структур. Авторы также признательны всем исследователям, работающим в области тематики статьи, но не упомянутым в тексте по причине установленных ограничений в объеме.

Исследование выполнено за счет грантов РНФ № 21-17-00147 (обзор твердых растворов постшпинелевых фаз, обсуждение роли фазовых превращений в мантии Земли) и РФФИ № 20-35-90095 (обзор состава и структурных особенностей постипинелевых фаз), в рамках научного плана Лаборатории глубинных геосфер МГУ им. М.В. Ломоносова и частично в рамках государственного задания АААА-А18-118020590140-7 Института экспериментальной минералогии им. академика Д.С. Коржинского РАН.

СПИСОК ЛИТЕРАТУРЫ

Марченко Е.И., Еремин Н.Н., Бычков А.Ю., Гречановский А.Е. (2017) Са- и Мд-Перовскитовые фазы мантии Земли как возможный резервуар Аl по данным компьютерного моделирования. *Вестн. Моск. Ун-та.* Сер. 4. *Геология.* 4, 3-7.

Марченко Е.И. (2019) Диссертация на соискание ученой степени кандидата химических наук. Москва, МГУ.

gee C. B., Li J., Shannon M.C., Circone S. (1995) Pressure-temperature phase diagram for the Allende meteorite. *J. Geophys. Res.* **100**, 17725-17740.

Akaogi M., Hamada Y., Suzuki T., Kobayashi M., Okada M. (1999) High pressure transitions in the system $MgAl_2O_4$ -Ca Al_2O_4 : A new hexagonal aluminous phase with implication for the lower mantle. *Phys. Earth Planet. Inter.* **115**, 67-77.

Andrault D., Casanova N.B. (2001) High-pressure phase transitions in the $MgFe_2O_4$ and Fe_2O_3 -MgSiO₃ systems. *Phys. Chem. Miner.* **28**, 211-217.

Arévalo-López Á.M., Dos Santos-García A.J., Castillo-Martínez E., Durán A., Alario-Franco M.Á. (2010) Spinel to CaFe₂O₄ transformation: Mechanism and properties of β -CdCr₂O₄. *Inorg. Chem.* **49**, 2827-2833.

Asbrink S., Waśkowska A., Gerward L., Olsen J.S., Talik E. (1999) High-pressure phase transition and properties of spinel ZnMn₂O₄. *Phys. Rev.* **60**, 12651.

Bassett W.A., Takahashi T., Stook P.W. (1967) X-ray diffraction and optical observations on crystalline solids up to 300 kbar. *Rev. Sci. Instrum.* **38**, 37-42.

Bindi L., Sirotkina E.A., Bobrov A.V., Irifune T. (2015) Letter. Structural and chemical characterization of $Mg[(Cr,Mg)(Si,Mg)]O_4$, a new post-spinel phase with six-fold-coordinated silicon. *Am. Mineral.* **100**, 1633-1636.

Bindi L., Sirotkina E., Bobrov A.V., Irifune T. (2014) X-ray single-crystal structural characterization of $MgCr_2O_4$, a post-spinel phase synthesized at 23 GPa and 1600 C. *J. Phys. Chem. Solids.* **75**, 638-641.

Bindi L., Griffin W.L., Panero W.R., Sirotkina E., Bobrov A., Irifune T. (2018) Synthesis of inverse ringwoodite sheds light on the subduction history of Tibetan ophiolites. *Sci. Rep.* **8**, 5457.

Catti M. (2001) High-pressure stability, structure and compressibility of *Cmcm*-MgAl₂O₄: An *ab initio* study. *Phys. Chem. Miner.* **28**, 729-736.

Catti M., Freyria Fava F., Zicovich C., Dovesi R. (1999) High-pressure decomposition of MCr_2O_4 spinels (M = Mg, Mn, Zn) by ab initio methods. *Phys. Chem. Miner.* **26**, 389-395. Chen M., Shu J.F., Mao H.K. (2008) Xieite, a new mineral of high-pressure FeCr₂O₄ polymorph. *Chinese Sci. Bull.* **53**, 3341-3345.

Chen M., Shu J., Xie X., Tan D. (2019) Maohokite, a postspinel polymorph of $MgFe_2O_4$ in shocked gneiss from the Xiuyan crater in China. *Meteorit. Planet. Sci.* **54**, 495-502.

