ФИЗИКО-ХИМИЧЕСКИЕ ПАРАМЕТРЫ И ГЕОХИМИЧЕСКИЕ ОСОБЕННОСТИ ФЛЮИДОВ КАЙНОЗОЙСКИХ ЗОЛОТОРУДНЫХ МЕСТОРОЖДЕНИЙ

© 2022 г. В. Ю. Прокофьев^{а,} *, В. Б. Наумов^{b,} **, О. Ф. Миронова^b

^аИнститут геологии рудных месторождений, петрографии, минералогии и геохимии РАН,

Старомонетный пер., 35, Москва, 119017 Россия

^bИнститут геохимии и аналитической химии им. В.И. Вернадского РАН, ул. Косыгина, 19, Москва, 119991 Россия

*e-mail: vpr@igem.ru **e-mail: naumov@geokhi.ru Поступила в редакцию 29.07.2021 г. После доработки 08.11.2021 г. Принята к публикации 15.12.2021 г.

Завершено обобщение литературных данных о физико-химических параметрах и особенностях химического состава флюидов золоторудных эндогенных месторождений. Оценены средние величины и пределы вариаций температур (50–845°С, среднее 290°С), давлений (20–3600 бар, среднее 600 бар) и солености (0.1–88.0 мас. % экв. NaCl, среднее 13.1 мас. % экв. NaCl) флюидов кайнозойских месторождений золота. Выявлены особенности газового состава рудообразующих флюидов этих месторождений. Параметры минералообразующих флюидов кайнозойских месторождений золота рассмотрены в сравнении с аналогичными параметрами флюидов архейских, протерозойских, палеозойских и мезозойских месторождений золота. Установлено закономерное изменение химического состава и параметров минералообразующих флюидов месторождений золота во времени. Кайнозойские месторождения золота в целом отличались от более древних более высокой температурой и соленостью флюида, более низким давлением и наиболее высокой величиной отношения CO_2/CH_4 . Уменьшение величины флюидного давления от древних и молодых рудообразующих систем.

Ключевые слова: месторождения золота, кайнозой, флюидные включения, физико-химические параметры, минералообразующие флюиды, крупные и суперкрупные месторождения **DOI:** 10.31857/S0016752522080064

Статья продолжает цикл работ, посвященных обобщению информации по составу и параметрам флюидов месторождений золота различного возраста, начатый работами о флюидах докембрийских, палеозойских и мезозойских месторождений золота (Прокофьев и др., 2017, 2018, 2020). В кайнозойскую эру золотая минерализация связана главным образом с областями развития кайнозойского вулканизма (рис. 1; эпитермальные и порфировые месторождения), и в меньшей степени с формированием орогенных месторождений золота Аляски, Британской Колумбии. Новой Зеландии и Тибета (Goldfarb et al., 1989 и др.). Данная работа посвящена общей оценке диапазона физико-химических параметров и описанию особенностей химического состава минералообразующих флюидов кайнозойских эндогенных месторождений золота, в сравнении со свойствами минералообразующих флюидов месторождений золота других эпох.

К настоящему времени опубликовано множество статей о составе и параметрах минералообразующих флюидов золоторудных месторождений (Наумов и др., 2014 и др.), а также по оценкам возраста этих месторождений. К 2021 году опубликовано более 24800 определений температур минералообразующих флюидов, 3100 определений давлений, более 20400 определений солености растворов и 6200 определений газового состава флюидов. Для подготовки статьи использовалась база данных ГЕОХИ РАН (составитель В.Б. Наумов), включающая на настоящий момент более 22600 публикаций по флюидным и расплавным включениям в минералах и содержащая информацию об исследовании флюидных включений в минералах более 1000 месторождений золота разного возраста из всех регионов мира. Из массива данных были выбраны параметры минералообразующих флюидов более 100 месторождений золота с известным возрастом, относящиеся к кайно-

Рис. 1. Схема расположения основных кайнозойских месторождений золота. Большие кружки (1-23) – месторождения золота с запасами 100 т и более (крупные и суперкрупные). Месторождения: 1 - Grasberg, Indonesia: 2 - Gold Acres, USA; 3 – Bajo de la Alumbrera, Argentina; 4 – Lepanto, Philippines; 5 – Gold Quarry (Maggie Creek), USA; 6 – Hishikari, Japan; 7 - Rosia Montana (Verespatak), Romania; 8 - Golden Cross, New Zealand; 9 - Round Mountain (Smoky Walley), USA; 10 – Bullion mine, Comstock lode, USA; 11 – Carlin, USA; 12 – Многовершинка, Россия; 13 – La Herradura, Mexico; 14 – Daping, China; 15 – Kışladağ, Turkey; 16 – Bralorne-Pioneer, Canada; 17 – Alaska-Juneau, USA4 18 – Far Southeast, Philippines; 19 – McLaughlin, USA; 20 – Cove (McCoy), USA; 21 – Beiya, China; 22 – Getchell trend, USA; 23 – Zod, Armenia; 24 – Treadwell, USA; 25 – Dusty Mac, Canada; 26 – Southeastern Martabe, Indonesia; 27 – Pongkor (Gunung Pongkor), Indonesia; 28 – Mayum, China; 29 – Fairview Oro Fino, Canada; 30 – Aurora, USA; 31 – Poboya, Indonesia; 32 - Kensington, USA; 33 - Zopkhito, Georgia Republic; 34 - Gies, USA; 35 - Bodi mining district, USA; 36 - Rawhide (Denton-Rawhide), USA; 37 - Engineer, Canada: 38 - Bangbu, China; 39 - Mercur, USA; 40 - Awak Mas, Salu Bullo, Tarra, Indonesia; 41 – Cerro Quema, Panama; 42 – Biely Vrch, Slovakia; 43 – Ovacik, Turkey; 44 – Finlandia, Peru; 45 – Quebrada del Diablo Lower West, Argentina; 46 – Shannan area, China; 47 – Асачинское, Россия; 48 – Deer Trail, USA; 49 – Mythorekoe, Poccus; 50 - Alto de la Blenda, Argentina; 51 - Arapucandere, Turkey; 52 - Monte Rosa gold district, Italy; 53 - Mooteh, Iran; 54 - Salu Bullo, Indonesia; 55 - Aginskoe, Russia; 56 - Qolqoleh, Iran; 57 - Ibex, USA; 58 - Reagan, USA; 59 - Kuh-e-Zar, Iran; 60 - Jualin, USA; 61 - Valdez Group, USA; 62 - Blackdome, Canada; 63 - Kasuga, Japan; 64 - Valdez Group, USA; 62 - Blackdome, Canada; 63 - Kasuga, Japan; 64 - Valdez Group, USA; 61 - Valdez Group, USA; 62 - Blackdome, Canada; 63 - Kasuga, Japan; 64 - Valdez Group, USA; 61 - Valdez Group, USA; 62 - Blackdome, Canada; 63 - Kasuga, Japan; 64 - Valdez Group, USA; 62 - Blackdome, Canada; 63 - Kasuga, Japan; 64 - Valdez Group, USA; 61 - Valdez Group, USA; 62 - Blackdome, Canada; 63 - Kasuga, Japan; 64 - Valdez Group, USA; 61 - Valdez Group, USA; 62 - Blackdome, Canada; 63 - Kasuga, Japan; 64 - Valdez Group, USA; 61 - Valdez Group, USA; 62 - Blackdome, Canada; 63 - Kasuga, Japan; 64 - Valdez Group, USA; 61 - Valdez Group, Canada; 63 - Valdez Group, Canada; C Iwato, Japan; 65 - Böckstein, Austria; 66 - Venus, Canada; 67 - Mazhala, China; 68 - Zhemulang, China; 69 - Callery, New Zealand; 70 - Mt. Alta, New Zealand; 71 - Nenthorn, New Zealand; 72 - Shotover, New Zealand; 73 - Kay Tanda, Philippines; 74 – Akeshi, Japan; 75 – Chah Zard, Iran; 76 – Nová Baňa, Slovakia; 77 – Twin Lakes, Canada; 78 – Lubin-Zardeh, Iran; 79 – Choquelimpie, Chili; 80 – Beiya, China; 81 – Himalayan Orogen, China; 82 – Machangqing, China; 83 – Xiongcun, China; 84 – Yulong, China; 85 – Ali Addé, Arta, Hes Daba, Asa Leyta, Djibouti; 86 – Apigania Bay, Greece; 87 – Telkibanya, Hungary; 88 - Ciemas, Indonesia; 89 - Govin, Iran; 90 - Maher-Abad, Iran; 91 - Qarachilar, Iran; 92 - Koryo, Japan; 93 -El Barqueno district, Guachinango, Mexico; 94 – La Luz area, Mexico; 95 – Teutonic, New Zealand; 96 – Broken Hills, New Zealand; 97 – Jasper Creek, New Zealand; 98 – Jubilee, New Zealand; 99 – Scimitar, New Zealand; 100 – Scotia, New Zealand; 101 – Sovereign, New Zealand; 102 – Apacheta, Peru; 103 – Azulcocha, Peru; 104 – Los Desemparados, Peru; 105 – Pillune, Peru; 106 – Puncuhuayco, Peru; 107 – Sando Alcade, Peru; 108 – Ticlla, Peru; 109 – Rozalia, Slovakia; 110 – Banska Stiavnitsa, Svetozar, Slovakia; 111 – Kartaldag, Madendag, Turkey; 112 – Koru, Turkey; 113 – Mastra, Turkey; 114 – Narlica, Turkey; 115 – Betty O'Neal, USA; 116 – Betze, USA; 117 – Bingham Canyon, USA; 118 – Copper Canyon, USA; 119 – Gold Cup pipe, USA; 120 – Gray Eagle, USA; 121 – Hilltop, USA; 122 – Jamestown district, USA; 123 – Jefferson district, USA; 124 – Kattenhorn, USA; 125 – Little Rocky Mountains, USA; 126 – Lovie, USA; 127 – Manhattan, USA; 128 – McLaren, USA; 129 – Miller Creek, USA; 130 – Mullinix, USA; 131 – Patch breccia pipe, USA; 132 – Reo Mine area, USA; 133 – Sand-storm, Kendall, USA; 134 – Summitville, USA; 135 – Tenmile, USA.

зойской эре, которые приводятся и обсуждаются в данной статье. Все рассматриваемые месторождения (табл. 1) имеют возраст от 0 до 70 млн лет, подтвержденный либо изотопными данными, либо геологическими взаимоотношениями.

Некоторые публикации содержат только граничные параметры минералообразующих флюидов, так что для отдельного месторождения приведена минимальная информация. Однако многие публикации содержат более детальные сведения. В этом случае параметры флюидов в базе данных приведены для отдельных образцов. Если для отдельного образца авторы приводят много значений температур гомогенизации, в базу вносились средние значения для образцов, в которых разница между минимальной и максимальной темпера-

Месторожление страна	Эпоха возраст млн цет	Запасы Ан т	Питература
Pinelana Commune LISA		Sanachi / Ku, 1	Decident 1071
Bingham Canyon, USA	3/./-38.6	—	Roedder, 19/1
Copper Canyon, USA	Miocene	-	Nash, Theodore, 19/1
Aurora, Nevada, USA	Miocene	63	Nash, 1972
Copper Canyon, USA	Miocene	-	Nash, 1972
Gold Acres district, USA	Miocene	626	Nash, 1972
Golden Amethyst, USA	Miocene	—	Nash, 1972
Jefferson district, USA	Miocene	_	Nash, 1972
Manhattan, USA	Miocene-Neogene	_	Nash, 1972
Mullinix, USA	Miocene	_	Nash, 1972
Reo Mine area, USA	Miocene	_	Nash, 1972
Round Mountain, USA	Late Oligocene	296	Nash, 1972
Tenmile, USA	Miocene	_	Nash, 1972
Jamestown district, USA	25-40	—	Nash, Cunningham, 1973
Burlington mine, USA	Miocene	—	Nash, Cunningham, 1973
Bodi district, Nevada, USA	Late Miocene	43	O'Neil et al., 1973
Comstock lode, USA	Miocene	258	O'Neil, Silberman, 1974
Finlandia vein, Peru	10.0-10.6	31.7	Kamilli, Ohmoto, 1977
Bingham Canyon, USA	37.7–38.6	_	Moor, Nash, 1974
Многовершинка, Россия	66–69	209	Наши данные, 1980
Carlin, USA	Late Tertiary	229	Radtke et al., 1980
Deer Trail, USA	13.8–14.3	29.5	Beaty et al., 1986
Valdez Group, USA	50-55	8	Goldfarb et al., 1986
Venus, Canada	70	<5	Walton, 1987
Gallup breccia pipe, USA	Tertiary	—	Spry, 1987
Gold Cup pipe, USA	Tertiary	_	Spry, 1987
Patch breccia pipe, USA	54-59	_	Spry, 1987
Blackdome, Canada	Eocene	7	Vivian et al., 1987
Golden Cross, New Zealand	Pliocene-Pleistocene	320	De Ronde, Blattner, 1988
Mercur, USA	31-37	39	Jewel, Parry, 1988
Little Rocky Mountains, USA	Paleocene	_	Wilson, Kyser, 1988
Alaska-Juneau, USA	55	106	Goldfarb et al., 1989
Ibex, USA	55	<10	Goldfarb et al., 1989
Reagan, USA	55	<10	Goldfarb et al., 1989
Treadwell, USA	55	96	Goldfarb et al., 1989
Monte Rosa district, Italy	20	15	Lattanzi et al., 1989
Baltimore mine, USA	Miocene	_	Vikre, 1989a
Beleher, USA	Miocene	_	Vikre, 1989a
Best and Beleher, USA	Miocene	_	Vikre, 1989a
Bullion, USA	Miocene	_	Vikre, 1989a
Caledonia, USA	Miocene	_	Vikre, 1989a
California, USA	Miocene	_	Vikre, 1989a
Chollar, USA	Miocene	_	Vikre, 1989a
Comstock lode, USA	Miocene	258	Vikre, 1989a
Con Virginia, USA	Miocene	_	Vikre, 1989a
Mexican, USA	Miocene	_	Vikre, 1989a
Ophir, USA	Miocene	_	Vikre, 1989a
Savage, USA	Miocene	_	Vikre, 1989a
Sierra Nevada, USA	Miocene	_	Vikre, 1989a
Union, USA	Miocene	_	Vikre, 1989a
Utah, USA	Miocene	_	Vikre, 1989a
Yellow Jacket. USA	Miocene	_	Vikre, 1989a
Sandstrom and Kendall. USA	18.7-31.1	_	Vikre, 1989b
Dusty Mac, Canada	Eocene	93	Zhang et al., 1989

