ИЗОТОПНО-ГЕОХИМИЧЕСКИЕ ОСОБЕННОСТИ ШИРКОНА ИЗ ПИЖЕМСКОГО ТИТАНОВОГО МЕСТОРОЖДЕНИЯ (СРЕДНИЙ ТИМАН) КАК ОТРАЖЕНИЕ ГИДРОТЕРМАЛЬНЫХ ПРОЦЕССОВ

© 2022 г. С. Г. Скублов^{а, b,} *, А. Б. Макеев^{с,} **, А. О. Красоткина^а, С. Е. Борисовский^с, С.-Х. Ли^d, Ч.-Л. Ли^d

^аИнститут геологии и геохронологии докембрия РАН, наб. Макарова, 2, Санкт-Петербург, 199034 Россия

^bСанкт-Петербургский горный университет, 21 линия, 2, Санкт-Петербург, 199106 Россия

^сИнститут геологии рудных месторождений, петрографии, минералогии и геохимии РАН, Старомонетный пер., 35, Москва, 119017 Россия

^dИнститут геологии и геофизики Китайской академии наук, Лаборатория эволюции литосферы, Бейтученг Вест Роуд, 19, Пекин, 100029 Китай

*e-mail: skublov@yandex.ru **e-mail: abmakeev@mail.ru Поступила в редакцию 02.08.2021 г. После доработки 17.10.2021 г. Принята к публикации 21.10.2021 г.

Комплексное изотопно-геохимическое исследование циркона (изотопный состав кислорода, редкоэлементный состав и U-Pb SIMS датирование) из двух проб (50 точек) красноцветных и сероцветных рудоносных песчаников Пижемского месторождения (Средний Тиман) позволило установить, что в спектре значений возраста в обеих пробах наиболее часто встречаются значения около 1200 и 1500 млн лет. Для циркона из красноцветных песчаников установлены три меньших по интенсивности возрастных пика с отметками около 1400, 1800 и 2220 млн лет. Для циркона из сероцветных песчаников были установлены два меньших по интенсивности пика с отметками около 1270 и 1050 млн лет. В обеих пробах циркон моложе 1000 млн лет не был установлен. Это свидетельствует о том, что малоручейская титаноносная толща не древнее 1000 млн лет, сам же возраст месторождения может быть установлен по другим минералам-геохронометрам. Не менее четверти от общего числа зерен циркона имеет повышенное содержание неформульных элементов-примесей, приуроченное к темным в катодолюминесценции доменам и каймам. Суммарное содержание REE в них может превышать 23000 ppm. Спектры распределения REE пологие за счет повышения содержания LREE с редуцированными положительной Се- и отрицательной Еu-аномалиями. Суммарное содержание элементов-примесей, включая REE, может превышать 6.5 мас. %. Содержание У достигает аномально высокого значения 30850 ppm. Также фиксируется повышенное содержание Р, Са и Ті, что не позволяет использовать титан для оценки температуры кристаллизации циркона. На дискриминационных диаграммах (La-Sm_N/La_N и U-Ca) циркон с повышенным содержанием элементов-примесей попадает в область гидротермального циркона, или циркона, испытавшего флюидное воздействие. Остальной циркон имеет геохимические характеристики неизмененного циркона магматического генезиса. В пробе рудоносных красноцветных песчаников 6 точек циркона из 25 имеют значение δ^{18} О ниже, чем "мантийная метка" (от 2.2 до 5.1‰). Столь значительное понижение δ^{18} О можно объяснить только воздействием высокотемпературных гидротермальных процессов. Проведенное изотопногеохимическое исследование циркона является доводом в пользу гидротермально-метаморфического (а не осадочно-россыпного) генезиса Пижемского титанового месторождения.

Ключевые слова: циркон, Пижемское месторождение, Средний Тиман, гидротермальные процессы, U–Pb возраст, геохимия редкоземельных элементов, изотопный состав кислорода DOI: 10.31857/S0016752522090060

ВВЕДЕНИЕ

На севере Вольско-Вымской гряды (Средний Тиман) расположено Пижемское псевдорутиллейкоксен-кварцевое месторождение, факт открытия которого был признан за АО РУСТИТАН Федеральным агентством по недропользованию в феврале 2021 г. Месторождение является крупнейшим в России и мире по запасам и ресурсам титанового и кварцевого (стекольного) сырья, а также уникальным по наличию попутных ценных

компонентов. ГКЗ РФ и РОСНЕДРА в 2020 г утвердили запасы Пижемского месторождения на разведанной части лицензионной площади АО РУСТИТАН (10 км²) в количестве 300 млн т титановой руды (12.8 млн т TiO_2), 151 тыс т циркона, а также значительные запасы железных руд в виде гематита и кварцевых песчаников стекольного качества. Так как само месторождение имеет значительно большую площадь – 90 км², то прогнозные ресурсы титановой руды оцениваются в 7 млрд т, а циркона в 1 млн т. Проект освоения Пижемского месторождения включен в Стратегию развития Арктической зоны Российской Федерации и обеспечение национальной безопасности на период до 2035 г. Правительством РФ утвержден проект строительства федеральной железнодорожной магистрали Сосногорск-Индига, которая пройдет вблизи месторождения и будет способствовать его освоению.

Вопросы генезиса, возраста и источника рудного вещества Пижемского месторождения является предметом научных дискуссий. Рядом исследователей Пижемское месторождение и сопряженное с ним рудопроявление Ичетъю рассматриваются как коры выветривания и/или россыпи среднедевонского возраста (Плякин, Ершова, 2010; и др.). С другой стороны, в работах А.Б. Макеева и его коллег (Макеев, Дудар, 2001; Макеев, Борисовский, 2013; и др.) развивается гидротермально-метаморфогенная модель генезиса этих объектов. Аргументированная поддержка той или иной гипотезы требует комплексного изотопно-геохимического исследования промышленно важных акцессорных минералов изучаемых рудных объектов, таких как циркон, рутил и монацит (Макеев, Скублов, 2016). Будучи одновременно минералами-геохронометрами, они несут важную информацию о геологических процессах формирования месторождений.

Ранее на ограниченном фактическом материале (35 точек) было проведено U-Pb датирование (SHRIMP-II) циркона из титановых руд Пижемского месторождения (Макеев и др., 2016). В результате был установлен широкий разброс значений возраста в интервале от 2740 до 334 млн лет. Самая молодая единичная датировка циркона (334 млн лет) могла быть связана с лабораторной контаминацией пробы или нарушением U-Pbсистемы циркона в результате гидротермального воздействия. Помимо этого, в выборке было установлено более 10% зерен циркона с аномально высоким суммарным содержанием Y и REE (до 1–3.5 мас. %), коррелирующим с содержанием Р. Как и для рудопроявления Ичетъю, такой циркон из Пижемского месторождения относится к особому "тиманскому" типу иттрий-фосфор-редкоземельного циркона (Макеев, Скублов, 2016).

С целью верификации полученных ранее данных, накопления раздельно сведений по циркону в двух залежах месторождения, относящихся к разным минералого-технологическим типам руд, было проведено дополнительное датирование циркона из двух проб – красноцветных (КТП-18) и сероцветных песчаников (СТП-25). Датирование сопровождалось исследованием редкоэлементного состава и изотопного состава кислорода "в той же точке", что для циркона из титановых месторождений Среднего Тимана было проведено впервые. Нерешенной задачей остается определение возраста и источника редкометалльной минерализации Пижемского месторождения, в том числе циркона, который имеет здесь промышленный интерес. В качестве методического подхода для определения возраста и возможности сравнения результатов выбран U-Pb-метод (SHRIMP), поскольку он уже неоднократно использован нами в тиманском регионе.

ГЕОЛОГИЧЕСКОЕ СТРОЕНИЕ

Титаноносные песчаники Пижемского месторождения слагают малоручейскую свиту (PR_3mr), которая распространена локально (6 × 18 км) на севере Вольско-Вымской гряды (Средний Тиман) на площади примерно 90 км², образуя Пижемскую депрессию. Отложения малоручейской свиты (PR₃mr) с угловым и стратиграфическим несогласием залегают на метаморфических породах (глинистых хлорит-серицит-каолинит-кварцевых сланцах) лунвожской свиты неопротерозоя (PR_3hv) . Титаноносная толща перекрывается аллювиально-дельтовыми мономинеральными кварцевыми (98 мас. % SiO₂) среднедевонскими песчаниками пижемской свиты (D₂pz) (стекольного качества) и вулканогенно-осадочной толщей позднего девона $(D_3 fr)$, в строении которой принимают участие базальтовые покровы мощностью до 10 м и их туфы. Геологическое строение толщи и минералогические особенности титановых руд Пижемского месторождения близки Ярегскому месторождению Южного Тимана (лейкоксен-кварцевому), но в отличие от последнего пижемские псевдорутил-лейкоксен-кварцевые песчаники не содержат нефти (Макеев, Дудар, 2001; Макеев и др., 2012). В минеральном составе тяжелой фракции преобладает лейкоксен, содержание его в песчаниках варьирует в пределах 5–15%. Кроме того, присутствует реликтовый ильменит (только в сероцветных песчаниках PR_3mr^2), лейкоксенизированный ильменит – псевдорутил, Fe-рутил, лейкоксен, циркон, рутил, монацит-куларит (Макеев, 2016). Для руд характерна также наложенная сидеритизация, каолинизация и ожелезнение (в виде гематита и гетита). Мощность рудной малоручейской толщи (PR₃mr¹⁻²) изменяется от 10 до 140 м, увеличиваясь на северо-восток, и определяется палеорельефом, образуя две сближенные чашеобразные линзовидные залежи (Западную и Восточную), удлиненные в СЗ направлении. Отсутствие руководящих окаменелостей не позволяет определить возраст титаноносной толщи, кроме как досреднедевонский, однако, вопреки этому тиманские геологи-производственники датируют малоручейскию толщу среднедевонской по аналогии с титаноносными песчаниками Ярегского месторождения, Южный Тиман (Цаплин и др., 1988), что также является спорным положением (Макеев и др., 2020). По Rb-Sr изотопным данным возраст малоручейской титаноносной толщи определен как позднерифейский – 685 млн лет (Чернышев и др., 2010).

Объектом исследования в настоящей работе послужил циркон из двух проб рудоносных песчаников Пижемского месторождения. Проба КТП-18 была отобрана из рудоносных красноцветных песчаников (PR_3mr^1). Данная проба составлена из 4 рядовых керновых проб двух скважин — 3907 (координаты 9526.095; 7180.265) и 3910 (координаты 9525.642; 7179.897). Проба СТП-25 была отобрана из рудоносных сероцветных песчаников (PR_3mr^2), вскрытых канавой КУ-1 (координаты 9525.468; 7179.095).

Среднее содержание TiO_2 в пижемских сероцветных песчаниках средней малоручейской толщи (PR_3mr^2) – 6 мас. %, при мощности пласта 0– 12 м (в среднем 6 м), в красноцветных песчаниках нижней малоручейской толщи (PR_3mr^1), соответственно, 3.5 мас. % и 5–40 м (в среднем 27 м). На восток и северо-восток лицензионного участка мощность рудных пластов значительно увеличивается до 40 и 100 м, соответственно, так же как и мощность перекрывающих осадочных и вулканогенно-осадочных толщ.