Choi H.C., Shim J.H., Min B.I. (2006) Electronic structures and magnetic properties of spinel $ZnMn_2O_4$ under high pressure. *Phys. Rev. B – Condens. Matter Mater. Phys.* **74**, 4-7.

Decker B.F., Kasper J.S. (1957) The structure of calcium ferrite. *Acta Crystallogr.* **10**, 332-337.

Enomoto A., Kojitani H., Akaogi M., Miura H., Yusa H. (2009) High-pressure transitions in $MgAl_2O_4$ and a new high-pressure phase of $Mg_2Al_2O_5$. *J. Solid State Chem.* **182**, 389-395.

Eremin N.N., Grechanovsky A.E., Marchenko E.I. (2016) Atomistic and *Ab initio* modeling of CaAl₂O₄ high-pressure polymorphs under Earth's mantle conditions. *Crystallogr. Reports.* **61**, 432-442.

Errandonea D., Kumar R.S., Manjón F.J., Ursaki V.V., Rusu E.V. (2009) Post-spinel transformations and equation of state in $ZnGa_2O_4$: Determination at high pressure by in situ x-ray diffraction. *Phys. Rev. B – Condens. Matter Mater. Phys.* **79**, 1-20.

Funamori N., Jeanloz R., Nguyen J.H., Kavner A., Caldwell W.A., Fujino K., Miyajima N., Shinmei T., Tomioka N. (1998) High-pressure transformations in MgAl₂O₄. *J. Geophys. Res. Solid Earth.* **103**, 20813-20818.

Galuskin E.V., Krüger B., Krüger H., Blass G., Widmer R.,

Galuskina I.O. (2016) Wernerkrauseite, $CaFe_2^{3+}Mn^{4+}O_6$: the first nonstoichiometric post-spinel mineral, from Bellerberg volcano, Eifel, Germany. *Eur. J. Mineral.* **28**, 485-493.

Galuskina I.O., Vapnik Y., Lazic B., Armbruster T., Murashko M., Galuskin E.V. (2014) Harmunite CaFe₂O₄: A new mineral from the Jabel Harmun, West Bank, Palestinian Autonomy, Israel. *Am. Mineral.* **99**, 965-975.

Gasparik T., Tripathi A., Parise J.B. (2000) Structure of a new Al-rich phase, [K, Na]_{0.9}[Mg, Fe]₂[Mg, Fe, Al, Si]₆O₁₂, synthesized at 24 GPa. *Am. Mineral.* **85**, 613-618.

Gaudefroy C., Jouravsky G., Permingeat F. (1963) La marokite, CaMn₂O₄, une nouvelle espèce minérale. *Bull. la Société française Minéralogie Cristallogr.* **86**, 359-367.

Giesber H.G., Pennington W.T., Kolis J.W. (2001) Redetermination of CaMn₂O₄. *Acta Crystallogr. Sect. C Cryst. Struct. Commun.* **57**, 329-330.

Greenberg E., Dubrovinsky L., Mccammon C. (2011) Pressure-induced structural phase transition of the iron endmember of ringwoodite γ -Fe₂SiO₄ investigated by X-ray diffraction and Mössbauer spectroscopy. *Am. Mineral.* **96**, 833-840.

Greenberg E., Rozenberg G.K., XuW., Pasternak M.P., McCammon C., Glazyrin K., Dubrovinsky L.S. (2013) Mott transition in CaFe₂O₄ at around 50 GPa. *Phys. Rev. B* – *Condens. Matter Mater. Phys.* **88**, 2-6.

Griffin W.L. et al. (2016) Mantle recycling: transition-zone metamorphism of Tibetan ophiolitic peridotites and its tectonic implications. *J. Petrol.* **57**, 655-684.

Guignot N., Andrault D. (2004) Equations of state of Na– K–Al host phases and implications for MORB density in the lower mantle. *Phys. Earth Planet. Inter.* **143**, 107-128.

Irifune T., Ringwood A.E. (1993) Phase transformations in subducted oceanic crust and buoyancy relationships at depths of 600–800 km in the mantle. *Earth Planet. Sci. Lett.* **117**, 101-110.