Таблица 1. Характеристика кайнозойских месторождений золота

Таблица 1. Продолжение

Месторождение, страна	Эпоха, возраст, млн лет	Запасы Аи, т	Литература
Fairview, Canada	Tertiarry	68	Zhang et al., 1989
Twin Lakes, Canada	Tertiarry	0.27	Zhang et al., 1989
Brusson, Italy	24-32	15	Diamond, 1990
Choquelimpie, N. Chili	6.6	_	Gropper et al., 1991
Bralorne-Pioneer, Canada	65	129	Leitch et al., 1991
Carlin, USA	Late Tertiary	229	Lindblom, 1991
Gold Quarry, USA	Oligocene	394	Lindblom, 1991
Manhattan, Nevada, USA	Neogene	_	Lindblom, 1991
Rawhide, USA	Miocene	42	Lindblom, 1991
Round Mountain, USA	Late Oligocene	296	Lindblom, 1991
Telkibanya, Hungary	10.4-13.0	_	Molnar, 1991
Azulcocha, Peru	Neogene?	_	Munoz, Fontbole, 1991
Callery, New Zealand	Quaternary	<5	Craw, 1992
Shotover, New Zealand	Miocene	<5	Craw, 1992
Mt. Alta, New Zealand	Miocene	<5	Craw, 1992
Nenthorn, New Zealand	Paleocene-Eocene	<5	Craw, 1992
Böckstein, Austria	Tertiary	<5	Craw et al., 1993
Monte Rosa gold district, Italy	24-32	15	Craw et al., 1993
Akeshi, Japan	3.4-4.6	4.7	Hedenguist et al., 1994
Iwato, Japan	3.4-4.6	6.6	Hedenguist et al., 1994
Kasuga, Japan	3.4-4.6	6.7	Hedenguist et al., 1994
Gies, Montana, USA	69–47 Miocene	45	Zhang, Sprv. 1994
McLaren. USA	Tertiary?	_	Johnson, Meinert, 1994
Lepanto, Philippines	1.3–1.4	>440	Mancano, Campbell, 1995
Kensington, USA	55	60	Miller et al., 1995
Jualin. USA	55	9	Miller et al., 1995
McLaughlin, USA	Pliocene–Pleistocene	105	Sherlock et al., 1995
Mastra. NE Turkey	Eocene	_	Tuvsuz et al., 1995
Zod. Armenia	Eocene	120	Прокофьев, 1998
Lepanto, Philippines	1.3-1.4	>440	Hedenguist et al., 1998
Far Southeast. Philippines	1.3–1.4	105	Hedenguist et al., 1998
Korvo mine. Japan	0.8–1.2 Pleistocene	_	Shimizu et al., 1998
Puncuhuavco, S. Peru	11.4-10.8	_	Andre, Leroy, 1999
Pongkor, Java, Indonesia	Late Miocene	82	Milesi et al., 1999
Golden Cross, New Zealand	Pliocene-Pleistocene	320	Simmons et al., 2000
Apacheta, Peru	Miocene	_	Andre–Mayer et al., 2002
Betze, Nevada, USA	Eocene	_	Groff et al., 2002
Carlin, USA	Late Tertiary	229	Groff et al., 2002
Summitville, Colorado, USA	22.5	_	Bethke et al., 2005
Bajo de la Alumbrera, Argentina	6.1–9.7	600	Harris et al., 2003
Bajo de la Alumbrera, Argentina	6.1–9.7	600	Harris et al., 2004
Rosalia, Slovakia	Neogene	_	Kodera et al., 2005
Pongkor, Java, Indonesia	Late Miocene	82	Syafrizal et al., 2005
Banska Stiavnitsa, Slovakia	Neogene	_	Коваленкер и др., 2006
Guachinango, Mexico	57.9 ± 0.44	_	Camprubi et al., 2006
Plomosa dist., Mexico	57.9 ± 0.44	_	Camprubi et al., 2006
Quiteria dist., Jalisco, Mexico	57.9 ± 0.44	_	Camprubi et al., 2006
San Sebastian del Oeste, Mexico	57.9 ± 0.44	_	Camprubi et al., 2006
Los Desemparados, Peru	11.4-10.8	_	Chauvet et al., 2006
Pilune, Peru	11.4-10.8	_	Chauvet et al., 2006
Puncuhuayco, Peru	11.4-10.8	_	Chauvet et al., 2006
Sando Alcade, Peru	11.4-10.8	_	Chauvet et al., 2006

Таблица 1. Продолжение

Месторожление страна	Эпоха возраст млн лет	Запасы Ан т	Питература
Tielle Dem		Sundobi Au, 1	Chowet et al. 2006
Hiller Creek Montene USA	11.4-10.8 Tertiony?	_	Labrean Thempson 2006
Shannan area China		20	Johnson, Thompson, 2006
Shahnan area, China Mutob W Iron	E0Cene 55 7 28 5	3U 14	Li et al., 2000
Wute over a Korrahatha David	33.7 - 38.3	14	Takahashi at al. 2006
Muthovskoe, Kamchatka, Kussia	3.3–1.3 Misser	29	Takanashi et al., 2006
Kusia Ivioniana, Komania		349	waller et al., 2006
Golden Cross, New Sealand	Pliocene–Pleistocene	320	Christie et al., 2007
Daping, China Developer Level Indevenie	Cenozoic	>150	Ge et al., 2007
Pongkor, Java, Indonesia	Late Milocene	82	Warmada et al., 2007
Belya area, China		_	Xu et al., 2007
Nariica, Turkey	19.8-18.3	21.0	Yilmaz et al., 2007
Uvacik, Turkey	20-14	31.8	111111111111111111111111111111111111
Cara (MaCara) USA	20	92.1	Davies et al., 2008
Cove (MICLOY), USA	37	103	Jonnston et al., 2008
Zopknito, Georgia Republic	4-3	33	Kekella et al., 2008
La Herradura, Mexico	61.0 ± 2.1	168	Ruiz, 2008
Betty U'Neal, USA	Eocene	_	Keison et al., 2008
Lovie, USA	Eocene	_	Kelson et al., 2008
Gray Eagle, USA	Eocene	_	Kelson et al., 2008
Hilltop, USA	Eocene	_	Kelson et al., 2008
Kattennorn, USA	Eocene	_	Kelson et al., 2008
Apigania Bay, Greece		-	Tombros et al., 2008
Асачинское, Россия	Неоген	30	ьоровиков и др., 2009
Daping, China	Cenozoic	>150	Sun et al., 2009
Mayum, China	39 5 0	>80	Jiang et al., 2009
Nevados Famatina, Argentina	5.0	_	Pudack et al., 2009
Alongcun, China	14-39	-	Hu et al., 2009
Bangbu, China	Cenozoic	40	Sun et al., 2010
Jasper Creek, New Zealand	Nilocene-Pliocene	_	Simpson, Mauk, 2011
Jubilee, New Zealand	Miocene–Pliocene	—	Simpson, Mauk, 2011
Scimitar, New Zealand	Miocene-Pliocene	—	Simpson, Mauk, 2011
Scotia, New Zealand	Miocene-Pliocene	—	Simpson, Mauk, 2011
Sovereign, New Zealand	Miocene–Pliocene	—	Simpson, Mauk, 2011
Teutonic dep., New Zealand	Miocene-Pliocene	_	Simpson, Mauk, 2011
Zhemulang, China	12-35	<5	Znou et al., 2011
Bingnam Canyon, USA	3/./-38.0	_	Seo et al.,2012
Kartaldag, Madendag, Turkey	Early Miocene?	- 11	Imer et al., 2013
Aginskoe, Kussia	/.1-6.9	11	Andreeva et al., 2013
Broken Hills, New Sealand	/.1	_	Cocker et al., 2013
Maznala, China	12-35	< 5	Mo et al., 2013
Maner-Abad, Iran	Locene	-	Siancheshm et al., 2014
Iviaznala, Unina	12-33	< 5	Znai et al., 2014
Snalagang, China	12-35	< 5	Znai et al., 2014
Zhemulang, China	12-35	<5	Znai et al., 2014
Arapucandere, Turkey	Cenozoic	16	Bozkaya, Banks, 2015
Chan Zard, Iran		3.8	Kounestani et al., 2015
Qolqoleh, Iran	Early Tertiary	<10	Taghipour, Ahmadnejad, 2015
Beiya, China	25.5-32.5	>100	wang et al., 2015
Alto de la Blenda, Argentina	0.0	18.5	Marquez, Heinrich, 2016
Martabe, Indonesia	Miocene–Pliocene	85	Saing et al., 2016
Bangbu, China	Cenozoic	40	Sun et al., 2016
Cerro Quema, Panama	49-55	36	Corral et al., 2017

Месторождение, страна	Эпоха, возраст, млн лет	Запасы Аи, т	Литература
Beiya, China	25.5-32.5	>100	He et al., 2017
Kuh-e-Zar, Iran	40.7-41.2	9	Karimpour et al., 2017
Engineer, Canada	49.9	41	Millonig et al., 2017
La Luz area, Mexico	28-30	_	Moncada et al., 2017
Hishikari, Japan	0.6-1.3	385	Takahashi et al., 2017
Ciemas, Indonesia	17	_	Zheng et al., 2017
Latimojong, Indonesia	Late Cenozoic	38	Hakim et al., 2018
Qarachilar, Iran	42.4	_	Kouhestani et al., 2018
Beiya, China	25.5-32.5	>100	Liu et al., 2018
Nová Baňa, Slovakia	10.7	3	Majzlan et al., 2018
Hishikari, Japan	0.6–1.3	385	Shimizu, 2018
Jinshajiang belt, China	45-33	_	Wang et al., 2018
Govin, Iran	Eocene	_	Alipour-Asll, 2019
Quebrada del Diablo, Argentina	Miocene	30	D'Annunzio, Rubinstein, 2019
Kay Tanda, Philippines	5.5-5.9	4.9	Frias et al., 2019
Getchell, Nevada, USA	34-42	>100	Groff, 2019
Grasberg, Indonesia	2.6-4.4	2980	Mernagh, Mavrogenes, 2019
Ali Adde, Hes Daba, Djibouti	3-15	_	Moussa et al., 2019
Poboya, Indonesia	Late Cenozoic	61	Rivai et al., 2019
Salu Bulo, Indonesia	Eocene-Oligocene	12	Tuakia et al., 2019
Lubin-Zardeh, Iran	36-40	0.26	Zamanian et al., 2019
Koru, Turkey	20	_	Bozkaya et al., 2020
Kışladağ, Turkey	12.2–17.3	130	Hanilçi et al., 2020
Grasberg, Indonesia	2.6-4.4	2980	Mernagh et al., 2020
Latala, Iran	11.3	_	Padyar et al., 2020

Таблица 1. Окончание

Примечания. Жирным шрифтом в табл. 1 выделены месторождения с запасами более 100 тонн, обычно относимые к числу крупных и суперкрупных. Прочерк – нет данных.

турами была меньше 50°С. Если же интервал между минимальной и максимальной температурами был 50°С или больше, то в базу вводились значения максимальной и минимальной температур. Для концентраций солей в аналогичной ситуации принималось среднее значение, если в одном образце соленость изменялась на величину менее 5 мас. %. Если изменение солености было 5 мас. % или больше, то заносились крайние значения приводимого интервала. Для величин давлений природных флюидов средние значения приводились, если разница межлу средним и максимальным значением не превышала 10%, в противном случае вводились минимальное и максимальное значения давлений. Эти значения были использованы для построения диаграмм. В табл. 2 для каждого месторождения приведен общий диапазон параметров.

Величины солености минералообразующих флюидов были взяты из публикаций. В большинстве случаев они оценивались по температуре плавления льда либо по температуре растворения дочернего галита, и рассчитывались, исходя из данных для системы H₂O–NaCl (Bodnar, 1993).

Для многофазовых включений высокотемпературных хлоридных рассолов величина солености часто рассчитывалась как сумма концентраций NaCl (рассчитанная по температуре растворения галита) и KCl (рассчитанная по температуре растворения сильвина), хотя и приводилась в единицах эквивалентности концентраций NaCl. Поэтому часть точек на диаграмме "температура-концентрация" расположена за линией концентрации насыщенного раствора NaCl, но внутри поля, ограниченного линией насыщения KCl (рис. 2).

Оценки давлений учитывались в настоящей статье главным образом для ассоциаций флюидных включений гетерогенного флюида, как наиболее надежные, характеризующие флюиды на линии двухфазового равновесия.

Величину плотности флюида обычно рассчитывают по температуре гомогенизации флюидного включения и солености флюида, предполагая, что состав флюида близок к составу системы $H_2O-NaCl$ (Bodnar, 1983). Поскольку не во всех статьях были рассчитаны значения плотности флюидов, часть значений плотности водного флюида была рассчитана нами для системы $H_2O-NaCl$, исходя из данных о температуре и солености флюида, приведенных в исходной статье, с помощью программы Flincor (Brown, 1989).