Нижняя красноцветная малоручейская толща (PR_3mr^1) , которая представлена переслаиванием псевдорутил-лейкоксен-кварцевых песчаников. гравелитов, алевролитов и каолинит-серицитовых глин, характеризуется максимальным накоплением Fe (в виде гематита, гетита и сидерита), а также Y, Ba, Sr и Rb. Максимальное содержание Rb – в аргиллитоподобных глинах. Элементами-индикаторами рудной титаноносной средней малоручейской толщи (PR₃mr²) являются: 3.2-13.5 мас. % TiO₂; 0.10-0.36 мас. % ZrO₂; 0.88-5.21 мас. % Fe₂O₃; 0.023-0.224 мас. % MnO; 217-478 ppm V; 261–538 ppm Sr; 30–323 ppm Ba; 49– 99 ppm Nb; 8-65 ppm Rb. Максимальное накопление характерно для Ti, Zr, Nb, REE, Mn и V. В верхней малоручейской толще (PR₃mr³) содержание всех этих компонентов резко снижается: 0.17-1.2 мас. % ТіО₂; 0.017-0.064 мас. % ZrO₂; 0.20-0.73 мас. % Fe₂O₃; 0.003-0.015 мас. % MnO; 15–136 ppm V; 55–363 ppm Sr; 30–248 ppm Ba; 3– 29 ppm Nb; 8–39 ppm Rb. Пижемские песчаники

ГЕОХИМИЯ том 67 № 9 2022

 (D_2pz) стекольного качества характеризуются близким к кларковым содержанием анализируемых компонентов на грани чувствительности анализа. Главный показатель качества стекольных песчаников — содержание железа (Fe₂O₃) варьирует от 0.01 до 0.25 мас. %. Граница между D₂pz песчаниками и верхней малоручейской толщей устанавливается по резкому увеличению в последней содержания Sr и Ba.

Пересчет полных XRF-анализов на минеральный состав ясно показывает, что главным породообразующим минералом титаноносных песчаников является кварц – его содержание в породах уменьшается (средние значения) от сероцветных песчаников PR_3mr^2 (64.4%, n = 19) к красноцветным PR_3mr^1 (53%, n = 92) и далее к алевролитам (45.9%, n = 22). В эту же сторону уменьшается содержание рудных минералов псевдорутила (4.57-3.58-1.12%), лейкоксена (6.28-3.55-1.54%), циркона (0.120-0.072-0.075%), пирита (0.32-0.14-0.15%), а также каолинита (5.75-5.21-5.65%). И, наоборот, в эту же сторону сверху вниз увеличивается содержание силикатных глинистых и железистых минералов – гидромусковита (13.9– 24.9-33.0%); хлорита (1.6-2.63-3.31%); сидерита (2.34-3.44-3.65%); гематита (0.66-4.25-5.27%); а также апатита (0.10-0.20-0.16%). Т.е. вверх по разрезу увеличивается содержание рудных полезных минералов за счет уменьшения нерудных силикатов и железорудных минералов (гематита и сидерита). Наблюдаемая обратная корреляция между содержаниями сидерита и гематита означает, что гематит образуется по сидериту в процессе его окисления. Количество ильменита уменьшается вниз по разрезу, что свидетельствует об ослаблении интенсивности гидротермального преобразования пород в направлении снизу вверх.

Модель генезиса месторождения

Генезис Пижемского месторождения является предметом дискуссий. Вначале была высказана гипотеза о россыпной природе Пижемского месторождения (Калюжный, 1965, 1982; Цаплин и др., 1988; Игнатьев, Бурцев, 1997; и др.). Разными исследователями предлагались аллювиальная, аллювиально-дельтовая, прибрежно-морская, пролювиальная с конусами выноса россыпные модели генезиса этого месторождения. Во всех случаях первоисточником рудного вещества предполагалась кора выветривания по нижележащим рифейским сланцам фундамента. В последнее время установлено множество фактов, доказывающих несостоятельность этой точки зрения (Макеев и др., 2010; Макеев, 2014; и др.). Среди них стоит отметить: 1. Отсутствие латеральной и фациальной зональности для рудной малоручейской толщи; 2. Отсутствие классического разреза коры выветривания рифейских сланцев (которые предполагались коренным источником ильменита и лейкоксена); 3. Несоответствие уровня содержания Ті в сланцевых породах рифейского фундамента и в руде Пижемского месторождения, исключающее аккумуляцию Ті в таких масштабах при образовании коры выветривания по сланцам; 4. Размерность кварца в микрозернистых рифейских глинистых сланцах фундамента не соответствует мелко-крупной размерности кварца и обломков жильного кварца в гравелитовых прослоях рудной малоручейской титаноносной толщи, что не позволяет предполагать образование рудной толщи (PR₃mr) по корам выветривания глинистых сланцев (PR_3lv). Кроме того, отсутствуют какие-либо признаки химических кор выветривания по глинистым рифейским сланиам в прелелах Вольско-Вымской гряды Среднего Тимана. Из минералогических критериев следует упомянуть; 1. Остроугольность и неокатанность кварца в песчаниках Пижемского месторождения; 2. Игольчатую форму новообразованного рутила, исключающую его дальний перенос и россыпное происхождение (Макеев, 2016); 3. Признаки гидротермального образования сидерита in situ (многочисленные секущие прожилки, мощностью 1-2 мм); 4. Изотопный состав углерода сидерита пижемских руд такой же, как у углерода алмаза вышезалегающего проявления Ичетъю (Макеев и др., 2003; Макеев, Носик, 2009).

По мнению авторов Пижемское титановое месторождение имеет коренное происхождение, а именно фреато-магматическое. Само Пижемское месторождение по форме рудных тел напоминает кальдеру, характеризуется ячеистым строением с чашеобразными глубокими выемками в фундаменте (глубиной до 100 м), заполненными песчано-глинистым материалом и имеющими пространственную связь с глубинными разломами. Об этом свидетельствуют геологические разрезы, составленные по материалам разведочного бурения. Заполнение Пижемской кальдеры песчаноглинистым материалом, возможно, происходило по типу грязевых вулканов. Источником тепла и инициатором подобного процесса могло быть глубинное внедрение неопротерозойских базальтоидов или других магм, их взаимодействие с метеорными водами. Последние, образуя агрессивный флюид, разрушали лампрофиры (нахождение которых предполагается на некоторой глубине под Пижемским месторождением, аналогичных по составу четласским - предполагаемого источника титана Пижемского месторождения) и выносили продукты их разрушения в кальдеру. Доказательством того, что протолитом титановых руд были именно лампрофиры, а не сланцы, являются результаты изучения типоморфных особенностей породообразующих и акцессорных минералов обоих объектов (Макеев, Брянчанинова, 2009;

Макеев, 2016; и др.). Отсутствие дальнего переноса материала доказывается формой кластогенного остроугольного, совершенно не окатанного кварца. Материал кальдеры (малоручейской титаноносной толщи) сформировался в агрессивной среде (CO_2 + водный флюид) и поэтому не содержит биоты, — по сути зернистые разности пород титановых руд являются продуктами разрушения щелочно-ультраосновных пород. Лейкоксенизация ильменита происходила в гидротермальных условиях при температуре не менее 300° С с участием углекислого газа и водного флюида с растворенным в нем SiO₂:

$$\begin{array}{c} \operatorname{FeTiO}_{3} + \operatorname{H}_{2}O + \operatorname{CO}_{2} \to \operatorname{Fe-TiO}_{2} \to \\ \xrightarrow{} \operatorname{Heptic}_{\text{Ильменит}} & \xrightarrow{} \operatorname{Fe-рутил}_{\text{Fe-рутил}} \\ \to & \left(\operatorname{Fe}^{3+}, \operatorname{Fe}^{2+}\right)_{2} \operatorname{Ti}_{3}O_{9} \cdot \operatorname{SiO}_{2} \to (2\operatorname{TiO}_{2}) \cdot \operatorname{SiO}_{2} + \\ \xrightarrow{} \operatorname{Heptic}_{\text{псевдорутил}} & \xrightarrow{} \operatorname{Heptic}_{\text{исексен}} \\ & + \operatorname{TiO}_{2} + \operatorname{FeCO}_{3} + \operatorname{Fe}_{2}O_{3}. \\ \xrightarrow{} \operatorname{pytun} & \xrightarrow{} \operatorname{Cudeput} & \operatorname{Feature}_{\text{гематит}} \end{array}$$

Для гидротермально-метаморфического преобразования ильменита в лейкоксен потребовались многие миллионы тонн углекислого газа — количество сопоставимое с запасами руд. Это эндогенный углекислый газ, такое его количество невозможно получить из атмосферы (Макеев, 2016).

МЕТОДИКА ИССЛЕДОВАНИЯ

Циркон был выделен в ИГГД РАН из ультратяжелой фракции проб с помощью электромагнитной сепарации и тяжелых жидкостей по стандартной методике. Предварительно ультратяжелый концентрат (плотность более 4 г/см³) был выделен на гравитационном столе из мелких фракций (-0.25 мм, 20 кг проб) рудных песчаников. Концентрат состоял на 70% из циркона, 20% рутила и 2% монацита-куларита.

Локальное U-Pb датирование циркона (по 25 точек в каждой пробе) выполнено на ионном микрозонде SHRIMP-II (ЦИИ ВСЕГЕИ). Измерения U-Pb проводились по методике описанной (Williams, 1998). Интенсивность первичного пучка О2 составляла 4 нА, диаметр кратера составлял около 20 мкм. Полученные данные обрабатывались с помощью программы SOUID (Ludwig, 2001). Соотношение U/Pb нормировано на значение стандарта циркона TEMORA и 91500. Ошибки единичных анализов (отношения U/Pb и возраст) находятся на уровне 1σ , а погрешности вычисленных согласованных возрастов и пересечений с конкордией – на уровне 2σ. График с конкордией построен с помощью программы ISOPLOT/EX (Ludwig, 2003). Непосредственно перед геохронологическим исследованием в ЦИИ ВСЕГЕИ была проведена съемка циркона в режиме катодолюминесценции (CL) на сканирующем электронном микроскопе CamScan MX2500S с CLдетектором CLI/QUA 2.

Содержание REE и редких элементов в цирконе определено на ионном микрозонде Сатеса IMS-4f ($\mathcal{A}\Phi \Phi T U A H$) по методике описанной (Hinton, Upton, 1991; Федотова и др., 2008). Точность определения составляет 10–15% для элементов с концентрацией >1 ppm и 10–20% для элементов с концентрацией 0.1–1 ppm, предел обнаружения составляет 5–10 ppb. Размер кратера составляет примерно 20 мкм. При построении спектров распределения REE состав циркона нормирован к составу хондрита CI (McDonough, Sun, 1995). Температура кристаллизации циркона рассчитана с помощью термометра "Ti-в-цирконе" (Watson et al., 2006).