Ishii T., Kojitani H., Tsukamoto S., Fujino K., Mori D., Inaguma Y., Tsujino N., Yoshino T., Yamazaki D., Higo Y., Funakoshi K., Akaogi M. (2014) High-pressure phase transitions in $FeCr_2O_4$ and structure analysis of new post-spinel $FeCr_2O_4$ and $Fe_2Cr_2O_5$ phases with meteoritical and petrological implications. *Am. Mineral.* **99**, 1788-1797.

Ishii T., Kojitani H., Fujino K., Yusa H., Mori D., Inaguma Y., Matsushita Y., Yamaura K., Akaogi M. (2015) High-pressure high-temperature transitions in $MgCr_2O_4$ and crystal structures of new $Mg_2Cr_2O_5$ and post-spinel $MgCr_2O_4$ phases with implications for ultrahigh-pressure chromitites in ophiolites. *Am. Mineral.* **100**, 59-65.

Ishii T., Miyajima N., Sinmyo R., Kojitani H., Mori D., Inaguma Y., Akaogi M. (2020) Discovery of new-structured post-spinel MgFe₂O₄: Crystal structure and high-pressure phase relations. Geophysical Research Letters, **47(6)**, e2020GL087490.

Iskrina A.V., Spivak A.V., Bobrov A.V., Eremin N.N., Marchenko E.I., Dubrovinsky L.S. (2020) Synthesis and crystal structures of new high-pressure phases $CaAl_2O_4$ and $Ca_2Al_6O_{11}$. *Lithos.* **374-375**, 105689.

Ito S., Suzuki K., Inagaki M., Naka S. (1980) High-pressure modifications of $CaAl_2O_4$ and $CaGa_2O_4$. *Mater. Res. Bull.* **15**, 925-932.

Kaminsky F.V., Wirth R., Schreiber A. (2015) A microinclusion of lower-mantle rock and other minerals and nitrogen lower-mantle inclusions in a diamond. *Can. Mineral.* **53**, 83-104.

Kesson S.E. (1994) Phase Relations for the Former Basaltic Crust of the Slab in the Perovskitite Facies of the Lower Mantle. *Mineral. Mag.* **58A**, 475-476.

Kesson S.E., Gerald J.D.F., Shelley J.M.G. (1994) Mineral chemistry and density of subducted basaltic crust at lower-mantle pressures. **372**, 767-769.

Kirby S.H., Stein S., Okal E.A., Rubie D.C. (1996) Metastable mantle phase transformations and deep earthquakes in subducing oceanic lithosphere. *Rev. Geophys.* **34**, 261-306.

Kojitani H., Hisatomi R., Akaogi M. (2007) High-pressure phase relations and crystal chemistry of calcium ferrite-type solid solutions in the system MgAl₂O₄-Mg₂SiO₄. *Am. Mineral.* **92**, 1112-1118.

Kyono A., Ahart M., Yamanaka T., Gramsch S., Mao H.K., Hemley R.J. (2011) High-pressure Raman spectroscopic studies of ulvöspinel Fe_2TiO_4 . *Am. Mineral.* **96**, 1193-1198.

Lazić B., Kahlenberg V., Konzett J., Kaindl R. (2006) On the polymorphism of $CaAl_2O_4$ -structural investigations of two high pressure modifications. *Solid State Sci.* **8**, 589-597.

Lazor P., Shebanova O.N., Annersten H. (2004) Highpressure study of stability of magnetite by thermodynamic analysis and synchrotron X-ray diffraction. *J. Geophys. Res.* **109**, B05201

Levy D., Pavese A., Hanfland M. (2000) Phase transition of synthetic zinc ferrite spinel ($ZnFe_2O_4$) at high pressure, from synchrotron X-ray powder diffraction. *Phys. Chem. Miner.* **27**, 638-644.

Litasov K.D., Ohtani E. (2005) Phase relations in hydrous MORB at 18–28 GPa: Implications for heterogeneity of the lower mantle. *Phys. Earth Planet. Inter.* **150**, 239-263.

Liu L.G. (1977) The system enstatite-pyrope at high pressures and temperatures and the mineralogy of the Earth's mantle. *Earth Planet. Sci. Lett.* **36**, 237-245.