ФИЗИКО-ХИМИЧЕСКИЕ ПАРАМЕТРЫ И ГЕОХИМИЧЕСКИЕ ОСОБЕННОСТИ

		T		FF		I
Месторождение,	Физико-химические параметры флюидов					Питература
регион	<i>T</i> , °C	С, мас. %	<i>d</i> , г/см ³	<i>Р</i> , бар	состав*	литература
Bingham Canyon, USA	304-405 (4)	14.0-49.0	0.85-1.25	-	H ₂ O	Roedder, 1971
Copper Canyon, USA	250-345 (3)	1.2-40.0	0.80-1.06	-	H ₂ O	Nash, Theodore, 1971
Aurora, USA	245-255 (3)	0.2-1.7	0.80-0.81	-	H ₂ O	Nash, 1972
Copper Canyon, USA	225-330(11)	0.3-33.0	0.71-1.04	-	H ₂ O	Nash, 1972
Gold Acres district, USA	172 (1)	6.4	0.94	-	H ₂ O	Nash, 1972
Golden Amethyst, USA	248-330 (4)	1.2-2.1	0.66-0.81	-	H ₂ O	Nash, 1972
Jefferson district, USA	255 (1)	0.8	0.80	-	H ₂ O	Nash, 1972
Manhattan, USA	200-235 (8)	0.3–1.2	0.82-0.87	-	H ₂ O	Nash, 1972
Mullinix, USA	135-300 (4)	0.4-1.0	0.72-0.93	_	H ₂ O	Nash, 1972
Reo Mine area, USA	245-305 (5)	1.0-6.4	0.73-0.86	_	H ₂ O	Nash, 1972
Round Mountain, USA	250-260(2)	0.6-0.8	0.79-0.81	_	H ₂ O	Nash, 1972
Tenmile, USA	245-308 (2)	2.1-7.3	0.72-0.87	_	H ₂ O	Nash, 1972
Burlington mine, USA	274-372 (19)	4.3-35.5	0.59-1.06	-	H ₂ O	Nash, Cunningham, 1973
Jamestown district, USA	190-375 (25)	1.7-32.5	0.64-1.08	-	H ₂ O	Nash, Cunningham, 1973
Bodi mining district, USA	245 (1)	0.3	0.81	_	H ₂ O	O'Neil et al., 1973
Comstock lode, USA	249-295 (2)	3.1-3.2	0.76-0.83	_	H ₂ O	O'Neil, Silberman, 1974
Finlandia vein, Peru	149-285 (27)	0.9–11.4	0.75-0.95	_	H ₂ O	Kamilli, Ohmoto, 1977
Bingham Canyon, USA	350-616 (17)	42.0-53.0	0.95-1.21	_	H ₂ O	Moor, Nash, 1974
Многовершинка, Россия	235–278 (3)	3.3-15.0	0.81-0.85	220 (1)	$H_2O, H_2O + CO_2$	Наши данные, 1980
Carlin, USA	69-306 (33)	0.6–17.4	0.71-1.01	_	H ₂ O	Radtke et al., 1980
Deer Trail, USA	161-305 (13)	0.1-22.6	0.71-0.98	_	H ₂ O	Beaty et al., 1986
Valdez Group, USA	210-280 (2)	0.1-6.0	0.81-0.85	1000-1500 (2)	Н ₂ О,	Goldfarb et al., 1986
					$CO_2 + H_2O$	
Venus, Canada	231-316 (45)	1.8-5.4	0.74–0.84	250-2700 (37)	$CO_2 + H_2O$	Walton, 1987
Gallup breccia pipe, USA	397 (1)	9.2	0.62	-	H ₂ O	Spry, 1987
Gold Cup pipe, USA	282-350 (4)	8.6–11.1	0.74–0.83	_	$\begin{array}{l} \mathrm{H_2O},\\ \mathrm{CO_2} + \mathrm{H_2O} \end{array}$	Spry, 1987
Patch breccia pipe, USA	180–356 (11)	7.1–36.3	0.71-1.10	_	$\begin{array}{l} \mathrm{H_{2}O,}\\ \mathrm{CO_{2}+H_{2}O} \end{array}$	Spry, 1987
Blackdome, Canada	211-306 (22)	0.7-2.1	0.71-0.86	_	H ₂ O	Vivian et al., 1987
Golden Cross, New Seal-	122-250 (18)	0.8-14.2	0.80-0.95	_	H ₂ O	De Ronde, Blattner, 1988
and						
Mercur, USA	128-303 (10)	3.5–7.4	0.78–0.97	-	H ₂ O	Jewell, Parry, 1988
Little Rocky Mountains, USA	110-200 (2)	2.0	0.88–0.97	-	H ₂ O	Wilson, Kyser, 1988
Alaska-Juneau, USA	150-300 (2)	0.1–5.0	0.77-0.92	1000-2000 (2)	$\begin{array}{l} \mathrm{H_2O},\\ \mathrm{CO_2} + \mathrm{H_2O} \end{array}$	Goldfarb et al., 1989
Ibex, USA	150-300(2)	0.1-5.0	0.77–0.92	1000-2000 (2)	$\begin{array}{l} \mathrm{H_{2}O,}\\ \mathrm{CO_{2}+H_{2}O} \end{array}$	Goldfarb et al., 1989

Таблица 2. Параметры рудообразующих флюидов кайнозойских месторождений золота

ПРОКОФЬЕВ и др.

Таблица 2. Продолжение

Месторождение,	Φ	_				
регион	<i>T</i> , °C	С, мас. %	<i>d</i> , г/см ³	<i>Р</i> , бар	состав*	Литература
Reagan, USA	150-280 (2)	0.1-5.0	0.80-0.92	1000-2000 (2)	Н ₂ О,	Goldfarb et al., 1989
					$CO_2 + H_2O$	
Treadwell, USA	190–240 (2)	5.0-8.0	0.88-0.92	800-1500 (2)	H ₂ O	Goldfarb et al., 1989
Monte Rosa district, Italy	180–311 (5)	1.1-10.1	0.78-0.93	—	$\begin{array}{l} H_2O,\\ CO_2+H_2O \end{array}$	Lattanzi et al., 1989
Baltimore mine, USA	233 (1)	2.6	0.85	_	H ₂ O	Vikre, 1989a
Beleher, USA	242-262 (2)	2.1-2.4	0.80-0.83	_	H ₂ O	Vikre, 1989a
Best and Beleher, USA	239 (1)	3.7	0.85	_	H ₂ O	Vikre, 1989a
Bullion, USA	263-266 (2)	1.3–4.9	0.79-0.82	_	H ₂ O	Vikre, 1989a
Caledonia, USA	239(1)	1.8	0.83	_	H ₂ O	Vikre, 1989a
California, USA	260(1)	3.2	0.81	_	H ₂ O	Vikre, 1989a
Chollar, USA	227-262 (3)	0.6-3.5	0.79–0.86	_	H ₂ O	Vikre, 1989a
Comstock lode, USA	272-277 (2)	1.4-3.2	0.77-0.79	_	H ₂ O	Vikre, 1989a
Con Virginia, USA	280(1)	0.4	0.75	_	H ₂ O	Vikre, 1989a
Mexican, USA	264 (1)	6.1	0.83	_	H ₂ O	Vikre, 1989a
Ophir, USA	268 (1)	1.8	0.78	_	H ₂ O	Vikre, 1989a
Savage, USA	268 (1)	2.8	0.80	_	H ₂ O	Vikre, 1989a
Sierra Nevada, USA	242-278 (3)	3.0-3.5	0.77-0.84	_	H ₂ O	Vikre, 1989a
Union, USA	278 (1)	1.1	0.76	_	H ₂ O	Vikre, 1989a
Utah, USA	255-281 (5)	0.4-3.0	0.76-0.80	_	H ₂ O	Vikre, 1989a
Yellow Jacket, USA	254(1)	0.7	0.80	_	H ₂ O	Vikre, 1989a
Sandstrom and Kendall, USA	204–307 (13)	0.3–7.9	0.73-0.93	_	H ₂ O	Vikre, 1989b
Dusty Mac, Canada	221-260 (6)	0.5–2.6	0.81-0.84	-	$\begin{array}{l} \mathrm{H_2O,}\\ \mathrm{CO_2} + \mathrm{H_2O} \end{array}$	Zhang et al., 1989
Fairview, Canada	275-313 (2)	2.7-4.7	0.74-0.79	800-1550 (7)	$H_2O + CO_2$	Zhang et al., 1989
Twin Lakes, Canada	323 (1)	8.6	0.77	_	H ₂ O	Zhang et al., 1989
Brusson, Italy	226-272 (2)	4.5-6.0	0.83-0.88	650-1300 (2)	$H_2O + CO_2 +$	Diamond, 1990
					$+ CH_4 + N_2$	
Choquelimpie, N. Chili	213-305 (2)	2.5	0.73–0.87	—	H ₂ O	Gropper et al., 1991
Bralorne-Pioneer, Canada	150-390 (34)	0.9–10.5	0.61–0.94	_	$\begin{array}{l} \mathrm{H_2O} + \mathrm{CO_2} + \\ + \mathrm{CH_4} \end{array}$	Leitch et al., 1991
Gold Quarry, USA	240(1)	1.1	0.82	_	H ₂ O	Lindblom, 1991
Carlin, USA	100(1)	1.7	0.98	_	H ₂ O	Lindblom, 1991
Rawhide, USA	220-300(2)	0.6	0.72-0.84	_	H ₂ O	Lindblom, 1991
Round Mountain, USA	220-280 (2)	1.1	0.76-0.85	_	H ₂ O	Lindblom, 1991
Manhattan, USA	209 (1)	1.7	0.87	-	H ₂ O	Lindblom, 1991
Telkibanya, Hungary	180-260 (6)	1.9–3.8	0.81-0.92	—	H ₂ O	Molnar, 1991
Azulcocha, Peru	110-280 (4)	8.0-15.0	0.83-1.06	-	H ₂ O	Munoz, Fontbote, 1991
Callery, New Zealand	300-350 (2)	2.0	0.60-0.74	900-1200 (2)	$CO_2 + H_2O$	Craw, 1992

Таблица 2. Продолжение

Месторождение,	Φ	Π				
регион	<i>T</i> , °C	С, мас. %	<i>d</i> , г/см ³	<i>Р</i> , бар	состав*	Литература
Shotover, New Zealand	160-200 (2)	0.5	0.87-0.92	500-1000 (2)	$CO_2 + H_2O$	Craw, 1992
Mt. Alta, New Zealand	160-260 (2)	2.0	0.80-0.93	500-1000 (2)	$CO_2 + H_2O$	Craw, 1992
Nenthorn, New Zealand	190(1)	2.0	0.90	150 (1)	$CO_2 + H_2O$	Craw, 1992
Böckstein, Austria	240-270 (2)	5.0	0.82-0.86	700(1)	$CO_2 + H_2O$	Craw et al., 1993
Monte Rosa gold district, Italy	250-300(2)	5.0	0.77–0.85	1000 (1)	$CO_2 + H_2O$	Craw et al., 1993
Akeshi, Japan	160-200 (2)	0.7	0.87-0.92	—	H ₂ O	Hedenquist et al., 1994
Iwato, Japan	180-220 (2)	0.7	0.84-0.90	—	H ₂ O	Hedenquist et al., 1994
Kasuga, Japan	200-274 (3)	0.7-30.3	0.82-1.04	_	H ₂ O	Hedenquist et al., 1994
Gies, USA	213-300 (13)	6.6–7.9	0.79-0.90	_	H ₂ O	Zhang, Spry, 1994
McLaren, USA	210-480 (4)	3.6-28.8	0.64-1.08	_	H ₂ O	Johnson, Meinert, 1994
Lepanto, Philippines	166–363 (32)	0.7-3.2	0.54-0.92	_	H ₂ O	Mancano, Campbell, 1995
Kensington, USA	170-220(2)	5.0-7.9	0.91-0.94	900 (2)	$H_2O + CO_2$	Miller et al., 1995
Jualin, USA	150-200 (2)	6.5–9.2	0.94-0.98	900 (2)	$H_2O + CO_2$	Miller et al., 1995
McLaughlin, USA	144-253 (25)	0.9–6.9	0.82-0.94	_	H ₂ O	Sherlock et al., 1995
Mastra, Turkey	160-340 (6)	5.3-10.9	0.69-0.96	_	H ₂ O	Tuysuz et al., 1995
Zod, Armenia	85-400 (23)	0.4-11.1	0.65-1.04	270-845 (8)	$H_2O + CO_2$	Прокофьев, 1998
Lepanto, Philippines	215-350(6)	0.1-7.0	0.65-0.90	—	H ₂ O	Hedenquist et al., 1998
Far Southeast, Philippines	450-550(2)	45.0–55.0	1.07-1.25	_	H ₂ O	Hedenquist et al., 1998
Koryo, Japan	252-266 (2)	1.8	0.80-0.82	_	H ₂ O	Shimizu et al., 1998
Puncuhuayco, Peru	196-323 (4)	2.9-12.6	0.69–0.98	_	H ₂ O	Andre, Leroy, 1999
Pongkor, Indonesia	142-381 (11)	0.4–1.7	0.36-0.94	—	H ₂ O	Milesi et al., 1999
Golden Cross, New Sealand	141-250 (32)	0.4–1.8	0.81-0.94	37–43 (2)	H ₂ O	Simmons et al., 2000
Apacheta, Peru	230-275 (14)	0.6-2.5	0.77-0.85	40-84 (2)	H ₂ O	Andre-Mayer et al., 2002
Betze, USA	101-300 (16)	1.4—5.6	0.75-1.00	—	H ₂ O	Groff et al., 2002
Carlin, USA	77-304 (18)	0.7-17.4	0.70-1.01	—	H ₂ O	Groff et al., 2002
Summitville, USA	198-500 (8)	30.0-42.0	0.86-1.14	—	H ₂ O	Bethke et al., 2005
Bajo de la Alumbrera, Argentina	745–845 (2)	62.0	1.33-1.50	—	H ₂ O	Harris et al., 2003
Bajo de la Alumbrera, Argentina	615-845 (3)	45.0–53.0	1.21-1.30	_	H ₂ O	Harris et al., 2004
Rosalia, Slovakia	152-457 (45)	0.1-38.6	0.53-1.00	74–110 (7)	H ₂ O	Kodera et al., 2005
Pongkor, Indonesia	170-230 (4)	0.2	0.83-0.91	—	H ₂ O	Syafrizal et al., 2005
Banska Stiavnitsa, Slovakia	98-378 (161)	0.7-11.7	0.62-0.98	20-240 (24)	H ₂ O	Коваленкер и др., 2006
Guachinango, Mexico	113–245(1)	0.2–19.1	0.90-1.05	—	H ₂ O	Camprubi et al., 2006
Plomosa dist., Mexico	216 (1)	0.9	0.86	—	H ₂ O	Camprubi et al., 2006
Quiteria dist., Jalisco, Mexico	126–146 (2)	5.2-5.6	0.96–0.98	—	H ₂ O	Camprubi et al., 2006