Изотопный состав кислорода исследован на ионном микрозонде Сатеса-1280 (Институт геологии и геофизики Китайской академии наук) в максимально однородных доменах циркона по методике, приведенной в (Gao et al., 2014). Первичный пучок Cs⁺ определял размер анализируемой области в форме квадрата со стороной около 15-20 мкм. Каждый анализ состоял из 16 циклов измерения отношения ¹⁸О/¹⁶О. Измеренные ¹⁸О/¹⁶О были нормализованы на стандарт VSMOW ($^{18}O/^{16}O = 0.0020052$). Фактор приборного фракционирования масс (IMF) определялся с помощью измерения стандарта циркона ТЕМОRА-2 (δ¹⁸O = 8.20‰, SD = 0.13) (14 анализов) и контролировался независимым измерением стандартов циркона 91500 (δ^{18} O = 9.98‰, SD = 0.10) (7 анализов) и M257 (δ^{18} O = 13.99‰, SD = 0.24) (7 анализов), имплантированных в тот же препарат.

Циркон из пробы СТП-25, заметно отличающийся своим составом (повышенным содержанием неформульных элементов-примесей), был дополнительно проанализирован методом ЕРМА на микрозонде JEOL JXA-8200 с пятью волновыми спектрометрами (ИГЕМ РАН) по стандартным методикам (Макеев и др., 2015б, 2020).

Состав пород был проанализирован на оксиды главных элементов и ряд редких элементов методом XRF (PW 2400 Phillips Analytical) в ИГЕМ РАН по стандартным методикам.

РЕЗУЛЬТАТЫ

Характеристика циркона

Циркон из пробы КТП-18 в основном представлен округлыми зернами (к. уд. 1.5–2), достигающими 150–200 мкм по длинной оси. Удлиненные зерна с четко выраженными гранями призмы редки (например, зерно с точкой 5 на рис. 1а). Внутреннее строение зерен характеризуется варьирующей по толщине полос ростовой осцилляционной зональностью, преимущественно в серых и темносерых тонах. Ряд зерен имеет каймы, отличающиеся более темной, вплоть до черной, окраской в СL,

ГЕОХИМИЯ том 67 № 9 2022

толщина которых не превышает 20–30 мкм (зерна с точками 8, 14, 24). Ряд зерен целиком практически черные в CL-изображении, и могут иметь корродированные границы (зерно с точкой 28А).

В пробе СТП-25 доля удлиненных зерен (к. уд. достигает 4) увеличивается (рис. 16). Внутреннее строение также характеризуется ростовой осцилляционной зональностью, являющейся признаком циркона магматического генезиса. В центральной части некоторых зерен осцилляционная зональность размыта (зерна с точками 9, 25 на рис. 16). Особенностью пробы является присутствие зерен со светло-серой окраской в CL (зерна с точками 4, 20). Некоторые зерна имеют каймы темного оттенка в CL, толщина которых не превышает 20–30 мкм (зерна с точками 7, 22). Также присутствуют зерна циркона, темные в CL-изображении, с пятнистой текстурой или с отсутствием зональности (например, зерна с точками 29, 30).

U-Pb возраст циркона

Результаты U-Pb датирования циркона из пробы КТП-18 (25 точек) показали, что подавляющая часть точек (21 точка) является конкордантной (D не более 5%, табл. 1). Заметно дискордантными (D = 39 и 78% соответственно) являются высокоурановые каймы циркона (точки 8 и 17). Также дискордантность (40 и 24%) проявлена в двух темных в CL центральных частях циркона (точки 6 и 18). На вероятностном графике значений ²⁰⁷Pb/²⁰⁶Pb-возраста циркона (рис. 2а) четко фиксируется два максимума в распределении ²⁰⁷Pb/²⁰⁶Pb-возраста – около 1170 и 1500 млн лет. Кроме этого, присутствуют три меньших по интенсивности пика с отметками около 1400, 1800 и 2220 млн лет. Пик с отметкой около 1800 млн лет расположен обособленно от трех других пиков, по сути дела, сливающихся в возрастном интервале 1100-1550 млн лет. Следует отметить, что циркон моложе 1000 млн лет не был установлен.

В пробе СТП-25 только две точки (7 и 22), представляющие каймы циркона, демонстрируют дискордантность (13 и 18% соответственно, табл. 2). На графике (рис. 26) явно выражены два максимума в распределении ²⁰⁷Pb/²⁰⁶Pb-возраста – около 1200 и 1500 млн лет. Два меньших по интенсивности пика с отметками около 1270 и 1050 млн лет примыкают к наиболее проявленному пику с отметкой около 1200 млн лет, образуя возрастной кластер с границами около 1000–1350 млн лет. Как и для вышерассмотренной пробы, циркон с возрастом моложе 1000 млн лет не был установлен.

Состав циркона

По своему составу циркон из пробы КТП-18 может быть условно разделен на две группы – с

Рис. 1. Катодолюминесцентное изображение циркона из рудоносных песчаников Пижемского месторождения: проба КТП-18 из красноцветных песчаников (а) и проба СТП-25 из сероцветных песчаников (б). Показано положение точек определения U–Pb возраста и анализа редких элементов. Исследование изотопного состава кислорода проведено с незначительным сдвигом от обозначенных точек. Точки, в которых не проводилось определение возраста, отмечены курсивом. Номера точек соответствуют табл. 1 и 2.

умеренным содержанием элементов-примесей и обогащенный неформульными редкими элементами (табл. 1). В первую группу попадает основная часть проанализированного циркона (21 точка). Спектры распределения REE в цирконе из первой группы характеризуются дифференцированным от легких к тяжелым REE распределением (отношение Lu_N/La_N в среднем равняется 5748) с проявленными положительной Се-и отрицательной Eu-аномалиями (рис. 3а). Суммарное содер-

812

Компо-	Первая группа ("нормальное" содержание элементов-примесей)											
нент	1	2	4	5	7	9	10	11	12	13	14	15
La	0.15	0.08	0.10	0.07	0.23	0.11	0.09	0.48	0.14	0.34	1.09	0.05
Ce	8.97	10.5	17.7	9.04	15.6	95.6	10.1	57.5	36.4	31.5	24.0	34.7
Pr	0.41	0.16	0.28	0.65	0.25	0.68	0.64	1.66	0.32	0.85	2.61	0.15
Nd	3.63	1.65	3.37	11.3	2.90	12.6	9.35	18.1	5.13	7.74	21.7	3.65
Sm	7.39	3.25	5.70	19.7	8.34	18.5	13.3	19.8	9.66	15.2	28.4	10.1
Eu	1.47	0.29	0.75	3.35	0.72	3.35	0.82	7.77	2.66	2.10	8.98	0.14
Gd	18.3	17.1	19.4	89.2	19.3	76.9	56.0	76.5	50.1	32.1	102	58.4
Dy	66.7	73.1	77.8	330	89.5	226	176	248	180	128	258	231
Er	131	158	146	581	190	439	306	469	347	300	527	423
Yb	250	291	259	868	350	752	451	874	590	605	1027	620
Lu	39.9	47.7	43.3	134	58.9	127	74.8	125	99.1	100	166	90.9
Li	19.7	50.6	10.6	0.21	3.68	19.1	10.3	6.49	6.83	0.13	1.75	12.7
Р	192	177	236	357	460	244	171	279	434	437	798	192
Ca	29.9	4.15	9.51	12.0	230	8.17	2.98	42.6	12.0	26.5	68.4	4.95
Ti	16.9	21.5	40.2	8.08	12.3	16.2	8.82	20.6	17.4	14.7	15.4	5.31
Sr	1.34	0.56	0.51	1.24	0.89	1.05	0.83	1.63	1.02	1.25	2.10	0.93
Y	724	844	845	3172	1061	2403	1372	2568	1915	1505	2847	2245
Nb	49.9	17.8	25.5	18.7	10.0	11.3	15.4	8.81	7.14	14.3	11.9	15.3
Ba	5.69	2.33	2.64	2.54	2.66	2.77	1.77	6.14	2.08	3.96	8.99	1.92
Hf	11 312	12805	13280	10591	11993	9871	10088	8480	11 103	13852	15731	10942
Th	37.3	67.2	55.1	41.3	94.8	173	82.9	179	74.9	321	281	127
U	117	256	98.6	102	156	142	163	227	119	661	1197	322
Th/U	0.32	0.26	0.56	0.41	0.61	1.21	0.51	0.79	0.63	0.49	0.24	0.39
Eu/Eu*	0.38	0.12	0.22	0.24	0.17	0.27	0.09	0.61	0.37	0.29	0.51	0.02
Ce/Ce*	8.83	22.0	25.2	10.1	15.7	85.9	10.0	15.6	42.0	14.2	3.45	92.9
ΣREE	528	602	573	2046	736	1752	1098	1897	1321	1223	2168	1472
ΣLREE	13.2	12.4	21.5	21.1	19.0	109	20.2	77.8	42.0	40.4	49.5	38.6
SHREE	506	587	545	2002	708	1621	1064	1792	1266	1165	2081	1423
Lu _N /La _N	2603	5633	4041	18088	2426	11491	7827	2488	6941	2859	1466	16364
Lu_N/Gd_N	17.6	22.5	18.0	12.2	24.7	13.4	10.8	13.2	16.0	25.2	13.1	12.6
Sm _N /La _N	80.1	63.8	88.4	442	57.1	278	231	65.8	112	72.0	41.9	301
<i>T</i> (Ti),°C	791	816	883	725	761	787	732	811	794	778	782	690
$\delta^{18}O$	7.96	6.19	7.83	2.22	6.50	5.77	5.50	5.97	6.98	6.02	5.99	5.51
+/-	0.12	0.16	0.27	0.12	0.20	0.14	0.31	0.17	0.21	0.15	0.47	0.18
Возраст	1145	1179	1159	1362	1800	1815	1376	1384	1511	1164	1162	1088
+/	44	21	40	33	18	21	26	33	32	15	11	24
D, %	-3	-3	-7	+0	-2	-1	-1	+3	-4	-4	-2	-0

Таблица 1. Изотопно-геохимическая характеристика циркона из рудоносных красноцветных песчаников Пижемского месторождения (проба КТП-18, точки 1-30)