Ma C., Prakapenka V. (2018) Tschaunerite, IMA 2017-032a. CNMNC NewsletterNo. 46, December 2018, page 1188. *Eur. Mineral.* **30**, 1181-1189.

Ma C., Tschauner O., Beckett J.R., Liu Y., Greenberg E., Prakapenka V.B. (2019) Chenmingite, $FeCr_2O_4$ in the CaFe₂O₄-type structure, a shock-induced, high-pressure mineral in the Tissint martian meteorite. *Am. Mineral.* **104(10)**, 1521-1525.

Malavasi L., Tealdi C., Amboage M., Mozzati M.C., Flor G. (2005) High pressure X-ray diffraction study of MgMn₂O₄ tetragonal spinel. *Nucl. Instruments Methods Phys. Res. Sect. B Beam Interact. with Mater. Atoms.* **238**, 171-174.

Merlini M., Hanfland M., Gemmi M., Huotari S., Simonelli L., Strobel P. (2010) Fe^{3+} spin transition in $CaFe_2O_4$ at high pressure. *Am. Mineral.* **95**, 200-203.

Müller-Buschbaum H. (2003) The crystal chemistry of AM_2O_4 oxometallates. J. Alloys Compd. **349**, 49-104.

Ohgushi K., Gotou H., Yagi T., Ueda Y. (2006) High-pressure synthesis and magnetic properties of orthorhombic CuRh₂O₄. J. Phys. Soc. Japan. **75**, 4-6.

Ono A., Akaogi M., Kojitani H., Yamashita K., Kobayashi M. (2009) High-pressure phase relations and thermodynamic properties of hexagonal aluminous phase and calcium-ferrite phase in the systems $NaAlSiO_4-MgAl_2O_4$ and $CaAl_2O_4-MgAl_2O_4$. *Phys. Earth Planet. Inter.* **174**, 39-49.

Ono S., Kikegawa T., Ohishi Y. (2006) The stability and compressibility of $MgAl_2O_4$ high-pressure polymorphs. *Phys. Chem. Miner.* **33**, 200-206.

Paris E., Ross II C.R., Olijnyk H. (1992) Mn_3O_4 at high pressure: a diamond-anvil cell study and a structural modelling. *Eur. J. Mineral.* **4**, 87-94.

Perrillat J., Daniel I., Fiquet G., Mezouar M., Guignot N. (2006) Phase transformations of subducted basaltic crust in the upmost lower mantle. **157**, 139-149.

Reid A.F., Ringwood A.E. (1969) Newly observed high pressure transformations in Mn_3O_4 , $CaAl_2O_4$, and $ZrSiO_4$. *Earth Planet. Sci. Lett.* **6**, 205-208.

Rogge M.P., Caldwell J.H., Ingram D.R., Green C.E., Geselbracht M.J., Siegrist T. (1998) A New Synthetic Route to Pseudo-Brookite-Type CaTi₂O₄. *J. Solid State Chem.* **141**, 338-342.

Schollenbruch K., Woodland A.B., Frost D.J. (2010) The stability of hercynite at high pressures and temperatures. *Phys. Chem. Miner.* **37**, 137-143.

Sharygin V.V. (2019) Orthorhombic $CaCr_2O_4$ in phosphide-bearing gehlenite-rankinite paralava from Hatrurim

basin, Israel: preliminary data. In Magmatism of the Earth and related strategic metal deposits. pp. 272-276.

Sirotkina E.A., Bobrov A.V., Bindi L., Irifune T. (2018) Chromium-bearing phases in the Earth's mantle: Evidence from experiments in the Mg_2SiO_4 - $MgCr_2O_4$ system at 10– 24 GPa and 1600°C. *Am. Miner.* **103**, 151-160.

Uenver-Thiele L., Woodland A.B., Boffa Ballaran T., Miyajima N., and Frost D.J. (2017) Phase relations of Fe–Mg spinels including new high-pressure post-spinel phases and implications for natural samples. *Am. Mineral.* **102**, 2054-2064.

Walter M.J., Kohn S.C., Araujo D., Bulanova G.P., Smith C.B., Gaillou E., Wang J., Steele A., Shirey S.B. (2011) Deep mantle cycling of oceanic crust: Evidence from diamonds and their mineral inclusions. *Science (80-.).* **334**, 54-57.