Таблица 2. Продолжение

Месторождение,	Физико-химические параметры флюидов					_
регион	<i>T</i> , °C	С, мас. %	<i>d</i> , г/см ³	<i>Р</i> , бар	состав*	Литература
San Sebastian del Oeste, Mexico	135-150 (2)	0.5–0.9	0.93-0.94	—	H ₂ O	Camprubi et al., 2006
El Barqueno dist., Jalisco, Mexico	113–245 (21)	0.2–19.1	0.91–1.06	_	H ₂ O	Camprubi et al., 2006
Los Desemparados, Peru	175-265 (5)	1.2-8.0	0.84-0.91	_	H ₂ O	Chauvet et al., 2006
Pilune, Peru	254-260 (2)	2.1-5.5	0.80-0.85	_	H ₂ O	Chauvet et al., 2006
Puncuhuayco, Peru	196-323 (5)	1.1-12.4	0.67-0.98	_	H ₂ O	Chauvet et al., 2006
Sando Alcade, Peru	278-325 (4)	1.6-7.5	0.68-0.78	_	H ₂ O	Chauvet et al., 2006
Ticlla, Peru	213-337 (5)	1.5-15.5	0.64-0.98	_	H ₂ O	Chauvet et al., 2006
Miller Creek, USA	238–318 (2)	0.2–1.1	0.69–0.81	—	H ₂ O	Johnson, Thompson, 2006
Shannan area, China	232-335(4)	4.0-15.0	0.68-0.96	_	H ₂ O	Li et al., 2006
Muteh, W.Iran	156-302 (10)	2.6-25.0	0.75–1.09	-	$H_2O + CO_2 + + CH_4 + N_2$	Moritz et al., 2006
Mutnovskoe, Russia	165-280 (10)	0.8-5.5	0.76-0.92	_	H ₂ O	Takahashi et al., 2006
Rosia Montana, Romania	193–475 (28)	0.9-55.0	0.56-1.12	_	H ₂ O	Wallier et al., 2006
Golden Cross, New Zea- land	180-250 (2)	1.8	0.82–0.91	—	$H_2O + CO_2$	Christie et al., 2007
Daping, China	165-393 (10)	10.9-21.3	0.72-1.07	_	H ₂ O	Ge et al., 2007
Pongkor, Indonesia	200 (2)	0.1	0.86	_	H ₂ O	Warmada et al., 2007
Beiya area, China	235-352 (6)	10.0-45.0	0.80-1.23	_	H ₂ O	Xu et al., 2007
Narlica, Turkey	236 (1)	0.9	0.82	_	H ₂ O	Yilmaz et al., 2007
Ovacik, Turkey	178-196 (2)	1.1-1.4	0.88-0.90	_	H ₂ O	Yilmaz et al., 2007
Kelian dep., Indonesia	103-423 (30)	0.1-11.6	0.50-0.97	_	H ₂ O	Davies et al., 2008
Cove (McCoy), USA	250-371 (13)	3.2-7.6	0.63-0.84	_	H ₂ O	Johnston et al., 2008
Zopkhito, Georgia Republic	175–380 (53)	1.4–3.4	0.51-0.92	-	$H_2O + CO_2 + H_2O + N_2$	Kekelia et al., 2008
La Herradura, Mexico	265-283 (7)	3.5-4.1	0.79–0.81	670–2015 (7)	$CO_2 + H_2O$	Ruiz, 2008
Betty O'Neal, USA	134-375 (6)	0.1-5.0	0.61-0.96	_	H ₂ O	Kelson et al., 2008
Lovie, USA	272-330(3)	2.1-6.4	0.69-0.78	_	H ₂ O	Kelson et al., 2008
Gray Eagle, USA	336-393 (5)	0.4-12.0	0.42-0.70	_	H ₂ O	Kelson et al., 2008
Hilltop, USA	115-313 (7)	0.2-4.0	0.72-0.95	_	H ₂ O	Kelson et al., 2008
Kattenhorn, USA	181-187 (2)	0.5-2.2	0.89-0.91	_	H ₂ O	Kelson et al., 2008
Apigania Bay, Greece	134-235 (15)	0.2-5.8	0.86-0.97	_	H ₂ O	Tombros et al., 2008
Асачинское, Россия	95-320 (48)	0.2-8.5	0.70-0.98	_	H ₂ O	Боровиков и др., 2009
Daping, China	279-424 (8)	3.7-14.6	0.50-0.87	1335-3400 (2)	$H_2O + CO_2$	Sun et al., 2009
Mayum, China	229-357 (19)	1.2-5.8	0.66–0.84	1400-3600 (18)	$H_2O + CO_2$	Jiang et al., 2009
Nevados Famatina, Argentina	175–552 (22)	1.5–64.4	0.61-1.20	_	H ₂ O	Pudack et al., 2009
Xiongcun, China	121-382 (37)	1.9—34.6	0.59-1.16	-	H ₂ O	Hu et al., 2009
Bangbu, China	167-336(3)	2.2-8.5	0.75-0.92	-	$H_2O + CO_2$	Sun et al., 2010

Таблица 2. Продолжение

Месторождение,	Физико-химические параметры флюидов					Π
регион	<i>T</i> , °C	С, мас. %	<i>d</i> , г/см ³	<i>Р</i> , бар	состав*	литература
Jasper Creek, New Sealand	143–182 (5)	0.2	0.90-0.93	_	H ₂ O	Simpson, Mauk, 2011
Jubilee, New Sealand	168-270 (14)	0.2-1.5	0.76-0.91	_	H ₂ O	Simpson, Mauk, 2011
Scimitar, New Sealand	194-310 (13)	0.2-1.4	0.70-0.88	_	H ₂ O	Simpson, Mauk, 2011
Scotia, New Sealand	160-228 (15)	0.01-0.9	0.82-0.91	_	H ₂ O	Simpson, Mauk, 2011
Sovereign, New Sealand	209-262 (14)	0.01-1.2	0.77-0.86	_	H ₂ O	Simpson, Mauk, 2011
Teutonic, New Sealand	168 (1)	0.3	0.91	_	H ₂ O	Simpson, Mauk, 2011
Zhemulang, China	165-273 (5)	2.3-7.4	0.78-0.96	_	$H_2O + CO_2$	Zhou et al., 2011
Bingham Canyon, USA	273-610 (120)	3.3-59.0	0.41-1.19	_	H ₂ O	Seo et al., 2012
Broken Hills, New Seal- and	186–249 (4)	0.1–1.4	0.80–0.89	_	H ₂ O	Cocker et al., 2013
Kartaldag, Turkey	138-280 (17)	0.4-1.4	0.76-0.94	_	H ₂ O	Imer et al., 2013
Madendag, Turkey	245-275 (3)	0.2-0.4	0.76-0.81	_	H ₂ O	Imer et al., 2013
Aginskoe, Russia	200-300 (5)	0.8-0.9	0.72-0.87	_	H ₂ O	Andreeva et al., 2013
Mazhala, China	180-300 (8)	2.5-4.9	0.77-0.92	_	$H_2O + CO_2$	Mo et al., 2013
Maher-Abad, Iran	150-488 (19)	9.5–47.9	0.80-1.13	_	H ₂ O	Siahcheshm et al., 2014
Mazhala, China	148-303 (30)	1.6—4.6	0.75-0.93	_	$H_2O + CO_2 + + CH_4 + N_2$	Zhai et al., 2014
Shalagang, China	140-290 (47)	0.5-8.3	0.82-0.96	-	$H_2O + CO_2 + H_1 + CH_1 + N_2$	Zhai et al., 2014
Zhemulang, China	146-338 (23)	3.3–6.4	0.78–0.96	-	$H_2O + CO_2 + H_1 + CH_1 + N_2$	Zhai et al., 2014
Arapucandere, Turkey	160-362 (51)	0.1-1.7	0.55-0.91	_	H ₂ O	Bozkava, Banks, 2015
Chah Zard, Iran	262-345 (6)	8.4-13.7	0.80-0.87	_	H ₂ O	Kouhestani et al., 2015
Qolqoleh, Iran	204–386 (6)	4.9—19.6	0.82-0.90	1600–2000 (2)	$CO_2 + H_2O$	Taghipour, Ahmadnejad, 2015
Beiya, China	237–544 (56)	1.0-59.3	0.45–1.12		$H_2O, H_2O +$ + $CO_2 + N_2$	Wang et al., 2015
Alto de la Blenda, Argen- tina	170–293 (92)	1.3–4.6	0.74-0.93	-	H ₂ O	Márquez, Heinrich, 2016
Martabe, Indonesia	140-404 (195)	0.5-11.5	0.56-0.94	_	H ₂ O	Saing et al., 2016
Bangbu, China	167–336 (6)	2.2–9.5	0.73-0.93	-	H_2O , $H_2O + CO_2$	Sun et al., 2016
Cerro Quema, Panama	140-310 (8)	0.5-4.8	0.75-0.96	_	H ₂ O	Corral et al., 2017
Beiya, China	157-523 (29)	1.1-58.0	0.35-1.14	_	H ₂ O	He et al., 2017
Kuh-e-Zar, Iran	271-491 (23)	4.0-19.2	0.64-0.87	_	H ₂ O	Karimpour et al., 2017
Engineer, Canada	133-220 (6)	0.1-1.6	0.84-0.94	_	H ₂ O	Millonig et al., 2017
La Luz area, Mexico	138-332 (136)	0.1–6.4	0.64-0.93	_	H ₂ O	Moncada et al., 2017
Hishikari, Japan	161-276 (23)	0.4–2.7	0.77-0.91	_	H ₂ O	Takahashi et al., 2017
Ciemas, Indonesia	147-354 (27)	10.7-17.3	0.79-1.00	_	H ₂ O	Zheng et al., 2017
Latimojong, Indonesia	146–387 (269)	0.9-8.2	0.55–0.99	_	$H_2O, \\ H_2O + CO_2$	Hakim et al., 2018

Месторождение,	Φ	Путоротуро				
регион	<i>T</i> , °C	С, мас. %	<i>d</i> , г/см ³	<i>Р</i> , бар	состав*	Литература
Qarachilar, Iran	190-530(15)	9.2-55.0	0.95-1.13	_	H ₂ O	Kouhestani et al., 2018
Beiya, China	301-440 (60)	1.6-39.2	0.34-0.99	_	Н ₂ О,	Liu et al., 2018
					$H_2O + CO_2$	
Nová Baňa, Slovakia	150-357 (318)	0.5-24.3	0.50-1.11	_	H ₂ O	Majzlan et al., 2018
Hishikari, Japan	106-237 (31)	0.1-1.1	0.80-0.96	—	H ₂ O	Shimizu, 2018
Jinshajiang belt, China	202-600 (74)	5.5-44.7	0.43-1.20	—	H ₂ O	Wang et al., 2018
Govin, Iran	146-425 (47)	2.5-37.0	0.56-0.97	—	H ₂ O	Alipour-Asll, 2019
Quebrada del Diablo, Argentina	162-307 (5)	1.2-1.7	0.74–0.92	_	H ₂ O	D'Annunzio, Rubinstein, 2019
Kay Tanda, Philippines	203-367 (152)	3.4-8.4	0.68-0.89-	—	H ₂ O	Frias et al., 2019
Grasberg, Indonesia	255-700 (25)	6.4–54.0	0.63–1.24	_	H ₂ O	Mernagh, Mavrogenes, 2019
Getchell, Nevada, USA	120-200 (9)	4.0-14.0	0.97-0.98	_	H ₂ O	Groff, 2019
Ali Adde, Hes Daba, Djibouti	150-265 (6)	0.2–3.4	0.81-0.92	_	H ₂ O	Moussa et al., 2019
Poboya, Indonesia	150-270 (3)	0.1-2.6	0.79-0.92	_	H ₂ O	Rivai et al., 2019
Salu Bulo, Indonesia	132-368 (6)	3.5-8.5	0.75-0.97	_	$H_2O + CO_2 +$	Tuakia et al., 2019
					$+ N_2$	
Lubin-Zardeh, Iran	94-339 (51)	0.2–17.0	0.89-1.03	_	H ₂ O	Zamanian et al., 2019
Koru, Turkey	113-342 (48)	0.2-11.1	0.78-0.95	_	H ₂ O	Bozkaya et al., 2020
Kışladağ, Turkey	250-600 (35)	1.0-49.0	0.81-0.95	—	H ₂ O	Hanilçi et al., 2020
Grasberg, Indonesia	266-700 (403)	26.4-88.0	0.40-1.55	26-1199 (413)	H ₂ O	Mernagh et al., 2020
Latala, Iran	144-285 (24)	0.2-7.7	0.82-0.93	_	$H_2O + CO_2 +$	Padyar et al., 2020
					$+ H_2$	

Таблица 2. Окончание

Примечание. *Т* – температура гомогенизации, С – соленость флюида, выраженная в мас. % экв. NaCl; *d* – плотность водного флюида, *P* – давление флюида; * – состав газовой фазы флюидных включений. В скобках указано количество определений величин температуры гомогенизации, солености и плотности (эти параметры оценивались вместе, поэтому число в скобках около интервала значений температур характеризует количество определений всех трех параметров), давление оценивалось отдельно по ассоциациям сингенетичных включений, количество оценок давлений показано отдельно (число в скобках около значений давлений).