Varganaum	Первая группа ("нормальное" содержание элементов-примесей)											
KOMIIOHEHT	16	18	19	20	21	22	23	24	25			
La	3.48	4.84	0.04	0.29	0.17	0.07	0.07	1.37	23.4			
Ce	53.2	139	25.6	10.6	14.4	12.9	19.2	20.3	80.0			
Pr	9.11	12.0	0.08	1.18	0.56	0.11	0.22	3.44	8.91			
Nd	69.4	96.7	1.51	11.2	5.04	1.92	3.46	29.0	47.0			
Sm	59.5	89.7	5.23	19.8	11.7	8.05	5.30	23.6	22.6			
Eu	14.3	25.4	0.33	2.82	1.60	0.65	0.98	5.85	0.79			
Gd	116	224	19.1	63.4	30.5	25.6	24.9	36.1	60.0			
Dy	254	443	76.6	223	102	103	85.2	58.2	166			
Er	355	505	169	403	198	227	198	68.1	317			
Yb	602	757	307	653	366	410	389	171	534			
Lu	95.9	119	51.0	106	59.4	68.4	68.6	34.5	87.0			
Li	40.4	4.68	32.0	47.9	96.3	28.4	16.2	111	6.16			
Р	452	1721	155	453	213	260	182	82	445			
Ca	179	1284	3.12	63.0	48.0	3.96	9.84	132	478			
Ti	404	55.1	10.3	17.2	11.2	16.6	8.13	13.9	12.0			
Sr	4.38	12.7	0.57	2.31	1.31	0.60 0.69		3.06	1.16			
Y	2209	3521	838	2317 1109 1		1221	1081	482	1694			
Nb	22.4	5.45	15 12.9		10.2	6.96	10.7	11.6	7.04			
Ba	21.1	42.5	1.88	8.89	5.16	2.18	2.22	15.8	3.66			
Hf	13 161	11 566	12584	12438	13827	11470	9479	15207	11687			
Th	193	666	102	179	137	65.4	58.1	58.1	79.6			
U	571	912	302	820	510	184	107	792	297			
Th/U	0.34	0.73	0.34	0.22	0.27	0.36	0.54	0.07	0.27			
Eu/Eu*	0.53	0.55	0.10	0.24	0.26	0.14	0.26	0.61	0.07			
Ce/Ce*	2.29	4.40	109	4.41	11.3	35.6	36.2	2.26	1.34			
ΣREE	1633	2416	655	1494	790	859	795	451	1348			
ΣLREE	135	252	27.2	23.3	20.1	15.0	22.9	54.1	159			
ΣHREE	1424	2049	623	1448	757	835	766	368	1165			
Lu _N /La _N	266	238	12511	3516	3408	9417	8855	243	35.8			
Lu_N/Gd_N	6.70	4.31	21.6	13.5	15.7	21.6	22.3	7.74	11.7			
Sm _N /La _N	27.4	29.7	213	109	112	184	114	27.6	1.55			
<i>T</i> (Ti),°C	1224	920	746	793	753	790	725	773	759			
δ ¹⁸ Ο	4.04	6.14	6.65	10.03	7.95	5.35	6.43	4.10	5.07			
+/	0.22	0.18	0.18	0.12	0.15	0.19	0.21	0.44	0.20			
Возраст	1516	2218	1183	1274	1483	1279	1497	1498	1198			
+/-	21	11	29	40	11	28	28	10	16			
D, %	+6	+24	-2	-0	-1	-3	-4	-5	-4			

Таблица 1. Продолжение

Таблица 1. Окончание

Компо-	мпо- Вторая группа (повышенное содержание элементов-примесей)									
нент	3	6	8	17	26	27	28	28A	29	30
La	41.2	32.4	11.4	55.6	72.0	70.9	17.8	67.5	26.6	36.6
Ce	489	360	210	850	1167	1107	528	1071	529	654
Pr	113	81.9	46.3	201	267	247	82.6	236	119	154
Nd	829	648	393	1653	2253	2046	689	1904	986	1330
Sm	529	437	345	1392	1925	1695	656	1593	863	1224
Eu	137	102	92.8	344	464	426	178	431	239	330
Gd	1014	732	761	2165	3144	2899	1514	2892	1851	2718
Dy	1427	902	1235	3142	4463	4388	2477	4486	2936	3710
Er	1174	857	1020	2483	3571	3436	2310	3491	2492	3392
Yb	1642	1824	1303	3455	5116	4898	2987	5045	3189	4208
Lu	250	333	204	510	741	706	413	740	472	612
Li	77.7	78.2	15.6	33.8	22.1	33.6	54.0	39.7	2.85	8.58
Р	1168	1192	2915	4978	6475	7039	5545	7224	7960	12725
Ca	3049	1957	1917	3178	5275	6171	3194	5355	4220	6804
Ti	267	175	151	419	693	750	176	684	309	431
Sr	56.0	83.9	33.9	106	135	151	93.1	122	89.3	150
Y	9217	6350	8539	21009	29480	28693	16023	29710	22367	30850
Nb	46.1	73.3	18.7	43.0	42.7	69.6	28.4	53.3	38.6	13.8
Ba	479	276	128	721	602	597	337	552	470	851
Hf	16542	18701	15600	17617	13467	14239	12318	16349	16078	19867
Th	424	306	455	1364	2301	2364	2471	1271	973	925
U	1470	1516	1334	2765	3566	4417	1520	4633	2061	2670
Th/U	0.29	0.20	0.34	0.49	0.65	0.54	1.63	0.27	0.47	0.35
Eu/Eu*	0.57	0.55	0.55	0.60	0.57	0.59	0.55	0.61	0.58	0.55
Ce/Ce*	1.73	1.69	2.21	1.95	2.04	2.02	3.33	2.05	2.27	2.11
ΣREE	7647	6310	5621	16250	23 180	21920	11851	21956	13701	18368
ΣLREE	1473	1123	661	2760	3758	3471	1317	3279	1661	2175
SHREE	5507	4648	4523	11754	17033	16328	9700	16653	10939	14639
Lu_N/La_N	58.4	99.2	172	88.3	99.1	96.0	223	106	171	161
Lu_N/Gd_N	1.99	3.69	2.17	1.90	1.91	1.97	2.21	2.07	2.06	1.82
$\mathrm{Sm}_{\mathrm{N}}/\mathrm{La}_{\mathrm{N}}$	20.6	21.6	48.4	40.1	42.8	38.3	58.9	37.8	52.0	53.6
<i>T</i> (Ti),°C	1149	1079	1057	1231	1335	1353	1080	1332	1174	1237
$\delta^{18}O$	7.00	3.43	5.12	5.57	—	-	-	-	-	-
+/	0.12	0.13	0.21	0.08	_	_	_			_
Возраст	1141	1414	1211	1569	_	_	_	_	_	_
+/-	13	14	19	75	_	_	_	_	_	_
D, %	+5	+40	+39	+78	_	_	_	_	_	_

Примечание. Прочерк – измерение не проводилось. Приведен ²⁰⁷Pb/²⁰⁶Pb-возраст, млн лет. D, % – дискордантность.

Рис. 2. Вероятностные графики значений ²⁰⁷Pb/²⁰⁶Pb-возраста циркона из пробы КТП-18 (а) и пробы СТП-25 (б).

жание REE в этой группе варьирует от 451 до 2416 ppm, величина Се-аномалии Се/Се* составляет в среднем 26, величина отрицательной Еи-аномалии Eu/Eu* – 0.29.

Суммарное содержание элементов-примесей, включая REE, в этой группе достаточно умеренное и составляет в среднем 1.60 мас. %. Среднее содержание U составляет 384 ppm, Th – 146 ppm,

Компо-	Первая группа ("нормальное" содержание элементов-примесей)											
нент	1	2	3	4	5	6	7	8	9	10	11	12
La	0.46	0.06	0.16	0.19	0.11	0.08	0.74	0.19	0.07	0.85	0.12	0.27
Ce	46.7	16.9	17.4	35.7	16.1	17.0	35.6	21.8	9.49	12.7	22.4	24.5
Pr	1.14	0.10	0.24	1.31	0.15	0.14	2.61	0.49	0.05	1.54	0.43	0.81
Nd	14.5	1.78	2.70	17.4	2.39	2.58	24.9	6.26	0.69	13.80	6.98	10.1
Sm	25.4	7.59	6.44	22.7	4.80	10.23	31.7	10.30	2.74	18.1	15.9	17.1
Eu	1.62	0.54	0.78	6.66	0.44	0.85	5.78	1.27	0.26	3.43	2.11	2.33
Gd	93.4	27.8	18.9	53.5	23.9	38.3	56.4	37.2	13.4	23.1	45.3	34.7
Dy	334	126	92	107	103	151	144	132	69.8	53.1	130	111
Er	690	287	236	156	226	304	259	263	179	81.0	242	226
Yb	1125	494	436	240	395	521	468	443	359	134	401	410
Lu	185	81.9	67.3	37.9	64.3	82.6	73.9	69.2	60.8	20.0	68.0	67.9
Li	28.1	50.6	73.1	12.4	17.5	0.84	4.70	1.15	31.1	96.1	32.4	57.3
Р	620	285	222	82.8	201	253	378	204	289	196	145	243
Ca	27.9	4.25	16.8	21.5	10.8	4.49	132	35.4	12.1	95.3	5.11	54.6
Ti	88.2	10.6	9.18	42.1	12.6	16.7	17.6	8.76	3.90	17.3	23.4	14.6
Sr	1.42	0.75	0.70	0.67	0.67	0.73	1.70	0.79	0.34	3.34	0.67	0.90
Y	3797	1503	1213	957	1211	1640	1401	1339	873	493	1377	1195
Nb	11.6	8.64	11.0	4.70	12.3	7.35	15.5	19.9	5.64	5.26	3.45	7.44
Ba	5.26	1.44	2.07	3.12	2.90	2.82	7.30	5.03	2.45	5.10	2.53	3.94
Hf	10867	12725	13724	10474	13566	12252	13672	12784	14681	12398	10974	12026
Th	471	114	92.9	104	124	97.7	162	97.0	49.8	45.7	174	161
U	591	468	571	91.7	527	324	780	372	177	865	370	548
Th/U	0.80	0.24	0.16	1.13	0.24	0.30	0.21	0.26	0.28	0.05	0.47	0.29
Eu/Eu*	0.10	0.11	0.21	0.58	0.13	0.13	0.42	0.20	0.13	0.51	0.24	0.29
Ce/Ce*	15.6	51.3	21.2	17.0	30.7	38.1	6.20	17.2	37.7	2.68	24.3	12.6
ΣREE	2517	1043	878	678	836	1129	1103	985	695	362	934	904
ΣLREE	62.8	18.8	20.5	54.5	18.7	19.8	63.9	28.7	10.3	28.9	29.9	35.7
ΣHREE	2427	1016	851	594	812	1098	1001	945	682	312	886	849
Lu_N/La_N	3852	12900	4026	1875	5769	9462	962	3460	8485	227	5622	2389
Lu_N/Gd_N	16.0	23.8	28.8	5.73	21.8	17.4	10.6	15.0	36.8	6.99	12.2	15.8
Sm_N/La_N	87.8	199	64.0	187	71.5	195	68.5	85.6	63.7	34.1	219	100
<i>T</i> (Ti), °C	980	749	735	888	764	791	796	731	666	794	824	777
$\delta^{18}O$	7.17	6.98	6.44	6.53	6.21	7.52	7.65	7.86	9.11	8.42	7.29	7.05
+/_	0.12	0.23	0.20	0.23	0.14	0.16	0.09	0.13	0.18	0.14	0.16	0.17
Возраст	1277	1206	1220	1560	1498	1036	1000	1191	1527	1520	1203	1187
+/	12	19	14	31	13	25	36	23	20	12	20	15
D, %	-5	-9	-6	-2	-4	+1	+13	—7	-5	-1	—7	-0

Таблица 2. Изотопно-геохимическая характеристика циркона из рудоносных сероцветных песчаников Пижемского месторождения (проба СТП-25, точки 1-30)