Wang W., Xu Y., Sun D., Ni S., Wentzcovitch R., Wu Z. (2020) Velocity and density characteristics of subducted oceanic crust and the origin of lower-mantle heterogeneities. *Nat. Commun.*, 1–8. Available at:

https://doi.org/10.1038/s41467-019-13720-2

Wang Z., Downs T., Pischedda V., Shetty R., Saxena K., Zha S., Zhao S., Schiferl D., Waskowska A. (2003a) Highpressure X-ray diffraction and Raman spectroscopic studies of the tetragonal spinel $CoFe_2O_4$. *Phys. Rev. B – Condens. Matter Mater. Phys.* **68**, 2-7.

Wang Z., O'Neillb H.S.C., Lazorc P., Saxena S.K. (2002a) High pressure Raman spectroscopic study of spinel MgCr₂O₄. *J. Phys. Chem. Solids.* **63**, 2057-2061.

Wang Z., Lazor P., Saxena S.K., Artioli G. (2002b) High-Pressure Raman Spectroscopic Study of Spinel $(ZnCr_2O_4)$. *J. Solid St. Chem.* **165**, 165-170.

Wang Z., Saxena S.K., Lazor P., O'Neill H.S.C. (2003b) An in situ Raman spectroscopic study of pressure induced dissociation of spinel NiCr₂O₄. *J. Phys. Chem. Solids.* **64**, 425-431.

Wu Y., Wu X., Qin S. (2012) Pressure-induced phase transition of Fe_2TiO_4 : X-ray diffraction and Mössbauer spectroscopy. J. Solid St. Chem. **185**, 72-75. Yamanaka T., Kyono A., Nakamoto Y., Kharlamova S., Struzhkin V.V., Gramsch S.A., Mao H.K., Hemley R.J. (2015) New structure of high-pressure body-centered orthorhombic Fe₂SiO₄. *Am. Mineral.* **100**, 1736-1743.

Yamanaka T., Uchida A., Nakamoto Y. (2008) Structural transition of post-spinel phases $CaMn_2O_4$, $CaFe_2O_4$, and $CaTi_2O_4$ under high pressures up to 80 GPa. *Am. Mineral.* **93**, 1874-1881.

Yamaura, Kazunari Huang Q., Zhang L., Takada K., Baba Y., Nagai T., Matsui Y., Kosuda K., Takayama-Muromachi E. (2006) Spinel-to-CaFe₂O₄-Type Structural Transformation in LiMn₂O₄ under High Pressure. *J. AM. CHEM. SOC.* **128**, 9448-9456.

Ye L., Zhai S., Wu X., Xu C., Yang K., Higo Y. (2015) Compressibilities of MnFe₂O₄ polymorphs. *Phys. Chem. Miner.* **42**, 569-577.

Yong W., Botis S., Shieh S.R., Shi W., Withers A.C. (2012) Pressure- induced phase transition study of magnesiochromite (MgCr₂O₄) by Raman spectroscopy and X-ray diffraction. *Physics of the Earth and Planetary Interiors*, 196-197, 75-82.

Yutani M., Yagi T., Yusa H., Irifune T. (1997) Compressibility of calcium ferrite-type MgAl₂O₄. *Phys. Chem. Miner.* **24**, 340–344.

Zhai S., Yin Y., Shieh S.R., Shan S., Xue W., Wang C.P., Yang K., Higo Y. (2016) High-pressure X-ray diffraction and Raman spectroscopy of CaFe₂O₄-type β -CaCr₂O₄. *Phys. Chem. Miner.* **43**, 307-314.

Zhang Y., Liu X., Shieh S. R., Bao X., Xie T., Wang F., Zhang Z., Prescher C., Prakapenka V.B. (2017) Spinel and post-spinel phase assemblages in Zn_2TiO_4 : an experimental and theoretical study. *Phys. Chem. Miner.* **44**, 109-123.

Zhang Y., Liu X., Shieh S. R., Zhang Z., Bao X., Xie T., Wang F., Prescher C., Prakapenka V. B. (2019) Equations of state of Co_2TiO_4 -Sp, Co_2TiO_4 -CM, and Co_2TiO_4 -CT, and their phase transitions: an experimental and theoretical study. *Phys. Chem. Miner.* **46**, 571-582.