КРАТКИЙ ОБЗОР КАЙНОЗОЙСКИХ МЕСТОРОЖДЕНИЙ ЗОЛОТА

Рассмотренные в данной статье месторождения золота охватывают главные золотоносные провинции с месторождениями золота кайнозозойского возраста: орогенные месторождения золота Аляски, Британской Колумбии, Италии, Австрии, Новой Зеландии и Тибета, эпитермальные, порфировые и месторождения типа Карлин Запада США, Перу, Чили, Аргентины, Мексики, Панамы, Джибути, Словакии, Румынии, Греции, Армении, Грузии, Турции, Ирана, Дальнего Востока России, Камчатки, Японии, Индонезии, Филиппин и Китая. Возраст рассмотренных в статье месторождений приводится по имеющимся в публикации сведениям (табл. 1). Если для месторождения существует изотопная оценка возраста, то в табл. 1 приведено конкретное значение возраста. В случае определения возраста по геологическим данным в табл. 1 указано только название эры. По запасам золота изученные месторождения охватывают весь диапазон возможных значений от мелких месторождений (менее 10 т) до суперкрупных (более 1000 т). Запасы месторождений приводятся по опубликованным в открытых источниках данным, как правило, с учетом добытого за все время эксплуатации месторождений золота. Жирным шрифтом в табл. 1 выделены месторождения с запасами более 100 т, обычно относимые к крупным и суперкрупным. Порядок расположения месторождений в табл. 1

Рис. 2. Диаграмма "температура–соленость" для минералообразующих флюидов кайнозойских месторождений золота. а – все месторождения, б – крупные месторождения (более 100 т золота). *1* – данные по месторождениям, *2* – кривая растворимости для системы H₂O–KCl.

Рис. 3. Диаграмма "температура—давление" для минералообразующих флюидов кайнозойских месторождений золота. а – все месторождения, б – крупные месторождения (более 100 т золота).

и 2 соответствует хронологии публикаций статей с данными о параметрах и составе флюидов.

Возраст и запасы золота кайнозойских месторождений приведены в табл. 1. Они расположены в разных странах: США, Канаде, России, Перу, Чили, Аргентины, Мексики, Панамы, Джибути, Италии, Австрии, Словакии, Румынии, Греции, Турции, Китае, Японии, Индонезии, Филиппинах и Новой Зеландии. Большая часть месторождений золота являются жильными и относятся к главным промышленным типам месторождений золота (Frimmel et al., 2005): эпитермальным, порфировым и орогенным.

Следует отметить, что в рассматриваемую выборку попали широко известные крупные месторождения золота кайнозоя: Grasberg, Индонезия; Gold Acres и Gold Quarry, США; Bajo de la Alumbrera, Apreнтина; Lepanto и Far Southeast, Филиппины; Hishikari, Япония; Rosia Montana, Румыния; Golden Cross, Новая Зеландия; Round Mountain, Comstock и Carlin, США; Многовершинка,

ГЕОХИМИЯ том 67 № 8 2022

Россия; La Herradura, Мексика; Daping и Beiya, Китай; Kışladağ, Турция; Bralorne-Pioneer, Канада; Alaska-Juneau, McLaughlin, Cove и Getchell trend, США; Zod, Армения.

ХАРАКТЕРИСТИКА ФЛЮИДОВ КАЙНОЗОЙСКИХ МЕСТОРОЖДЕНИЙ

Основные параметры флюидов кайнозойских месторождений золота приведены в табл. 2. В целом диапазон изменения физико-химических параметров флюидов кайнозойских месторождений весьма широк (рис. 2, 3, табл. 3).

Кайнозойские минералообразующие флюиды золоторудных месторождений характеризуются очень широким интервалом температур от 50 до 845°С (в среднем 290°С, рис. 2, 4, табл. 3) и солености от 0.1 до 88.0 мас. % экв. NaCl (в среднем 13.1 мас. % экв. NaCl, рис. 2, 5, табл. 3). Наиболее высокие температуры (до 845°С) получены для минералообразующих флюидов порфировых ме-

Возраст, млн лет	Температура, °С	Давление, бар	Соленость, мас. % экв. NaCl	*Слабосоленые флюиды, % от <i>п</i>	n				
Все месторождения									
Кайнозой	50-845	20-3600	0.1 - 88.0	55.0	3867				
0-70	(290)	(1040)	(13.1)	_	_				
Мезозой	75–955	30-3700	0.1-82.0	33.6	2947				
70-252	(270)	(1040)	(11.9)	_	_				
Палеозой	50-600	5-3500	0.1-66.8	34.4	1459				
252-540	(260)	(1420)	(9.6)	_	_				
Протерозой	50-615	120-6500	0.1-68.0	29	970				
540-2500	(240)	(2000)	(14.9)	_	_				
Архей	50-570	330-6400	0.1-63.0	37.9	311				
2500-3200	(250)	(1750)	(10.3)	_	_				
	I	Крупные мес	торождения		1				
Кайнозой	70-845	26-3400	0.1-88.0	335	1003				
0-70	(400)	(480)	(29.0)	_	_				
Мезозой	80-600	40-3000	0.1-63.0	37.1	1097				
70-252	(250)	(975)	(9.5)	_	_				
Палеозой	50-600	4-3460	0.2-62.4	23.2	392				
252-540	(265)	(1330)	(10.4)	_	_				
Протерозой	50-510	120-3900	0.1-61.1	12.2	238				
540-2500	(250)	(1410)	(22.4)	_	_				
Архей	70-520	700-6400	0.1-63.0	46.1	89				
2500-3200	(250)	(2320)	(11.0)	_	_				

Таблица 3. Средние величины основных физико-химических параметров минералообразующих флюидов месторождений золота и пределы их вариаций

*К слабосоленым отнесены флюиды, содержащие менее 5 мас. % экв. NaCl: *n* – число определений; в скобках приведено среднее значение.

сторождений, которых много среди кайнозойских месторождений золота (Bingham Canyon, США; Kışladağ, Турция; Bajo de la Alumbrera, Apгентина: и др.). При этом часть данных по меднозолото-порфировому месторождению Grasberg (с температурами выше 700°С) исключена из рассмотрения по причине сомнений в их соответствии условиям формирования руд (Mernagh, Mavrogenius, 2019; Mernagh et al., 2020). Можно достаточно уверенно сделать вывод, что эти флюиды отделялись непосредственно от магматических очагов, возможно, связанных с мантийным магматизмом. Т.е. золотая минерализация в этих месторождениях формировалась магматическим флюидом, отделившимся от магматического очага в форме хлоридного рассола, который на ранних стадиях рудного процесса имел достаточно высокие температуры. Значительная часть данных лежит в более узком диапазоне температур: от 150 до 350°С (рис. 2). Доля слабоминерализованных флюидов (менее 5 мас. %) составляет 55.0% от общего количества изученных включений. В составе флюидов установлены H₂O, NaCl,

 CO_2 и CH_4 . Флюиды в начальные периоды рудоотложения часто были гетерогенными, т.е. состояли из двух сосуществующих фаз (водно-солевого раствора и газовой фазы). Оценки давлений по включениям гетерогенных флюидов составили от 3600 до 20 бар (среднее 600, рис. 3, 6, табл. 3) в температурном интервале 700–160°С.

Следует отметить, что детальность данных об условиях формирования разных месторождений различается: количество замеров для разных месторождений сильно изменяется от 1-2 до более 500. Однако в данной работе не производится сравнительной оценки условий формирования отдельных месторождений. Все рассматриваемые оценки физико-химических параметров характеризуют условия формирования золоторудной минерализации в целом. Они равноправны и достоверны, поэтому они могут быть учтены при оценке условий формирования месторождений золота.

Надо отметить, что параметры формирования крупных и суперкрупных кайнозойских месторождений несколько отличаются от всей выборки

Рис. 4. Гистограмма температур минералообразующих флюидов кайнозойских месторождений золота. а – все месторождения, б – крупные месторождения (более 100 т золота).

Рис. 5. Гистограмма величин солености минералообразующих флюидов кайнозойских месторождений золота. а – все месторождения, б – крупные месторождения (более 100 т золота).

данных (рис. 2–6, табл. 3). Средние величины температур и солености флюидов крупных и суперкрупных месторождений выше, чем средние величины этих же параметров для полной выборки данных по кайнозойским флюидам (табл. 3), что свидетельствует о преобладании среди крупных месторождений золота высокотемпературной минерализации. При этом гистограмма температур минералообразующих флюидов крупных месторождений многомодальная, что связано с наличием крупных месторождений золота различных генетических типов: эпитермальных, порфировых и орогенных.

ГАЗОВЫЙ СОСТАВ ФЛЮИДОВ

Газовые компоненты флюидных включений в минералах анализируются или деструктивными методами (масс-спектрометрия и газовая хроматография), или недеструктивными (раман-спектроскопия) методами. Деструктивные методы не-

ГЕОХИМИЯ том 67 № 8 2022

заменимы при анализе непрозрачных и флюоресцирующих минералов и объектов с включениями очень малых размеров. Кроме того, эти методы позволяют определять воду — основной компонент флюидных включений и рассчитывать концентрации летучих компонентов. Их преимущества и недостатки подробно описаны в работе (Миронова и др., 1995). Со временем деструктивные методы все более вытесняются недеструктивными, на долю последних приходится уже более 75% всех публикуемых результатов (Миронова, 2010).

Метод раман-спектроскопии дает качественный состав и соотношения газовых компонентов во флюиде. Чтобы перейти к их концентрации в растворе, необходимо изучать эти же включения методом микротермометрии. Именно комбинация двух методов по рекомендации (Dhamelincourt et al., 1979) наиболее часто применяется в работах последних лет (Миронова, 2010). Авторы обычно приводят результаты раман-спектроскопии, т.е. относитель-

Рис. 6. Гистограмма давлений минералообразующих флюидов кайнозойских месторождений золота. а – все месторождения, б – крупные месторождения (более 100 т золота).

ные содержания основных газовых компонентов, и затем — их концентрации, рассчитанные с использованием ланных микротермометрии. Критический обзор методов и результатов газовых анализов флюидных включений был опубликован в 2010 г. (Миронова, 2010). Полученные этими методами результаты составляют базу данных, начатую в 1964 г. (Наумов и др., 2009). В настоящее время база данных по летучим компонентам флюидных включений в минералах содержит уже более 11000 определений, которые свидетельствуют о том, что основными летучими компонентами земной коры являются H₂O и CO₂. Активно участвуют в природных процессах восстановленные формы углерода в виде метана, а также азот и в некоторых случаях сероводород.

Для минералов золоторудных месторождений кайнозойского возраста в настоящее время в базе данных имеется 284 анализа летучих компонентов из 13 месторождений. Эти данные представлены в табл. 4 и на рис. 7. Флюиды этих месторождений отличает от древних флюидов более высокая доля воды и, соответственно, меньшее количество растворенных газов, которые представлены в основном углекислотой. Для большинства приведенных месторождений описаны минералы, содержащие флюидные включения с признаками кипения. Многие авторы именно кипением объясняют осаждение золота и вертикальную зональность при формировании эпитермальных месторождений (Hedenquist et al., 1998).

В табл. 5 приведен средний состав флюидов кайнозойского возраста для сравнения с более древними флюидами, данные по которым были опубликованы ранее (Прокофьев и др., 2017, 2018, 2020). Отмеченные там тенденции в изменении газового состава флюидов с возрастом для кайно-зойских месторождений подтвердились полностью: среднее содержание воды увеличилось, доля угле-

кислоты среди газовых компонентов существенно превалирует, а соотношение окисленной и восстановленной форм углерода (CO₂/CH₄) увеличилось в десятки раз, что говорит об окислительном характере флюида. Таким образом, общей чертой кайнозойских флюидов можно считать окислительный характер, что выражается в существенном преобладании углекислоты над метаном во флюидах большинства изученных месторождений.

ОБСУЖДЕНИЕ РЕЗУЛЬТАТОВ

Параметры минералообразующих флюидов кайнозойских месторождений логично обсуждать в сравнении с ранее опубликованными данными по флюидам золотых месторождений докембрия, палеозоя и мезозоя (Прокофьев и др., 2017, 2018, 2020), общие интервалы данных для которых мы привели в табл. 3 и 5. Чтобы более корректно сравнивать большие массивы данных по параметрам флюида, были использованы диаграммы размаха (или ящичные диаграммы), которые уже применялись для сравнения параметров орогенных месторождений золота разного возраста (Ргоkofiev, Naumov, 2020). На таких диаграммах хорошо видны тенденции изменения параметров минералообразующих флюидов во времени от архейских до кайнозойских месторождений (рис. 8–10).

Средняя температура флюидов кайнозойских месторождений золота немного выше, чем у более древних, несмотря на близкий общий диапазон (табл. 3). Однако максимальные выбросы температуры растут по мере уменьшения возраста (рис. 8а). Еще больше эта тенденция проявлена для крупных месторождений (рис. 8б). Возможно, это связано с общим увеличением доли магматического флюида при формировании более молодых эндогенных месторождений золота.

Месторождение,		Газовый состав флюидов, мол. %						
регион	H ₂ O	CO ₂	CH ₄	N ₂	n	литература		
Mclaughlin, Califor- nia,USA	96.7–99.9 (99.0)	0.1–2.2 (0.6)	0.0-0.8 (0.1)	0-1.4 (0.3)	37	Sherlock et al., 1995		
Apacheta, Peru	_	62.9–100 (85.9)	_	0.7–6.7 (2.6) *	16	Andre-Mayer et al., 2002		
Банска Штьявница, Словакия	91.6–99.9 (98.6)	0.1-8.4 (1.3)	0-0.03 (0.0)	0-0.85 (0.1)	34	Коваленкер и др., 2006		
Shila-Paula, Peru	—	78.7–100 (87.2)	_	0.0-20.6 (10.3)	3	Chauvet et al., 2006		
Zopkhito, Georgia	67.2–95.0 (72.6)	1.2-100 (14.5)	0.00	0.0-95.6 (12.9)	14	Kekelia et al., 2008		
Mazhala, China	—	97.3–99.6 (98.2)	0.0-0.3 (0.2)	0.4–2.7 (1.7)	14	Zhai et al., 2014		
Zhemulang, China	—	74.7–94.4 (89.9)	0.0-1.7 (0.6)	5.1-24.5 (9.6)	14	Zhai et al., 2014		
Chelopech, Bulgaria	99.3–99.8 (99.8)	0.05-0.09 (0.08)	0.01-0.02 (0.01)	0.04-0.09 (0.06)	4	Piperov et al., 2017		
Nevada, USA	62.4–98.9 (92.6)	0.7-10.2 (3.5)	0.06-22.1 (2.4)	0.1-6.9 (1.5)	51	Groff, 2018		
Twin Creeks, Nevada, USA	96.6–99.7 (98.7)	0.1–2.2 (0.9)	0.0-0.18 (0.04)	0.0-1.55 (0.3)	46	Groff, 2019		
Getchell, Nevada, USA	87.9–99.8 (97.0)	0.1-11.0 (2.6)	0.01-0.28 (0.05)	0.0-1.6 (0.3)	44	Groff, 2019		
Kay Tanda, Philippines	93.6–99.8 (99.6)	0.2-0.4 (0.3)	0.0	0.01-0.08 (0.06)	5	Frias et al., 2019		
Latala, Iran	_	46—97**	0.0	0.0	2	Padyar et al., 2020		
Среднее по место- рождениям	95.6	2.5	0.6	1.3	235			
Среднее по место- рождениям	—	95.0	0.2	4.8	49			

Таблина 4.	Состав летучих компонентов	рудообразующих с	bлюилов кайнозойских	месторожлений золота
таолица п	coeffab hery mix kommonement	рудоооризующим	рлондов каллозопеких	месторольдении золота

Примечания. *n* – количество определений. Состав флюидных включений приведен без учета других газов (H₂S, углеводороды и другие) и растворенных солей. В скобках указано среднее содержание. Приведенные в таблице результаты с водой выполнены путем вскрытия флюидных включений (газовая хроматография и масс-спектрометрия) или расчетным путем по данным раман-спектрометрии и микротермометрии; без воды – методом раман-спектрометрии индивидуальных включений без их вскрытия. * – определен также H₂S; ** – кроме CO₂ определен только водород.