Таблица 2. Продолжение

Компо-	Компо- Первая группа ("нормальное" содержание элементов-приме										есей)				
нент	14	15	16	17	18	19	20	21	23	24	25				
La	0.85	0.20	1.83	0.05	9.76	0.13	0.02	0.47	0.15	0.22	0.03				
Ce	38.1	15.5	39.7	14.5	35.6	7.85	1.55	12.9	14.5	31.0	8.45				
Pr	0.48	0.32	7.49	0.14	3.11	0.58	0.07	1.91	0.50	0.16	0.08				
Nd	5.86	6.01	67.9	2.30	17.4	9.10	0.95	18.8	8.32	1.64	1.47				
Sm	13.9	14.2	46.2	6.48	10.3	14.4	2.38	22.4	16.1	3.46	5.33				
Eu	2.77	1.02	10.2	0.26	0.52	1.07	0.33	3.86	0.54	0.36	0.47				
Gd	42.1	58.5	82.6	31.0	29.1	59.2	12.8 44.5		69.8	14.1	17.3				
Dy	145	201	194	123	88.3	187	46.8	129	245	70.2	73.2				
Er	304	374	299	245	176	332	91.5	239	452	192	167				
Yb	525	579	516	424	292	519	177 403		730	456	305				
Lu	87.9	96.4	80.0	66.4	45.5	84.5	30.5	64.1	114	78.3	51.3				
Li	15.1	8.39	0.37	19.9	0.46	6.83	2.00	17.0	31.3	72.0	3.40				
Р	545	184	484	286	395	259	91.4	418	727	151	206				
Ca	135	6.56	155	4.72	421	11.6	6.30	79.5	4.06	6.47	3.72				
Ti	32.5	11.8	67.4	23.5	26.7	27.4	34.8	21.8	26.6	13.4	26.8				
Sr	1.11	0.76	1.41	0.71	0.75	0.58	0.26	1.37	0.85	1.27	0.26				
Y	1596	2111	1668	1325	928	1855	509	1295	2462	964	859				
Nb	5.24	4.70	11.7	14.7	8.99	8.39	2.08	4.88	8.55	15.9	8.69				
Ba	3.07	2.03	6.03	2.29	2.56	1.71	3.30	3.81	1.02	2.32	0.76				
Hf	10403	9764	14370	13269	12114	11737	8730	14287	12610	14961	11989				
Th	79.6	73.8	232	68.4	98.8	46.5	5.95	119	271	299	45				
U	104	241	919	183	336	123	30.8	628	570	569	70				
Th/U	0.76	0.31	0.25	0.37	0.29	0.38	0.19	0.19	0.48	0.53	0.64				
Eu/Eu*	0.35	0.11	0.50	0.06	0.09	0.11	0.18	0.37	0.05	0.16	0.15				
Ce/Ce*	14.4	14.9	2.59	44.0	1.56	6.89	9.53	3.28	12.9	40.4	45.3				
ΣREE	1166	1345	1345	914	708	1216	364	939	1651	848	629				
ΣLREE	45.3	22.0	117	17.0	65.9	17.7	2.58	34.1	23	33.1	10.0				
ΣHREE	1104	1308	1172	890	631	1182	358	879	1611	811	613				
Lu_N/La_N	1002	4691	421	14109	45.0	6278	12661	1306	7527	3479	19467				
Lu_N/Gd_N	16.9	13.3	7.83	17.3	12.6	11.6	19.3	11.7	13.2	44.8	24.0				
$\mathrm{Sm}_{\mathrm{N}}/\mathrm{La}_{\mathrm{N}}$	26.4	115	40.5	229	1.69	177	165	75.7	176	25.5	336				
<i>T</i> (Ti), °C	859	758	945	825	838	840	866	817	838	770	838				
$\delta^{18}O$	5.49	5.95	6.29	7.37	5.69	6.96	5.26	6.98	7.43	7.38	6.98				
+/-	0.11	0.21	0.25	0.21	0.19	0.17	0.15	0.19	0.14	0.24	0.24				
Возраст	1284	1278	1488	1195	1505	1352	1246	1090	1193	1475	1521				
+/-	38	29	10	28	18	29	74	27	16	15	43				
D, %	-5	-6	+2	-4	-1	-2	-1	+1	-5	-2	-0				

ИЗОТОПНО-ГЕОХИМИЧЕСКИЕ ОСОБЕННОСТИ ЦИРКОНА

Таблица 2. Окончание

Konhonent	Вторая группа (повышенное содержание элементов-примесей)										
KOMHOHEHI	13	22	26	27	28	29	30				
La	7.56	9.5	23.6	35.9	34.5	22.5	24.3				
Ce	125	157	706	644	448	342	314				
Pr	33.2	32.8	121	166	120	93.9	97.5				
Nd	303	324	1393	1804	1084	965	975				
Sm	230	336	1463	2084	773	904	787				
Eu	52.7	87.8	344	462	186	203	184				
Gd	361	596	2038	2681	1133	1342	1134				
Dy	560	956	2733	2960	1570	1834	1640				
Er	556	992	2411	2222	1322	1540	1226				
Yb	886	1427	3351	3366	1841	2160	1783				
Lu	141	208	513	567	276	336	286				
Li	97.5	81.8	4.80	6.67	24.5	46.9	36.9				
Р	2294	3701	8592	9485	6680	7815	7808				
Ca	1184	1680	3532	3568	3203	3704	3484				
Ti	111	349	405	525	238	617	510				
Sr	9.5	14.9	43.1	36.3	24.0	33.3	28.6				
Y	3327	6748	18120	17516	9629	10960	9327				
Nb	8.60	11.4	44.7	26.1	21.5	26.8	31.1				
Ba	34.6	55.7	235	206	74.3	134	122				
Hf	15086	16081	11276	18556	15359	14083	14734				
Th	287	689	2877	1604	407	1024	307				
U	1402	1726	1834	3015	1588	2103	2086				
Th/U	0.20	0.40	1.57	0.53	0.26	0.49	0.15				
Eu/Eu*	0.56	0.60	0.61	0.60	0.61	0.56	0.59				
Ce/Ce*	1.91	2.14	3.19	2.02	1.68	1.80	1.56				
ΣREE	3255	5125	15097	16994	8788	9743	8451				
ΣLREE	469	523	2244	2651	1687	1424	1411				
ΣΗREE	2503	4179	11046	11796	6142	7212	6070				
Lu_N/La_N	179	210	210	152	77.1	144	113				
Lu_N/Gd_N	3.15	2.82	2.04	1.71	1.97	2.03	2.04				
Sm_N/La_N	48.8	56.5	99.3	93.1	35.9	64.3	51.8				
T(Ti), °C	1011	1196	1225	1276	1129	1310	1270				
$\delta^{18}O$	7.30	7.22	_	_	_	_	_				
+/	0.21	0.49	—	_	_	_	_				
Возраст	1149	1048	—	_	_	_	_				
+/-	12	18	—	-	_	_	_				
D, %	+3	+18	_	_	—	—	_				

Примечание. Прочерк – измерение не проводилось. Приведен ²⁰⁷Pb/²⁰⁶Pb-возраст, млн лет. D, % – дискордантность.

Рис. 3. Спектры распределения REE для циркона из пробы КТП-18 (а) и пробы СТП-25 (б). Светло-серым цветом по-казан циркон первой группы, темно-серым — второй группы.

Th/U отношение варьирует от 0.07 до 1.21 (в среднем 0.45). Содержание Hf изменяется в широких пределах (от 8480 до 15731 ppm), достигая в среднем 11975 ppm. Содержание Y, коррелирующее с содержанием тяжелых REE, варьирует от 482 до 3521 ppm, составляя в среднем 1713 ppm. Содержание Р в среднем равняется 378 ppm, Са – 68 ppm (за исключением точки 18). Содержание

Ті также является "обычным" для магматического циркона — в среднем 17 ррт (за исключением точки 16), что отвечает температуре кристаллизации циркона около 780°С.

Повышенное содержание несовместимых для циркона редких элементов было установлено в дополнительно проанализированных на редкоэлементный состав темных в CL-изображении зернах (точки 26-30 и 6), а также в некоторых темных в CL каймах циркона (точки 3, 8, 17). Эти 10 точек отличаются заметно увеличенным содержанием всего спектра REE (от 5621 до 23180 ррт при среднем содержании 14681 ррт). Спектры распределения REE в них лежат выше на графике и не пересекаются со спектрами для циркона из основной группы. Спектры распределения REE выположены, в основном, за счет увеличения содержания легких REE (отношение Lu_N/La_N в среднем равняется 127). Положительная Се- и отрицательная Еи-аномалии в значительной степени редуцированы (рис. 3а). Отношение Ce/Ce^{*} составляет в среднем 2.1, Eu/Eu^{*} - 0.57.

Суммарное содержание элементов-примесей, включая REE, в этой группе циркона из пробы КТП-18 составляет в среднем 6.58 мас. %. Среднее содержание U возрастает до 2595 ppm, Th – 1285 ppm, при этом Th/U отношение в среднем составляет 0.52, что близко к значению для первой группы циркона. Содержание Hf увеличивается в среднем до 16078 ppm. Содержание Y достигает аномально высокого значения 30850 ppm, составляя в среднем 20224 ppm. Содержание P в среднем равняется 5722 ppm, Ca – 4112 ppm. Содержание Ti изменяется в пределах 151–750 ppm, что не позволяет использовать его для оценки температуры кристаллизации циркона.

Циркон из пробы СТП-25 аналогично может быть разделен на две группы – с умеренным содержанием элементов-примесей и с аномально повышенным. Первая группа включает в себя 23 точки циркона (табл. 2). Спектры распределения REE в цирконе из первой группы характеризуются дифференцированным от легких к тяжелым REE распределением (отношение Lu_N/La_N в среднем равняется 5653) с четко выраженными положительной Се- и отрицательной Eu-аномалиями (рис. 36). Суммарное содержание REE в этой группе варьирует от 362 до 2517 ppm, Ce/Ce^{*} составляет в среднем 20, Eu/Eu^{*} – 0.23.

Суммарное содержание элементов-примесей, включая REE, в этой группе циркона равняется в среднем 1.57 мас. %. Среднее содержание U составляет 411 ppm, Th – 132 ppm, Th/U отношение варьирует от 0.05 до 1.13 (в среднем 0.38). Содержание Hf изменяется в широких пределах (от 8730 до 14961 ppm), достигая в среднем 12364 ppm. Содержание Y составляет в среднем 1416 ppm. Содержание P в среднем равняется 299 ppm, Са –

ГЕОХИМИЯ том 67 № 9 2022

55 ppm. Среднее содержание Ті 25 ppm отвечает температуре кристаллизации циркона около 810°С.

Повышенное содержание несовместимых для циркона редких элементов было установлено в пробе СТП-25 в темных в СL-изображении зернах (точки 26–30), а также в некоторых темных в СL каймах циркона (точки 13 и 22). Эти 7 точек отличаются высоким содержанием всего спектра REE (от 3255 до 16994 ррт при среднем содержании 9636 ррт). Спектры распределения REE в них выположены (отношение Lu_N/La_N в среднем равняется 155). Положительная Се- и отрицательная Еu-аномалиями в значительной степени редуцированы (рис. 36). Отношение Ce/Ce* составляет в среднем 2.0, Eu/Eu* – 0.59.

Суммарное содержание элементов-примесей, включая REE, в этой группе циркона составляет в среднем 4.86 мас. %. Среднее содержание U возрастает до 1965 ppm, Th – 1028 ppm, при этом Th/U отношение в среднем составляет 0.52. Содержание Hf увеличивается в среднем до 15025 ppm. Содержание Y достигает 18120 ppm, составляя в среднем 10804 ppm. Содержание P в среднем равняется 6624 ppm, Ca – 2908 ppm. Содержание Ti варьирует в пределах 111–617 ppm, что, как и в случае с аналогичной группой циркона из пробы КТП-18, не позволяет применить этот элемент для оценки температуры кристаллизации циркона.

Характер изменения зерен циркона из рудоносных песчаников Пижемского месторождения (проба СТП-25), приводящий к их обогащению неформульными элементами-примесями, наглядно виден на детальных BSE-изображениях (рис. 4). Участки и зоны, обогащенные примесными элементами, выделяются темным цветом в BSE-изображении и приурочены к системам трешин в кристаллах и пограничным участкам между центральной частью зерна и каймой. По всей видимости, именно в эти ослабленные зоны и проникал флюид, обогащенный несовместимыми элементами. При этом изменение циркона может затрагивать целиком узкую полоску осцилляционной зональности. практически не отражаясь на составе параллельной ей полоски. По всей видимости, измененная полоска изначально была более высокоурановой (темной в BSE-изображении), чем параллельная ей светлая низкоурановая полоска, и из-за этого частично метамиктной. Как следствие, нарушенность кристаллической структуры в пределах конкретного домена циркона, облегчает вхождение переносимых флюидом неформульных элементов-примесей. Наглядной иллюстрацией может служить сравнение состава циркона в точках 4 и 5 (рис. 4, табл. 3). По данным EPMA, в точке 4 (светлая в BSE полоска) содержание Р₂О₅ составляет всего лишь 0.05 мас. %. Содержание Y_2O_3 также невелико — 0.13 мас. %. Содержание примесных элементов Al и Fe либо

Рис. 4. Изображение циркона из сероцветных песчаников Пижемского месторождения (проба СТП-25) в обратно-отраженных электронах (BSE). Точками показано положение анализов методом ЕРМА, отвечающее табл. 3.

ниже порога обнаружения, либо на его уровне. Буквально на расстоянии первых микрон, в пределах темной в BSE полоски (точка 5), состав циркона радикально изменяется – содержание ZrO_2 и SiO₂ уменьшается на 11.7 и 9.5 мас. $\overline{\%}$ соответственно. При этом увеличивается содержание Р₂О₅ на более чем 4 мас. %, Y₂O₃ – на 2.5 мас. %. Содержание оксидов Al и Fe вырастает в сумме почти на 5 мас. %, оксидов U и Th – в сумме примерно на 1 мас. %. Следует отметить, что суммарное содержание измеряемых методом ЕРМА оксидов уменьшается примерно на 7, до 93.4 мас. %. Такой дефицит суммы предполагает вхождение в состав измененного циркона гидроген-иона в качестве компенсации заряда при гетеровалентном изоморфном замещении четырехвалентных Zr и Si на трехвалентные элементы-примеси. Процесс изменения состава циркона под влиянием флюида может затрагивать различный объем зерна – от локальных участков типа полосок осцилляционной зональности, как было рассмотрено выше, до значительного объема зерна (точки 1, 2 и 14, 15 на рис. 4).

Изотопный состав кислорода

Для циркона из пробы КТП-18, не обогащенного неформульными элементами-примесями (первая группа), значение δ^{18} О составляет в среднем 6.11‰, по 21 определению. При этом, за исключением двух точек, значение δ^{18} О варьирует в диапазоне от 4 до 8‰ (табл. 1). Для циркона, имеющего повышенное содержание несовместимых элементов, значение δ^{18} О составляет в среднем (по 4 определениям) 5.28‰, изменяясь в пределах от 3.43 до 7.00‰.

Для циркона из пробы СТП-25, не обогащенного неформульными элементами-примесями (первая группа), значение δ^{18} О составляет в среднем 6.96‰, по 23 определениям. Минимальное значение равняется 5.26‰, максимальное — 9.11‰ (табл. 2). Для циркона, имеющего повышенное содержание несовместимых элементов, значение δ^{18} О было определено только в двух точках и составило 7.30 и 7.22‰.

ОБСУЖДЕНИЕ РЕЗУЛЬТАТОВ

Состав циркона как отражение флюидного воздействия

Исследованный циркон демонстрирует сильную положительную корреляцию между содержанием Y и REE (рис. 5а). При этом в нижней части графика обособляется группа точек, представляющих циркон серого оттенка в CL-изображении

					· •	-							,	
Точка	ZrO ₂	SiO ₂	HfO ₂	P_2O_5	Y ₂ O ₃	Dy_2O_3	Yb_2O_3	Al_2O_3	FeO	CaO	TiO ₂	UO ₂	ThO ₂	Сумма
1	58.42	25.91	0.93	2.51	1.29	0.04	0.13	2.19	1.12	1.14	0.07	0.19	0.22	94.14
2	57.68	23.87	0.89	3.40	1.56	0.05	0.12	2.21	1.25	1.68	0.06	0.18	0.27	93.23
3	66.28	32.59	1.03	0.03	0.16	0.01	0.02	0.01	0.01	_	0.01	0.06	0.05	100.25
4	66.26	32.75	1.49	0.06	0.13	_	0.02	_	0.01	_	_	0.05	0.03	100.80
5	54.59	23.23	1.06	4.30	2.58	0.08	0.19	3.57	1.34	1.36	0.07	0.39	0.67	93.42
6	66.67	32.63	1.01	0.04	0.04	_	0.02	_	0.01	_	0.01	0.01	_	100.44
7	65.93	32.45	1.00	0.13	0.29	_	0.04	_	0.01	0.01	—	0.04	0.03	99.92
8	66.07	32.46	1.32	0.20	0.19	—	0.03	0.01	0.01	—	—	0.02	—	100.32
9	65.51	32.62	1.38	0.26	0.26	_	0.04	0.01	0.01	_	0.01	0.06	_	100.15
10	60.51	28.41	1.48	1.90	1.07	0.03	0.06	1.79	0.58	0.89	0.05	0.16	0.05	96.98
14	60.82	28.37	2.02	1.55	0.86	0.03	0.07	1.79	0.78	1.16	0.04	0.20	_	97.68
15	65.54	32.70	2.54	0.01	0.02	—	0.01	0.01	0.02	0.01	0.01	0.06	-	100.93
16	66.52	32.62	1.14	0.04	0.04	_	0.01	0.01	0.01	—	—	_	_	100.39
17	60.31	26.76	1.18	2.52	1.28	0.04	0.11	2.04	0.82	1.05	0.04	0.17	0.16	96.46
18	66.36	32.48	1.25	0.05	0.12	_	0.03	0.01	0.01	0.01	—	0.05	0.02	100.40
19	65.87	32.62	1.32	0.07	0.20	_	0.02	_	—	_	—	0.09	0.04	100.23
20	65.64	32.42	1.31	0.21	0.19	_	0.03	0.01	—	_	—	_	_	99.81
21	64.99	32.26	1.84	0.33	0.24	—	0.07	—	0.01	—	—	0.08	0.01	99.83
22	59.87	27.64	1.73	1.94	1.04	0.03	0.12	1.75	0.82	1.05	0.03	0.14	0.01	96.16

Таблица 3. Химический состав (мас. %) зерен циркона из Пижемского месторождения (метод ЕРМА)

Примечание. Прочерк – содержание ниже порога обнаружения.

с хорошо проявленной осцилляционной зональностью (циркон с "обычным" содержанием элементов-примесей, табл. 1 и 2). Соответственно, точки циркона с повышенным содержанием элементов-примесей расположены в верхней части графика, строго на продолжении линейного тренда. Подобное соотношение точек на графике состава циркона свидетельствует о генетической связи этих двух групп циркона.

Если циркон, обогащенный Hf, U, Th, встречается относительно часто (например, Xie et al., 2005), то значительные отклонения по содержанию Y и REE менее известны. Содержание Y, как правило, находится в интервале от 10 до 5000 ррт, суммарное содержание REE – от 100 до 2500 ррт (Harley, Kelly, 2007). Аномально высокое содержание REE 98200 ppm было установлено в цирконах из метасоматитов района уникального уранового месторождения Окло (Габон, Экваториальная Африка) (Horie et al., 2006). На Фенноскандинавском щите аномально высокое содержание REE было зафиксировано в цирконах из метабазитов дайкового комплекса Контокки, Костомукшская структура (29800 ppm, Levskii et al., 2009), лампроитов Панозерского санукитоидного комплекса, Центральная Карелия (55300 ррт, Скублов и др., 2009), кварцевых сиенитов в центральной части Северо-Карельского зеленокаменного пояса (89100 ррт,

ГЕОХИМИЯ том 67 № 9 2022

Скублов и др., 2011). В вышеупомянутых примерах, как и в рассматриваемом в настоящей работе цирконе, REE сконцентрированы в локальных доменах и зонах изменения, отличающихся контрастно темной окраской в ВSE-изображении. Высокое содержание У (до 5 мас. % У₂О₃) было выявлено в цирконе из метаосадков Далрадианского комплекса в Шотландии, образованных при интенсивной флюидной переработке пород (Hay, Dempster, 2009). Аномально высокое содержание Ү было установлено в цирконе, образованном из флюидонасышенного сиенитового расплава на позднемагматическом этапе формирования Zr-Y-REE Азовского месторождения (Украинский щит), когда возросла роль флюидов, обогащенных Y, REE, Nb, что нашло прямое отражение в аномальных геохимических характеристиках кайм и зон изменения циркона – содержание У до 61874 ppm, REE до 27667 ppm, Nb до 7976 ppm (Левашова и др., 2015, 2016; Скублов, Ли, 2016). В цирконе из редкоземельного месторождения Тор-Лейк (Канада) было установлено суммарное содержание REE около 74000 ppm и содержание Y около 31 500 ppm (Hoshino et al., 2013). В цирконе из полиминерального рудопроявления Ичетъю на Среднем Тимане также было установлено необычно высокое содержание У и REE – до 96240 и 104578 ррт соответственно (Макеев, Скублов, 2016).

Рис. 5. Соотношение редких элементов (Y–REE – а, Y–P – б, Ca–Ti – в, Th–U – г) для циркона из рудоносных песчаников Пижемского месторождения. Треугольниками показан состав циркона из пробы КТП-18, кружками – из пробы СТП-25. Незалитыми значками показан циркон первой группы, залитыми значками – второй группы. На рис. 5в пунктиром показаны эмпирические лимиты содержания Са и Тi в цирконе.