Таблица 5. Состав летучих компонентов флюидных включений в минералах золоторудных месторождений разного возраста, полученный валовыми и индивидуальными методами (мол. %)

Возраст		Валовые методы				Индивидуальные методы					
	n_1	H ₂ O	CO ₂	CH ₄	N ₂	<i>n</i> ₂	CO ₂	CH ₄	N ₂	CO ₂ /CH ₄	<i>n</i> ₂
Архей	10	79.4	11.0	9.4	0.3	217	78.2	19.6	2.2	4.0	170
Протерозой	11	73.2	24.2	1.5	1.1	155	67.5	17.9	14.6	3.8	217
Палеозой	26	86.9	12.1	0.8	0.2	406	72.1	18.6	9.3	3.9	537
Мезозой	20	94.0	4.7	0.7	0.6	369	78.2	3.8	18.0	20.6	58
Кайнозой	13	95.6	2.5	0.6	1.3	235	95.0	0.2	4.8	475	49

Примечания. n_1 — количество месторождений, n_2 — количество анализов. Состав флюидных включений приведен без учета других газов (H₂S, углеводороды и другие) и растворенных солей. Приведенные в таблице результаты с водой выполнены путем вскрытия флюидных включений (газовая хроматография и масс-спектрометрия) или расчетным путем по данным раман-спектрометрии и микротермометрии; без воды — методом раман-спектрометрии индивидуальных включений без их вскрытия.

Рис. 7. Треугольные диаграммы, характеризующие соотношение газовых компонентов минералообразующих флюидов на золоторудных месторождениях кайнозойского возраста. Количество определений: 198 (а), 183 (б).

Рис. 8. Диаграмма размаха для величин температур гомогенизации флюидных включений в минералах месторождений золота разного возраста. По горизонтальной оси обозначен возраст месторождений (AR – архей, PR – протерозой, Pz – палеозой, Mz – мезозой, Cz – кайнозой). а – все месторождения, б – крупные месторождения (более 100 т золота).

На этом и следующих рисунках (9, 10) линия в боксе — медиана, крестик — среднее значение, точки — выбросы. Длина нижнего "уса" рассчитана как разность первого квартиля и полутора межквартильных расстояний; длина верхнего как сумма третьего квартиля и полутора межквартильных расстояний.

Средняя величина солености флюидов кайнозойских месторождений золота несколько ниже, чем более древних (рис. 9а). Наблюдается отчетливый максимум солености для минералообразующих флюидов протерозойских месторождений золота. Этот максимум еще сильнее проявлен в данных по флюидам крупных месторождений золота (рис. 9б). Однако этот максимум для флюидов крупных месторождений проявлен как локальный, поскольку флюиды крупных месторождений золота кайнозоя имеют максимальную соленость. Это явно связано с большей ролью в кайнозое высокотемпературных магматогенных флюидов, участвующих в формировании крупных месторождений золота порфирового типа, преобладавших в эту эпоху.

Средняя величина флюидного давления для кайнозойских месторождений золота заметно ниже, чем для более древних (рис. 10а). Наблюдается закономерное снижение среднего давления флюида от протерозойских месторождений золота к кайнозойским, которое можно объяснить уменьшением величины эрозионного среза от

Рис. 9. Диаграмма размаха для величин солености растворов флюидных включений в минералах месторождений золота разного возраста. а – все месторождения, б – крупные месторождения (более 100 т золота).

Рис. 10. Диаграмма размаха для величин давлений, оцененных по данным исследования флюидных включений в минералах месторождений золота разного возраста. а – все месторождения, б – крупные месторождения (более 100 т золота).

древних месторождений золота к молодым. Потому на древних месторождениях могут оказаться доступными для изучения наиболее глубокие части гидротермальных золоторудных рудообразующих систем. Несколько выбиваются из общей картины величины давлений для архейских флюидов, не обнаруживающие максимум по давлению. Возможно, это связано с неполнотой данных о параметрах архейских минералообразующих флюидов, из-за уничтожения части архейских месторождений эрозией. Во всяком случае, для флюидов крупных месторождений золота мы видим монотонное снижение флюидного давления от древних месторождений к молодым (рис. 10б).

С такой интерпретацией согласуется и самая меньшая величина минимального флюидного

ГЕОХИМИЯ том 67 № 8 2022

давления на кайнозойских месторождениях, которое также может быть связано с большей сохранностью в кайнозое малоглубинной золотой минерализации. Эти закономерности согласуются с выводами работы (Kesler, Wilkinson, 2006) об уничтожении эрозией практически всей эпитермальной минерализации докембрия.

Газовый состав флюидов кайнозойских месторождений золота свидетельствует о более высокой доле в них воды и уменьшении количества растворенных газов по сравнению с более древними флюидами (табл. 5). В то же время в составе эндогенных кайнозойских флюидов преобладает углекислота по сравнению с другими газами. Величина отношения CO₂/CH₄ заметно растет от древних флюидов к молодым (рис. 11). Возможно, это тоже

Рис. 11. Диаграмма размаха для величин отношения CO₂/CH₄ в минералообразующем флюиде месторождений золота разного возраста.

отражает возрастание доли магматогенного компонента в составе флюидов, формировавших кайнозойские месторождения золота.

Надо отметить, что заметное участие магматических флюидов в формировании кайнозойских месторождений золота хорошо согласуется с современными представлениями о глубинном мантийно-коровом источнике золота в эндогенных флюидах (Горячев, 2019 и др.).

Конечно, выявленные закономерности в изменении состава и физико-химических параметров золотоносных рудообразующих флюидов в истории Земли нуждаются в дальнейшем изучении и детализации, а также проведении таких исследований в пределах отдельных генетических групп месторождений.

Авторы благодарны Н.Е. Савве, Б.Б. Дамдинову и Т.А. Шишкиной за внимательное прочтение рукописи и советы по улучшению текста.

Работа выполнена в рамках тем Государственного задания ИГЕМ РАН № 121041500228-6, ГЕОХИ РАН № 0137-2019-0016.

СПИСОК ЛИТЕРАТУРЫ

Боровиков А.А., Лапухов А.С., Борисенко А.С., Сереткин Ю.В. (2009) Физико-химические условия формирования эпитермального Асачинского Аu—Ag месторождения (Южная Камчатка). *Геология и геофизика*. **50**, 897-903.

Горячев Н.А. Месторождения золота в истории Земли. (2019) *Геология рудных месторождений*. **61**(6), 3-18.

Коваленкер В.А., Наумов В.Б., Прокофьев В.Ю., Елень С., Габер М. (2006) Состав магматических расплавов и эволюция минералообразующих флюидов эпитермального Au–Ag–Pb–Zn месторождения Банска Штьявница (Словакия) по данным исследования включений в минералах. *Геохимия*. (2), 141-160. Kovalenker V.A., Naumov V.B., Prokof'ev V.Yu., Jelen S., Gaber M. (2006) Compositions of magmatic melts and evolution of mineral-forming fluids in the Banska Stiavnica epithermal Au–Ag–Pb–Zn deposit, Slovakia: A study of inclusions in minerals. *Geochem. Int.* **44**(2), 118-136.

Миронова О.Ф. (2010) Летучие компоненты природных флюидов по данным изучения включений в минералах: методы и результаты. *Геохимия*. (1), 89-97.

Mironova O.F. (2010) Volatile components of natural fluids: Evidence from inclusions in minerals: methods and results. *Geochem. Int.* **48**(1), 83-90.

Миронова О.Ф., Салазкин А.Н., Наумов В.Б. (1995) Валовые и точечные методы в анализе летучих компонентов флюидных включений. *Геохимия*. 974-984.

Наумов В.Б., Дорофеева В.А., Миронова О.Ф. (2009) Основные физико-химические параметры природных минералообразующих флюидов. *Геохимия*. (8), 825-851.

Naumov V.B., Dorofeeva V.A., Mironova O.F. (2009) Principal physicochemical parameters of natural mineral-forming fluids. *Geochem. Int.* **47**(8), 777-802.

Прокофьев В.Ю. (1998) Типы гидротермальных рудообразующих систем (по данным исследования флюидных включений). *Геология рудных месторождений*. (6), 514-528.

Прокофьев В.Ю., Наумов В.Б., Миронова О.Ф. (2017) Физико-химические параметры и геохимические особенности флюидов докембрийских золоторудных месторождений. *Геохимия*. (12), 1069-1087.

Prokofiev V.Yu., Naumov V.B., Mironova O.F. (2017) Physicochemical parameters and geochemical features of fluids of Precamrbian gold deposits. *Geochem. Int.* **55**(12), 1047-1065.

Прокофьев В.Ю., Наумов В.Б., Миронова О.Ф. (2018) Физико-химические параметры и геохимические особенности флюидов палеозойских золоторудных месторождений. *Геохимия*. (12), 1141-1157.

Prokofiev V.Yu., Naumov V.B., Mironova O.F. (2018) Physicochemical parameters and geochemical features of fluids of Paleozoic gold deposits. *Geochem. Int.* **56**(12), 1156-1171.

Прокофьев В.Ю., Наумов В.Б., Миронова О.Ф. (2020) Физико-химические параметры и геохимические особенности флюидов мезозойских золоторудных месторождений. *Геохимия*. **65**(2), 123-144.

Prokofiev V.Yu., Naumov V.B., Mironova O.F. (2020) Physicochemical parameters and geochemical features of fluids of Mesozoic gold deposits. *Geochem. Int.* **58**(2), 128-150.

Alipour-Asll M. (2019) Geochemistry, fluid inclusions and sulfur isotopes of the Govin epithermal Cu-Au mineralization, Kerman province, SE Iran. *J. Geochem. Explor.* **196**, 156-172.

Andre A.S., Leroy J.L. (1999) Fluid inclusions and microfissuration data on the epithermal Au-Ag ore deposits in the Cordillera Shila, southern Peru. *Terra Nostra: ECROFI XV – Abstr. and Program*, 7-9.

Andre-Mayer A.-S., Leroy J.L., Bailly L., Chauvet A., Marcoux E., Grancea L., Llosa F., Rosas J. (2002) Boiling and vertical mineralization zoning: a case study from the Apacheta low-sulfidation epithermal gold-silver deposit, southern Peru. *Mineral. Dep.* **37**(5), 452-464.

Andreeva E.D., Matsueda H., Okrugin V.M., Takahashi R., Ono Sh. (2013) Au–Ag–Te mineralization of the low-sulfi-

dation epithermal Aginskoe deposit, Central Kamchatka, Russia. *Res. Geol.* **63**, 337-349.

Beaty D.W., Cunninghem C.G., Rye R.O., Steven T.A., Gonzalez-Urien E. (1986) Geology and geochemistry of the Deer Trail Pb–Zn–Ag–Au–Cu Manto deposits, Marysvale district, West-Central Utah. *Econ. Geol.* **81**, 1932-1952.

Bethke P.M., Rye R.O., Stoffregen R.E., Vikre P.G. (2005) Evolution of the magmatic-hydrothermal acid-sulfate system at Summitville, Colorado: integration of geological, stable-isotope, and fluid-inclusion evidence. *Chem. Geol.* **215**, 281-315.

Bodnar R.J. (1983) A method of calculating fluid inclusion volumes based on vapor bubble diameters and P-V-T-X properties of inclusions fluids. *Econ. Geol.* **78**, 535-542.

Bodnar R.J. (1993) Revised equation and table for determining the freezing point depression of $H_2O-NaCl$ solutions. *Geochim. Cosmochim. Acta.* **57**, 683-684.

Bozkaya G., Banks D. (2015) Physico-chemical controls on ore deposition in the Arapucandere Pb–Zn–Cu-precious metal deposit, Biga Peninsula, NW Turkey. *Ore Geol. Rev.* **66**, 65-81.

Bozkaya G., Bozkaya Ö., Banks D.A., Gökçe A. (2020) P-T-X constraints on the Koru epithermal base-metal (\pm Au) deposit, Biga Peninsula, NW Turkey. *Ore Geol. Rev.* **119**, 103349.

Brown, P.E. (1989) Flincor: A microcomputer program for the reduction and investigation of fluid inclusion data. *Am. Mineral.* 74, 1390-1393.

Camprubi A., Gonzalez-Partida E., Iriondo A., Levresse G. (2006) Mineralogy, fluid characteristics, and depositional environment of the Paleocene epithermal Au-Ag deposits of the El Barqueno district, Jalisco, Mexico. *Econ. Geol.* **101**, 235-247.

Chauvet A., Bailly L., Andre A.-S., Monie P., Cassard D., Tajada F.L., Vargas J.R., Tuduri J. (2006) Internal vein texture and vein evolution of the epithermal Shila-Paula district, southern Peru. *Mineral. Deposita.* **41**, 387-410.

Christie A.B., Simpson M.P., Brathwaite R.L., Mauk J.L., Simmons S.F. (2007) Epithermal Au-Ag and related deposits of the Hauraki goldfield, Coromandel volcanic zone, New Zealand. *Econ. Geol.* **102**, 785-816.