Все вышеперечисленные примеры аномального по составу циркона из различных по составу и возрасту пород объединяет процесс воздействия флюидов, обогащенных несовместимыми элементами (HFSE и REE), обычно немобильными при магматических и метаморфических процессах. Как правило, вхождение в состав циркона У и REE (преимущественно HREE) объясняется ксенотимовым типом изоморфизма $(Y + REE)^{3+} +$ $+ P^{5+} = Zr^{4+} + Si^{4+}$ (Finch, Hanchar, 2003). Такая схема изоморфизма предполагает пропорциональное увеличение содержания Y и HREE с одной стороны, и Р с другой. Действительно, это выполняется для циркона из рудопроявления Ичетъю, в которых содержание Р достигает 41830 ррт (Макеев, Скублов, 2016). Но для рассматриваемого циркона из рудоносных песчаников Пижемского месторождения увеличение содержания Р отстает от роста содержания Y и REE. Даже для обогащенного примесями циркона содержание P не превышает 10000 ppm (рис. 56). Можно предположить, что в данном случае изоморфизм по ксенотимовому типу сочетается с механизмом вхождения гидроген-иона по схеме H^+ + (REE, Y)³⁺ = Zr⁴⁺ (De Hoog et al., 2014).

Индикатором флюидного воздействия на циркон является повышенное содержание в нем неформульных элементов – Ca, Sr, Ba и ряда других (Geisler, Schleicher, 2000; Geisler et al., 2007). Содержание Ca около 100 ppm можно считать условным порогом для определения – было воздействие флюидов на циркон или нет. Уровень содержания Sr в цирконе, как правило, на порядок меньше, чем уровень содержания Ca. В рассматриваемом цирконе из Пижемского месторождения содержание Ca менее 100 ppm и содержание Sr на уровне первых ppm фиксируется для большей части неизмененного циркона из обеих проб (первая группа).

Содержание Ті в цирконе, как и Са, может увеличиваться в значительной степени при флюидном воздействии (Скублов и др., 2011). Считается, что в цирконе из земных пород содержание Ті, как правило, не превышает 20 ppm (Fu et al., 2008). Именно на этот лиапазон солержания Ті в цирконе от 0 до 20 ррт был откалиброван Ті-в цирконе термометр (Watson et al., 2006). В этот интервал попадает большая часть циркона первой группы из Пижемского месторождения. Содержание Ті и Са в цирконе из второй группы в значительной степени превышает эмпирические лимиты для этих элементов (рис. 5в). Следует отметить, что для циркона из второй группы (с аномально высоким содержанием элементов-примесей) наблюдается положительная корреляция между содержанием Ті и Са, что объясняется их совместным вхождением в состав циркона под воздействием флюидов.

Цирконы первой и второй группы из обеих проб также систематически отличаются и по содержанию U и Th (рис. 5г). При этом фигуративные точки для обеих групп образуют единый линейный тренд, отвечающий значению Th/U отношения около 0.4–0.5. Рост содержания U и Th в цирконе при флюидном воздействии происходил согласованно, что свидетельствует о примерно одинаковой мобильности этих высокозарядных элементов в гидротермальном процессе.

На диаграмме соотношения содержания La и Sm_N/La_N отношения в цирконе, характеризующего степень фракционирования LREE (Hoskin, 2005; Grimes et al., 2009; Bouvier et al., 2012), подавляющая часть фигуративных точек циркона первой группы из обеих проб попадает в поле неизмененного магматического циркона (рис. 6а). Точки, отвечающие циркону второй группы, не попадают в это поле, но смещены в направлении полей циркона гидротермального генезиса и пористого циркона, испытавшего флюидное воздействие.

На диаграмме соотношения содержания U и Ca, также предназначенной для разграничения неизмененного циркона от измененного и пористого (Rayner et al., 2005; Bouvier et al., 2012), непосредственно в поле неизмененного циркона или вблизи него попадают почти все точки циркона первой группы. Фигуративные точки циркона второй группы из обеих проб расположены либо в области измененного гидротермального циркона, либо образуют тренд перехода в эту область (рис. 66).

Изотопный состав кислорода в цирконе также может свидетельствовать о флюидном воздействии на циркон и вмещающие его породы. Высокотемпературные (выше 300°С) гидротермальные измене-

ГЕОХИМИЯ том 67 № 9 2022

ния приводят к понижению δ^{18} О в минералах, включая циркон, относительно типичных для данных пород значений (например, Eiler, 2001; Hart et al., 1999; Korolev et al., 2018). Для магматического циркона, кристаллизовавшегося из расплава мантийного генезиса, значение δ^{18} O составляет около 5.3‰ (Valley et al., 1998). Для магматического циркона из коровых пород протерозойского возраста (которому отвечает возраст циркона из рудоносных песчаников Пижемского месторождения) значение δ^{18} О в среднем равняется около 7.3‰ (Valley et al., 2005). Следует обратить внимание на то, что в пробе КТП-18 6 точек циркона из 25 имеют значение δ^{18} О даже ниже, чем "мантийная метка" (от 2.2 до 5.1‰, табл. 1). Даже если предположить мантийный источник расплавов, из которых кристаллизовался циркон, впоследствии попавший в рудоносный песчаник, то столь значительное понижение δ¹⁸О можно объяснить только воздействием высокотемпературных гидротермальных процессов. Циркон из пробы СТП-25 не обнаруживает значений δ^{18} О ниже мантийных.

Полученные данные по изотопно-геохимическому составу циркона из Пижемского месторождения согласуются с результатами исследования циркона из вышележащего рудопроявления Ичетъю (Макеев и др., 2015а, б; Макеев, Скублов, 2016). Для обоих месторождений установлен особый "тиманский" тип иттрий-фосфор-редкоземельного циркона. Это доказывает единый источник циркона двух промышленных объектов, при этом циркон мог поступать из разных пород нижележащего кристаллического фундамента, в последствии испытывая гидротермальные преобразования при формировании титанового месторождения. Одним из источников магматического циркона предположительно были граниты фундамента нескольких возрастных рубежей, два из которых с возрастом около 1200 и 1500 млн лет четко проявлены на вероятностных графиках распределения возрастов для обеих титаноносных залежей (рис. 2). Такое предположение базируется на результатах диагностики включений, наблюдается характерная для гранитов минеральная ассоциация: кварц, биотит, рутил, апатит, альбит, ксенотим, монацит и др. минералов в зернах циркона.

В крепко сцементированных сидеритом и гематитом красноцветных титаноносных песчаниках PR_3mr^1 (проба КТП-18) содержание циркона с высокой концентрацией несовместимых элементов, и соответственно, Y-P-HREE заметно выше, чем в слабосцементированных сероцветных песчаниках PR_3mr^2 (проба СТП-25). Это можно объяснить более интенсивным прогревом нижней толщи красноцветных песчаников в гидротермальном процессе и поступлением метаморфизу-

Рис. 6. Дискриминационные диаграммы для циркона из Пижемского месторождения: а – соотношение La и Sm_N/La_N отношения (фигуративные поля выделены по (Hoskin, 2005; Grimes et al., 2009; Bouvier et al., 2012); б – соотношение U и Ca (фигуративные поля выделены по (Rayner et al., 2005; Bouvier et al., 2012). Условные обозначения см. на рис. 5.

ющего флюида снизу вверх. Непосредственный возраст гидротермальных преобразований U-Pb изотопная система циркона не показывает. Датирование циркона из Пижемского месторождения свидетельствует только о том, что сама титаноносная толща не древнее 1000 млн лет. Очевидно, что этот возраст не превышает возраста самого молодого циркона из рудоносных песчаников, имеющего редкоэлементный состав циркона магматического генезиса, т.е. около 1000 млн лет. Наиболее достоверно возраст гидротермального процесса, приведшего к формированию титановых месторождений Среднего Тимана, был определен путем датирования монацита независимыми методами LA-ICP-MS, ID-TIMS и CHIME, давшими оценку около 500–600 млн лет (Красоткина, 2018; Макеев и др., 2020).

ЗАКЛЮЧЕНИЕ

Комплексное изотопно-геохимическое исследование циркона (U-Pb и кислородная изотопные системы, редкоэлементный состав) из двух проб (50 точек) красноцветных и сероцветных рудоносных песчаников Пижемского месторождения (Средний Тиман) позволило установить:

1. В обеих пробах преобладают две группы циркона с возрастами 1200 и 1500 млн лет. Для циркона из красноцветных песчаников установлены три меньших по численности группы с возрастами около 1400, 1800 и 2220 млн лет. Для циркона из сероцветных песчаников были установлены два меньших по численнности пика с отметками около 1270 и 1050 млн лет. В обеих пробах циркон моложе 1000 млн лет не был установлен, что позволяет предполагать, что сама титаноносная толща более древняя, чем считалось ранее.

2. Не менее четверти от общего числа зерен циркона имеет повышенное содержание неформульных элементов-примесей, приуроченное к темным в CL доменам и каймам. Суммарное содержание REE в них может превышать 23000 ppm, спектры распределения REE пологие (Lu_N/La_N в среднем равняется 140) с редуцированными положительной Ce- и отрицательной Eu-аномалиями. Суммарное содержание элементов-примесей, включая REE, может превышать 6.5 мас. %. Содержание У достигает аномально высокого значения 30850 ррт. Такой циркон из Пижемского месторождения относится к особому "тиманскому" типу иттрий-фосфор-редкоземельного циркона, являющийся геохимической особенностью данного месторождения и проявления Ичетъю. Фиксируется повышенное содержание Р. Са и Ті, что не позволяет использовать титан для оценки температуры кристаллизации циркона.

3. На дискриминационных диаграммах (La– Sm_N/La_N и U–Ca) циркон с повышенным содержанием элементов-примесей попадает в область гидротермального циркона, что подтверждает его изменение при флюидном воздействии. Остальной циркон имеет геохимические характеристики неизмененного циркона магматического генезиса, одним из источников которого предположительно были граниты фундамента нескольких возрастных рубежей, два из которых с возрастом около 1200 и 1500 млн лет четко проявлены на вероятностных графиках распределения возрастов для обеих титаноносных залежей.

4. Понижение δ^{18} О в цирконе до значения 2.2‰ можно объяснить воздействием высокотемпературных гидротермальных процессов.

Проведенное изотопно-геохимическое исследование циркона является доводом в пользу гидротермально-метаморфического (а не осадочнороссыпного) генезиса Пижемского титанового месторождения.

Авторы признательны С.Г. Симакину, Е.В. Потапову, А.Н. Ларионову и Г. Тангу за аналитические работы на ионном микрозонде. Критические замечания Т.В. Каулиной и анонимного рецензента позволили значительно улучшить текст рукописи.

Исследование выполнено при финансовой поддержке РФФИ (грант 19-35-60001), в рамках тем НИР ИГГД РАН (№ FMUW-2022-0005) и ИГЕМ РАН (№ FMMN-2021-0005).

Funding: The reported study was funded by RFBR, project number 19-35-60001.

СПИСОК ЛИТЕРАТУРЫ

Игнатьев В.Д., Бурцев И.Н. (1997) Лейкоксен Тимана: Минералогия и проблемы технологии. СПб.: Наука, 215 с. Калюжный В.А. (1982) Геология новых россыпеобразующих метаморфических формаций. М.: Наука, 264 с.

Калюжный В.А. (1965) Некоторые черты ильменитолейкоксеноносных осадочно-метаморфических фаций сланцев и связанные с ними россыпи на Тимане. *Геология и полезные ископаемые Северо-Востока Европейской части СССР и Севера Урала*. Сыктывкар, 467-473.