Cocker H.A., Mauk J.L., Rabone S.D.C. (2013) The origin of Ag–Au–S–Se minerals in adularia-sericite epithermal deposits: constraints from the Broken Hills deposit, Hauraki Goldfield, New Zealand. *Mineral. Deposita.* **48**, 249-266.

Corral I., Cardellach E., Corbella M., Canals A., Griera A., Gómez-Gras D., Johnson C.A. (2017) Origin and evolution of mineralizing fluids and exploration of the Cerro Quema Au–Cu deposit (Azuero Peninsula, Panama) from a fluid inclusion and stable isotope perspective. *Ore Geol. Rev.* **80**, 947-960.

Craw, D. (1992) Fluid evolution, fluid immiscibility and gold deposition during Cretaceous-Recent tectonics and uplift of the Otago and Alpine Schist, New Zealand. *Chem. Geol.* **98**, 221-236.

Craw D., Teagle D.A.H., Belocky R. (1993) Fluid immiscibility in late-Alpine gold-bearing veins, Eastern and Northwestern European Alps. *Mineral. Deposita.* **28**, 28-36.

D'Annunzioa M.C., Rubinstein N. (2019) The Quebrada del Diablo Lower West Au deposit (Gualcamayo mining

district, Argentina): A Carlin-type mineralization? J. South Amer. Earth Sci. 92, 95-106.

Davies A.G.S., Cooke D.R., Gemmell J.B. (2008) Hydrothermal breccias and veins at the Kelian gold mine, Kalimantan, Indonesia: Genesis of a large epithermal gold deposit. *Econ. Geol.* **103**, 717-757.

De Ronde C.E.J., Blattner P. (1988) Hydrothermal alteration, stable isotopes, and fluid inclusions of the Golden Cross epithermal gold-silver deposit, Waihi, New Zealand. *Econ. Geol.* **83**, 895-917.

Dhamelincourt P., Beny J.-M., Dubessy J., Poty B. (1979) Analyse d'inclusions fluides a la microsonde MOLE a effet Raman. *Bull. Mineral.* **102**, 600-610.

Diamond L.W. (1990) Fluid inclusions evidence for P-V-T-X evolution hydrothermal solutions in late-alpine goldquartz veins at Brusson, Val d'Ayas, Northwest Italian Alps. *Amer. J. Sci.* **290**, 912-958.

Frias S.M.P., Imai A., Takahashi R., Balangue-Tarriela M.I.R., Arcilla C., Blamey N. (2019) Geology, alteration, and mineralization of the Kay Tanda epithermal gold deposit, Lobo, Batangas, Philippines. *Res. Geol.* **69**, 351-384.

Frimmel H.E., Groves D.I., Kirk J., Ruiz J., Chesley J., Minter W.E.L. (2005) The Formation and Preservation of the Witwatersrand Goldfields, the World's Largest Gold Province. *Economic Geology 100th Anniversary Volume*. 769-797.

Ge L.S., Deng J., Li H.G., Yang L.Q., Zhang W.Z., Yuan S.S., Xing J.B. (2007) Superposed mineralization in Daping Au– Cu–Ag–Pb deposit, Yunnan province: Evidences from geology, fluid inclusion and stable isotopes. *Acta Petrol. Sinica*. **23**, 2131-2143.

Goldfarb R.J., Leach D.L., Miller M.L., Pickthorn W.J. (1986) Geology, metamorphic setting, and genetic constraints of epigenetic lode-gold mineralization within the Cretaceous Valdez Group, south-central Alaska: *Geolog. Assoc. Canada Special Paper.* **32**, 87-105.

Goldfarb R.J., Leach D.L., Rose S.C., Landis G.P. (1989) Fluid inclusion geochemistry of gold-bearing quartz veins of the Juneau gold belt, southeastern Alaska – implications for ore genesis. *Econ. Geol. Monograph.* **6**, 363-375.

Groff J.A. (2018) Distinguishing generations of quartz and a distinct gas signature of deep high-grade Carlin-type gold mineralization using quadrupole mass spectrometry. *Ore Geol. Rev.* **95**, 518-536.

Groff J.A. (2019) Evidence of boiling and epithermal vein mineralization in Carlin-type deposits on the Getchell trend, Nevada. *Ore Geol. Rev.* **106**, 340-350.

Groff J.A., Campbell A.R., Norman D.I. (2002) An evaluation of fluid inclusion microthermometric data for orpiment-realgar-calcite-barite-gold mineralization at the Betze and Carlin mines, Nevada. *Econ. Geol.* **97**, 1341-1346.

Gropper H., Calvo M., Crespo H., Bisso C.R., Cuadra W.A., Dunkerley P.M., Aguirre E. (1991) The epithermal gold-silver deposit of Choquelimpie, Northern Chile. *Econ. Geol.* **86**, 1206-1221.

Hakim A.Y.A., Melcher F., Prochaska W., Bakker R., Rantitsch G. (2018) Formation of epizonal gold mineralization within the Latimojong Metamorphic Complex, Sulawesi, Indonesia: Evidence from mineralogy, fluid inclusions and Raman spectroscopy. *Ore Geol. Rev.* **97**, 88-108.

Hanilçi N., Bozkaya G., Banks D.A., Bozkaya O., Prokofiev V., Öztaş Y. (2020) Fluid inclusion characteristics of the Kışladağ porphyry Au deposit, Western Turkey. *Minerals* **10**, 64, 1-16.

Harris A.C., Kamenetsky V.S., White N.C., van Achterbergh E., Ryan C.G. (2003) Melt inclusions in veins: Linking magmas and porphyry Cu deposits. *Science*. **302**(5653), 2109-2111.

Harris A.C., Kamenetsky V.S., White N.C., Steele D.A. (2004) Volatile phase separation in silicic magmas at Bajo de la Alumbrera porphyry Cu-Au deposit, NW Argentina. *Resource Geol.* **54**, 341-356.

He W., Yang L., Brugger J., Campbell Mc C.T.C., Luc Y., Bao X., Gao X., Lua Y., Xing Y. (2017) Hydrothermal evolution and ore genesis of the Beiya giant Au polymetallic deposit, western Yunnan, China: Evidence from fluid inclusions and H–O–S–Pb isotopes. *Ore Geol. Rev.* **90**, 847-862.

Hedenquist J.W., Arribas A.J., Reynolds T.J. (1998) Evolution of an intrusion-centered hydrothermal system: Far Southeast-Lepanto porphyry and epithermal Cu-Au deposits, Philippines. *Econ. Geol.* **93**, 373-404.

Hedenquist J.W., Matsuhisa Y., Izawa E., White N.C., Giggenbach W.F., Akiro M. (1994) Geology, geochemistry and origin of high sulfidation Cu-Au mineralization in the Nansatsu district, Japan. *Econ. Geol.* 89, 1-30.

Imer E.U., Gulec N., Kuscu I., Fallick A.E. (2013) Genetic investigation and comparison of Kartaldag and Madendag epithermal gold deposits in Canakkale, NW Turkey. *Ore Geol. Rev.* **53**, 204-222.

Jewell P.W., Parry W.T. (1988) Geochemistry of the Mercur gold deposit (Utah, USA). *Chem. Geol.* **69**, 245-265.

Jiang S.H., Nie F.J., Hu P., Lai X.R., Liu Y.F. (2009) Mayum: an orogenic gold deposit in Tibet, China *Ore Geology Reviews.* **36**(1–3), 160-173.

Johnson T.W., Meinert L.D. (1994) Au-Cu-Ag skarn and replacement mineralization in the McLaren deposit, New World district, Park County, Montana. *Econ. Geol.* **89**, 969-993.

Johnson T.W., Thompson T.B. (2006) Breccia- and carbonate-hosted Au–Cu–Ag replacement mineralization associated with the Homestake porphyry intrusive complex, New World district, Montana. *Econ. Geol.* **101**, 955-980.

Johnston M.K., Thompson T.B., Emmons D.L., Jones K. (2008) Geology of the Cove mine, Lander County, Nevada, and a genetic model for the McCoy-Cove hydrothermal system. *Econ. Geol.* **103**, 759-782.

Kamilli R.J., Ohmoto H. (1977) Paragenesis, zoning, fluid inclusion, and isotopic studies of the Finlandia vein, Colqui district, Central Peru. *Econ. Geol.* **72**, 950-982.

Karimpour M.H., Shafaroudi A.M., Bajestani A.M., Schader R.K., Stern Ch.R., Farmer L., Sadeghi M. (2017) Geochemistry, geochronology, isotope and fluid inclusion studies of the Kuh-e-Zar deposit, Khaf-Kashmar-Bardaskan magmatic belt, NE Iran: Evidence of gold-rich iron oxide–copper–gold deposit. J. Geochem. Explor. **183**, 58-78.

Kekelia S.A., Kekelia M.A., Kuloshvili S.I., Sadradze N.G., Gagnidze N.E., Yaroshevich V.Z., Asatiani G.G., Doebrich J.L., Goldfarb R.J., Marsh E.E. (2008) Gold deposits and occurrences of the Greater Caucasus, Georgia Republic: Their genesis and prospecting criteria. *Ore Geol. Rev.* **34**, 369-386.

Kelson C.R., Crowe D.E., Stein H.J. (2008) Geochemical and geochronological constraints on mineralization within the Hilltop, Lewis, and Bullion mining district, Battle Mountain-Eureka trend, Nevada. *Econ. Geol.* **103**, 1483-1506.

Kesler S.E., Wilkinson B.H. (2006) The role of exhumation in the temporal distribution of ore deposits. *Econ. Geol.* **101**, 919-922.

Kodera P., Lexa J., Rankin A.H., Fallik A.E. (2005) Epithermal gold veins in a caldera setting: Banska Hodrusa, Slovakia. *Mineral. Deposita.* **39**, 921-943.

Kouhestani H., Ghaderi M., Chang Zh., Zaw Kh. (2015) Constraints on the ore fluids in the Chah Zard brecciahosted epithermal Au–Ag deposit, Iran: Fluid inclusions and stable isotope studies. *Ore Geol. Rev.* **65**, 512-521.

Kouhestani H., Mokhtari M.A.A., Chang Zh., Stein H.J., Johnson C.A. (2018) Timing and genesis of ore formation in the Qarachilar Cu–Mo–Au deposit, Ahar-Arasbaran metallogenic zone, NW Iran: Evidence from geology, fluid inclusions, O–S isotopes and Re–Os geochronology. *Ore Geol. Rev.* **102**, 757-775.

Lattanzi P.F., Curti E., Bastogi M. (1989) Fluid inclusions studies on the gold deposits on the Upper Anzasca Valley, Northwestern Alps, Italy. *Econ. Geol.* **84**, 1382-1397.

Leitch C.H.B., Godwin C.I., Brown T.H., Taylor B.E. (1991) Geochemistry of mineralizing fluids in the Bralorne-Pioneer mesothermal gold vein deposit, British Columbia, Canada. *Econ. Geol.* **86**, 318-353.

Li G.M., Qin K.Z., Ding K.S., Liu T.B., Li J.X., Wang S.H., Jiang S.Y., Zhang X.C. (2006) Geology, Ar-Ar age and mineral assemblage of Eocene skarn Cu–Au+/–Mo deposits in the Southeastern Gangdese arc, Southern Tibet: implications for deep exploration. *Res. Geol.* **56**, 315-336.

Lindblom S. (1991) Organic matter and gold deposition in disseminated gold deposits in Nevada. Source, Transport and Deposition of Metals, Balkema, Rotterdam, 553-556.

Liu H., Bi X., Lu H., Hu R., Lan T., Wang X., Huang M. (2018) Nature and evolution of fluid inclusions in the Cenozoic Beiya gold deposit, SW China. *J. Asian Earth Sci.* **161**, 35-56.

Majzlan J., Berkh Kh., Kiefer S., Koděra P., Fallick A.E., Chovan M., Bakos F., Biroň A., Ferenc S., Lexa J. (2018) Mineralogy, alteration patterns, geochemistry, and fluid properties of the Ag-Au epithermal deposit Nová Baňa, Slovakia. *Miner Petrol.* **112**, 1-23.

Mancano D.P., Campbell A.R. (1995) Microthermometry of enargite-hosted fluid inclusions from the Lepanto, Philippines, high-sulfidation Cu–Au deposit. *Geochim. Cosmochim. Acta.* **59**, 3909-3916.

Márquez-Zavalía M.F., Heinrich C.A. (2016) Fluid evolution in a volcanic-hosted epithermal carbonate—base metal—gold vein system: Alto de la Blenda, Farallón Negro, Argentina. *Mineral. Deposita.* **51**, 873-902.

Mernagh T., Mavrogenes J. (2019) Significance of high temperature fluids and melts in the Grasberg porphyry copper-gold deposit. *Chem. Geol.* **508**, 210-224.

Mernagh T.P., Leys C., Henley R.W. (2020) Fluid inclusion systematics in porphyry copper deposits: The super-giant Grasberg deposit, Indonesia, as a case study. *Ore Geol. Rev.* **123**, 103570.

Milesi J.P., Marcoux E., Sitorus T., Simandjuntak M., Leroy J., Bailly L. (1999) Pongkor (west Java, Indonesia): a

Pliocene supergene-enriched epithermal Au–Ag–Mn) deposit. *Mineral. Deposita.* **34**, 131-149.

Miller L.D., Goldfarb R.J., Snee L.W., Cent C.A., Kirkham R.A. (1995) Structural geology, age, and mechanisms of gold vein formation at the Kensington and Jualin deposits, Berners Bay District, Southeast Alaska. *Econ. Geol.* **90**, 343-368.

Millonig L.J., Beinlich A., Raudsepp M., Fionnuala F., Archibald D.A., Linnen R.L., Groat L.A. (2017) The Engineer mine, British Columbia: An example of epithermal Au-Ag mineralization with mixed alkaline and subalkaline characteristics. *Ore Geol. Rev.* **83**, 235-257.

Mo R.W., Sun X.M., Zhai W., Zhou F., Liang Y.H. (2013) Ore-forming fluid geochemistry and metallogenic mechanism from Mazhala gold-antimony deposit in southern Tibet, China. *Acta Petrol. Sinica.* **29**, 1427-1438.

Molnar F. (1991) Temporal and spatial evolution of hydrothermal fluids in the Au–Ag ore deposit of Telkibanya (Tokaj Mts, NE-Hungary). *Abstr. XI Symposium ECROFI, Firenze*, 149-150.

Moncada D., Baker D., Bodnar R.J. (2017) Mineralogical, petrographic and fluid inclusion evidence for the link between boiling and epithermal Ag-Au mineralization in the La Luz area, Guanajuato Mining District, México. *Ore Geol. Rev.* **89**, 143-179.

Moor W.J., Nash J.T. (1974) Alteration and fluid inclusion studies of the porphyry copper ore body at Bingham, Utah. *Econ. Geol.* **69**, 631-645.

Moritz R., Ghasban F., Singer B.S. (2006) Eocene gold ore formation at Muteh, Sanandaj-Sirjan Tectonic Zone, Western Iran: A result of late-stage extension and exhumation of metamorphic basement rocks within the Zagros orogen. *Econ. Geol.* **101**, 1497-1524.

Moussa N., Boiron M.C., Grassineau N.V., Asael D., Fouquet Y., Le Gall B., Rolet R., Etoubleau J., Delacourt C. (2019) Mineralogy, fluid inclusions and stable isotope study of epithermal Au–Ag–Bi–Te mineralization from the SE Afar Rift (Djibouti). *Ore Geol. Rev.* **111**, 102916.

Munoz C., Fontbote L. (1991) Fluid inclusion and trace element data on the Azulcocha Zn–As–Au) ore deposit, central Peru. *Terra abstr.* **3**, 413-414.

Nash J.T. (1972) Fluid inclusion studies of some gold deposits in Nevada. U.S. Geol. Survey Prof. Paper, 800.

Nash J.T., Cunningham Jr. (1973) Fluid-inclusion studies of the fluorspar and gold deposits, Jamestown district, Colorado. *Econ. Geol.* **68**, 1247-1262.

Nash J.T., Theodore T.G. (1971) Ore fluids in the porphyry copper deposit at Copper Canyon, Nevada. *Econ. Geol.* **66**, 385-399.

O'Neil J.R., Silberman M.L., Fabbi B.P., Chesterman C.W. (1973) Stable isotope and chemical relations during mineralization in the Bodie mining district, Mono County, California. *Econ. Geol.* **68**, 765-784.

O'Neil J.R., Silberman M.L. (1974) Stable isotope relations in epithermal Au-Ag deposits. *Econ. Geol.* **69**, 902-909.

Padyar F., Rahgoshay M., Tarantola A., Caumon M.-C., Pourmoafi S.M. (2020) High f $H_2 - f S_2$ conditions associated with sphalerite in Latala epithermal base and precious metal deposit, Central Iran: Implications for the composition and genesis conditions of sphalerite. *J. Earth Sci.* **31**, 523-535. Prokofiev V.Yu., Naumov V.B. (2020) Physicochemical Parameters and Geochemical Features of Ore-Forming Fluids for Orogenic Gold Deposits Throughout Geological Time. *Minerals.* **10**(1), 50.

Pudack C., Halter W.E., Heinrich C.A., Pettke T. (2009) Evolution of magmatic vapor to gold-rich epithermal liquid: The porphyry to epithermal transition at Nevados de Famatina, Northwest Argentina. *Econ. Geol.* **104**, 449-477.

Radtke A.S., Rye R.O., Dickson F.W. (1980) Geology and stable isotope studies of Carlin gold deposit, Nevada. *Econ. Geol.* **75**, 641-672.

Rivai T.A., Yonezu K., Syafrizai K., Sanematsu K., Kusumanto D., Imai A., Watanabe A.A. (2019) Low-sulfidation epithermal mineralization in the River Reef Zone, the Poboya Prospect, Central Sulawesi, Indonesia: Vein textures, ore mineralogy, and fluid inclusions. *Res. Geol.* **69**, 385-401.

Roedder E. (1971) Fluid inclusion studies on the porphyrytype ore deposits at Bingham, Utah, Butte, Montana, and Climax, Colorado. *Econ. Geol.* **66**, 98-120.

Ruiz, F.J.Q. (2008) La Herradura ore deposit: an orogenic gold deposit in Northwestern Mexico. *Thesis of the requirements for the degree of master of sciences*. University of Arisona. 97p.

Saing S., Takanashi R., Imai A. (2016) Fluid inclusion and stable isotope study at the Southeastern Martabe deposit: Purnama, Barani and Horas ore bodies, North Sumatra, Indonesia. *Res. Geol.* **66**, 127-148.

Seo J.H., Guillong M., Heinrich C.A. (2012) Separation of molybdenum and copper in porphyry deposits: The roles of sulfur, redox, and pH in ore mineral deposition at Bingham Canyon. *Econ. Geol.* **107**, 333-356.

Sherlock R.L., Tosdal R.M., Lehrman N.J., Graney J.R., Losh S., Jowett E.C., Kesler S.E. (1995) Origin of the Mc-Laughlin mine sheeted vein complex: metal zoning, fluid inclusion, and isotopic evidence. *Econ. Geol.* **90**, 2156-2181.

Shimizu T. (2018) Fluid inclusion studies of comb quartz and stibnite at the Hishikari Au–Ag epithermal deposit, Japan. *Res. Geol.* **68**, 326-335.

Shimizu T., Matsueda H., Ishiyama D., Matsubaya O. (1998) Genesis of epithermal Au–Ag mineralization of the Koryu mine, Hokkaido, Japan. *Econ. Geol.* **93**, 303-325.

Siahcheshm K., Calagari A.A., Abedini A. (2014) Hydrothermal evolution in the Maher-Abad porphyry Cu–Au deposit, SW Birjand, Eastern Iran: Evidence from fluid inclusions. *Ore Geol. Rev.* **58**, 1-13.

Simmons S.F., Arehart G., Simpson M.P., Mauk J.L. (2000) Origin of massive calcite-veins in the Golden Cross low-sulfidation, epithermal Au-Ag deposit, New Zealand. *Econ. Geol.* **95**, 99-112.

Simpson M.P., Mauk J.L. (2011) Hydrothermal alteration and veins at the epithermal Au-Ag deposits and prospects of the Waitekauri area, Hauraki goldfield, New Zealand. *Econ. Geol.* **106**, 945-973.

Spry P.G. (1987) A fluid inclusion and sulfur isotope study of precious and base metal mineralization spatially associated with the Patch and Gold Cup breccia pipes, Central City, Colorado. *Econ. Geol.* **82**, 1632-1639.

Sun X.M., Zhang Y., Xiong D.X., Sun W.D., Shi G.Y., Zhai W., Wang S.W. (2009) Crust and mantle contributions to gold-forming process at the Daping deposit, Ailaoshan gold belt, Yunnan, China. *Ore Geol. Rev.* **36**, 235-249.

Sun X.M., Wei H.X., Zhai W., Shi G.Y., Liang Y.H., Mo R.W., Han M.X., Zhang X.G. (2010) Ore-forming fluid geochemistry and metallogenic mechanism of Bangbu large-scale orogenic gold deposit in southern Tibet, China. *Acta Petrol. Sinica.* **26**, 1672-1684.

Sun X., Wei H., Zhai W., Shi G., Liang Y., Mo R., Han M., Yi J., Zhang X. (2016) Fluid inclusion geochemistry and Ar–Ar geochronology of the Cenozoic Bangbu orogenic gold deposit, southern Tibet, China. *Ore Geol. Rev.* **74**, 196-210.

Syafrizal Imai A., Motomura Y., Watanabe K. (2005) Characteristics of gold mineralization at the Ciurug vein, Pongkor gold-silver deposits, West Java, Indonesia. *Res. Geol.* **55**, 225-238.

Taghipour B., Ahmadnejad F. (2015) Geological and geochemical implications of the genesis of the Qolqoleh orogenic gold mineralisation, Kurdistan Province (Iran). *Geologos.* **21**(1), 31-57.

Takahashi R., Matsueda H., Okrugin V.M., Ono S. (2006) Polymetallic and Au-Ag mineralizations at the Mutnovskoe deposit in South Kamchatka, Russia. *Res. Geol.* **56**, 141-156.

Takahashi R., Tagiri R., Blamey N.J.F., Imai A., Watanabe Y., Takeuchi A. (2017) Characteristics and behavior of hydrothermal fluids for gold mineralization at the Hishikari deposits, Kyushu, Japan. *Res. Geol.* **67**, 279-299.

Tombros S.F., Seymour K.St., Williams-Jones A.E., Spry P.G. (2008) Later stages of evolution of an epithermal system: Au–Ag mineralizations at Apigania Bay, Tinos Island, Cyclades, Hellas, Greece. *Mineral. Petrol.* **94**, 175-194.

Tuakia M.Z., Takahashi R., Imai A. (2019) Geological and geochemical characteristics of gold mineralization in the Salu Bulo Prospect, Sulawesi, Indonesia. *Res. Geol.* **69**(2), 175-192.

Tuysuz N., Sadiklar B., Er M., Yilmaz Z. (1995) An epithermal gold-silver deposit in the Pontide island arc, Mastra Gumushane, Northeast Turkey. *Econ. Geol.* **90**, 1301-1309.

Vikre P.G. (1989a) Fluid-mineral relations in the Comstock lode. *Econ. Geol.* **84**, 1574-1613.

Vikre P.G. (1989b) Ledge formation at the Sandstorm and Kendall gold mines, Goldfield, Nevada. *Econ. Geol.* **84**, 2115-2138.

Vivian G., Morton R.D., Changkakoti A., Gray J. (1987) Blackdome Eocene epithermal Ag-Au deposit, British Columbia, Canada – Nature of ore fluids. Trans. Inst. Min. Metall. 96, Sec. B, B9-B14.

Wallier S., Rey R., Kouzmanov K., Pettke T., Heinrich C.A., Leary S., O'Connor G., Tamas C.G., Vennemann T., Ullrich T. (2006) Magmatic fluids in the breccia-hosted epithermal Au–Ag deposit of Rosia Montana, Romania. *Econ. Geol.* **101**, 923-954.

Walton L.A. (1987) Geology and Geochemistry of the Venus Au–Ag–Pb–Zn Deposit, Yukon Territory. *Thesis of Master of Science*. Edmonton, Alberta, 113.

Wang D., Bi X., Lu H., Hu R., Wang X., Xu L. (2018) Fluid and melt inclusion study on mineralized and barren porphyries, Jinshajiang-Red River alkali-rich intrusive belt, and significance to metallogenesis. J. Geochem. Explor. 184, 28-39.

Wang J.H., Li W.C., Wang K.Y., Yin G.H., Wu S., Jiang W.T. (2015) The characteristics and evolution of the ore-forming fluids in the Beiya porphyry Au-polymetallic deposit, western Yunnan. *Acta Petrolog. Sinica.* **31**, 3269-3280.

Warmada I.W., Lehmann B., Simandjuntak M., Hemes H.S. (2007) Fluid inclusion, rare-earth element and stable isotope study of carbonate minerals from the Pongkor epithermal gold-silver deposit, west Java, Indonesia. *Res. Geol.* **57**, 124-135.

Wilson M.R., Kyser T.K. (1988) Geochemistry of porphyry-hosted Au-Ag deposits in the Little Rocky Mountains, Montana. *Econ. Geol.* **83**, 1329-1346.

Xu W.Y., Pan F.C., Qu X.M., Hou Z.Q., Yang Z.S., Chen W.S., Yang D., Cui Y. (2009) Xiongcun, Tibet: A telescoped system of veinlet-disseminated Cu (Au) mineralization and late vein-style Au (Ag)-polymetallic mineralization in a continental collision zone. *Ore Geol. Rev.* **36**, 174-193.

Xu X.-W., Cai X.-P., Xiao Q.-B., Peters S.G. (2007) Porphyry Cu-Au and associated polymetallic Fe–Cu–Au deposits in the Beiya area, western Yunnan Province, south China. *Ore Geol. Rev.* **31**, 224-246.

Yilmaz H., Oyman T., Arehart G.B., Colakoglu A.R., Billor Z. (2007) Low-sulfidation type Au–Ag mineralization at Bergama, Izmir, Turkey. *Ore Geol. Rev.* **32**, 81-124.

Zamanian H., Rahmani Sh., Zareisahameih R. (2019) Fluid inclusion and stable isotope study of the Lubin-Zardeh epithermal Cu-Au deposit in Zanjan Province, NW Iran: Implications for ore genesis. *Ore Geol. Rev.* **112**, 103014.

Zhai W., Suna X., Yi J., Zhang X., Mo R., Zhou F., Wei H., Zeng Q. (2014) Geology, geochemistry, and genesis of orogenic gold–antimony mineralization in the Himalayan Orogen, South Tibet, China. *Ore Geol. Rev.* **58**, 68-90.

Zhang X., Nesbitt B.E., Muehlenbachs K. (1989) Gold mineralization in the Okanagan Valley, southern British Columbia: fluid inclusion and stable isotope studies. *Econ. Geol.* **84**, 410-424.

Zhang X., Spry P.C. (1994) Petrological, mineralogical, fluid inclusion, and stable isotope studies of the Gies gold-silver telluride deposit, Judith Mountains, Montana. *Econ. Geol.* **89**, 602-627.

Zhang X., Nesbitt B.E., Muehlenbachs K. (1989) Gold mineralization in the Okanagan Valley, southern British Columbia: fluid inclusion and stable isotope studies. *Econ. Geol.* **84**, 410-424.

Zheng Ch., Zhang Zh., Wu Ch., Yao J. (2017) Genesis of the Ciemas gold deposit and relationship with epithermal deposits in West Java, Indonesia: Constraints from fluid inclusions and stable isotopes. *Acta Geol. Sinica (English edition)*. **91**(3), 1025-1040.

Zhou F., Sun X.M., Zhai W., Liang Y.H., Wei H.X., Mo R.W., Zhang X.G., Yi J.Z. (2011) Geochemistry of ore-forming fluid and metallogenic mechanism for Zhemulang gold deposit in southern Tibet, China. *Acta Petrol. Sinica*. **27**, 2775-2785.