Красоткина А.О. (2018) Изотопно-геохимические особенности и возраст акцессорных минералов рудопроявления Ичетью и Пижемского месторождения (Средний Тиман). Дис. ... канд. геол.-мин. наук. СПб.: Санкт-Петербургский горный университет, 216 с.

Левашова Е.В., Скублов С.Г., Ли С.-Х., Кривдик С.Г., Возняк Д.К., Кульчицкая А.А., Алексеев В.И. (2016) Геохимия и U-Pb возраст циркона из редкометалльных месторождений безнефелиновых сиенитов Украинского щита. *Геология рудных месторождений*. **56**(3), 267-291.

Левашова Е.В., Скублов С.Г., Марин Ю.Б., Ли С.-Х., Петров Д.А., Кривдик С.Г., Лупашко Т.Н., Ильченко Е.А., Тюленева Н.В., Алексеев В.И. (2015) Новые данные о геохимии циркона и возрасте (U-Pb, SHRIMP II) Ястребецкого Zr-REE-Y месторождения. *Геохимия*. (6), 568-576.

Levashova E.V., Skublov S.G., Marin Y.B., Li X.H., Petrov D.A., Krivdik S.G., Lupashko T.M., Il'chenko K.O., Tyuleneva N.V., Alekseev V.I. (2015) New data on zircon geochemistry and age (U-Pb, SHRIMP II) of the Yastrebetskoe Zr-REE-Y deposit, Ukrainian shield. *Geochem. Int.* **53**(6), 572-579.

Макеев А.Б., Дудар В.А., Самарова Г.С., Быховский Л.З., Тигунов Л.П. (2012) Пижемское титановое месторождение (Средний Тиман): аспекты геологического строения и освоения. *Рудник будущего*. **1**(9), 16-24.

Макеев А.Б. (2014) Пижемское титановое месторождение — флюидизатная кальдера в Пижемской депрессии (Средний Тиман). *Геохимия литогенеза: Матер. Российского совещания с международным участием (Сыктывкар, 17–19 марта 2014 г.).* Сыктывкар: Геопринт, 86-89.

Макеев А.Б. (2016) Типоморфные особенности минералов титановых руд Пижемского месторождения. *Минералогия*. (1), 24-49.

Макеев А.Б., Баянова Т.Б., Борисовский С.Е., Жиличева О.М. (2015а) Состав, изотопный U-Pb возраст и источник циркона полиминерального проявления Ичетью (Средний Тиман). Записки РМО. (6), 9-18.

Макеев А.Б., Борисовский С.Е., Баянова Т.Б., Жиличева О.М., Скублов С.Г. (2015б) Уникальные иттрие-

вые цирконы полиминерального проявления Ичетью. *Минералогия* (4), 29-46.

Макеев А.Б., Брянчанинова Н.И. (2009) Лампрофиры Тимана. Региональная геологии и металлогения. (37), 51-73. Макеев А.Б., Дубинчук В.Т., Быховский Л.З., Лаломов А.В., Макеев Б.А. (2010) Пижемское титановое месторождение: проблемы генезиса. Матер. XIV межд. совещания по Геологии россыпей и месторождений кор выветривания (PKB-2010). Новосибирск, 417-422.

Макеев А.Б., Дудар В.А. (2001) Минералогия алмазов Тимана. СПб.: Наука, 336 с.

Макеев А.Б., Иванух В., Обыден С.К., Брянчанинова Н.И., Иванников П.В., Сапарин Г.В. (2003) Взаимоотношение алмаза и карбонадо (по материалам исследования бразильской и среднетиманской коллекций). ДАН. **393**(3), 393-397.

Макеев А.Б., Красоткина А.О., Скублов С.Г. (2016) Геохимия и U-Pb возраст циркона Пижемского титанового месторождения (Средний Тиман). Вестник ИГ Коми НЦ УрО РАН. (5), 3-17.

Макеев А.Б., Носик Л.П. (2009) Химический и изотопный состав сидерита Пижемского месторождения (Средний Тиман). Геология и минеральные ресурсы европейского северо-востока России: Материалы XV Геологического съезда Республики Коми. Т. П. Сыктывкар: ИГ Коми НЦ УрО РАН, 277-279.

Макеев А.Б., Скублов С.Г. (2016) Иттриево-редкоземельные цирконы Тимана: геохимия и промышленное значение. *Геохимия*. (9), 821-828.

Makeyev A.B., Skublov S.G. (2016) Y–REE-Rich zircons of the Timan region: Geochemistry and economic significance. *Geochem. Int.* **54**(9), 788-794.

Макеев А.Б., Борисовский С.Е. (2013) Типоморфизм и источники титановых и ниобиевых минералов проявления Ичетъю, Средний Тиман. Известия высших учебных заведений. Геология и разведка. (2), 30-37.

Макеев А.Б., Борисовский С.Е., Красоткина А.О. (2020) Химический состав и возраст монацита и куларита из титановых руд Пижемского и Ярегского месторождений (Средний и Южный Тиман). *Георесурсы.* **22**(1), 22-31.

Плякин А.М., Ершова О.В. (2010) О возрасте девонских полиминеральных россыпей Тимана. Известия Коми научного центра УРО РАН. 1(1), 60-63.

Скублов С.Г., Ли С.-Х. (2016) Аномальная геохимия циркона из Ястребецкого редкометалльного месторождения (SIMS- и ТОF-исследование). Записки Горного института. (222), 798-802.

Скублов С.Г., Марин Ю.Б., Галанкина О.Л., Симакин С.Г., Мыскова Т.А., Астафьев Б.Ю. (2011) Первая находка аномально (Y+REE)-обогащенных цирконов в породах Балтийского щита. *ДАН*. **441**(6), 792-799.

Федотова А.А., Бибикова Е.В., Симакин С.Г. (2008) Геохимия циркона (данные ионного микрозонда) как индикатор генезиса минерала при геохронологических исследованиях. *Геохимия*. (9), 980-997.

Fedotova A.A., Bibikova E.V., Simakin, S.G. (2008) Ionmicroprobe zircon geochemistry as an indicator of mineral genesis during geochronological studies. *Geochem. Int.* **46**(9), 912-927.

Цаплин А.Е., Тополюк В.В., Бакулина Л.П., Довжикова Е.Г. (1988) Строение титаноносной малоручейской свиты Среднего Тимана. Известия высших учебных заведений. Геология и разведка. (9), 57-62.

Чернышев И.В., Макеев А.Б., Гольцман Ю.В., Брянчанинова Н.И. (2010) Возраст титановых месторождений северо-востока Восточно-Европейской платформы: Rb-Sr-данные. ДАН. **435**(3), 378-383.

Bouvier A.S., Ushikubo T., Kita N.T., Cavosie A.J., Kozdon R., Valley J.W. (2012) Li isotopes and trace elements as a petrogenetic tracer in zircon: insights from Archean TTGs and sanukitoids. *Contrib. Mineral. Petrol.* **163**, 745-768.

De Hoog J.C.M., Lissenberg C.J., Brooker R.A., Hinton R., Trail D., Hellebrand E. (2014) Hydrogen incorporation and charge balance in natural zircon. *Geochim. Cosmochim. Ac-ta.* **141**, 472-486.

Eiler J.M. (2001) Oxygen isotope variatons of basaltic lavas and upper mantle rocks. *Rev. Mineral. Geochem.* **43**, 319-364.

Finch R.J., Hanchar J.M. (2003) Structure and chemistry of zircon and zircon-group minerals. *Rev. Mineral. Geochem.* **53**, 1-25.

Fu B., Page F.Z., Cavosie A.J., Fournelle J., Kita N.T., Lackey J.S., Wilde S.A., Valley J.W., (2008) Ti-in-zircon thermometry: applications and limitations. *Contrib. Miner-al. Petrol.* **156**, 197-215.

Gao Y.-Y., Li X.-H., Griffin W.L., O'Reilly S.Y., Wang Y.-F. (2014) Screening criteria for reliable U–Pb geochronology and oxygen isotope analysis in uranium-rich zircons: A case study from the Suzhou A-type granites, SE. China. *Lithos.* **192**, 180-191.

Geisler T., Schleicher H. (2000) Improved U–Th–total Pb dating of zircons by electron microprobe using a simple new background modeling procedure and Ca as a chemical criterion of fluid-induced U-Th-Pb discordance in zircon. *Chem. Geol.* **163**, 269-285.

Geisler T., Schaltegger U., Tomaschek F. (2007) Re-equilibration of zircon in aqueous fluids and melts. *Elements*. 3(1), 43-50.

Grimes C.B., John B.E., Cheadle M.J., Mazdab F.K., Wooden J.L., Swapp S., Schwartz J.J. (2009) On the occurrence, trace element geochemistry, and crystallization history of zircon from in situ ocean lithosphere. *Contrib. Mineral. Petrol.* **158**, 757-783.

Harley S.L., Kelly N.M. (2007) Zircon tiny but timely. *Elements*. **3**(1), 13-18.

Hart S.R., Blusztain J., Dick H.J.B., Meyer P.S., Muehlenbachs K. (1999) The finger-print of seawater circulation in a 500-meter section of ocean crust gabbros. *Geochim. Cosmochim. Acta.* **63**, 4059-4080.

Hay D.C., Dempster T.J. (2009) Zircon behaviour during low-temperature metamorphism. *J. Petrol.* **50**, 571-589.

Hinton R.W., Upton B.G.J. (1991) The chemistry of zircon: variations within and between large crystals from syenite and alkali basalt xenoliths. *Geochim. Cosmochim. Acta*. **55**, 3287-3302.

Horie K., Hidaka H., Gauthier-Lafaye F. (2006) Elemental distribution in zircon: alteration and radiation-damage effects. *Phys. Chem. Earth, Parts A/B/C.* **31**(10–14), 587-592.

Hoshino M., Watanabe Y., Murakami H., Kon Y., Tsunematsu M. (2013) Formation process of zircon associated with REE-fluorocarbonate and niobium minerals in the Nechalacho REE deposit, Thor Lake, Canada. *Resource Geol.* **63**, 1-26.

Hoskin P.W. (2005) Trace-element composition of hydrothermal zircon and the alteration of Hadean zircon from the Jack Hills, Australia. *Geochim. Cosmochim. Acta.* **69**, 637-648.

Korolev N.M., Melnik A.E., Li X.H., Skublov S.G. (2018) The oxygen isotope composition of mantle eclogites as a proxy of their origin and evolution: A review. *Earth-Sci. Rev.* **185**, 288-300.

Levskii L.K., Skublov S.G., Gembitskaya I.M. (2009) Isotopic-geochemical study of zircons from metabasites of the Kontokki dike complex: Age of regional metamorphism in the Kostomuksha structure. *Petrol.* **17**(7), 669-683.

Ludwig K.R. (2001) SQUID 1.02: A User Manual, a Geochronological Toolkit for Microsoft Excel. Berkeley Geochronology Center Sp. Publ. 2, 19 p.

Ludwig K.R. (2003) User's Manual for Isoplot/Ex, Version 3.00, a Geochronological Toolkit for Microsoft Excel. Berkeley Geochronology Center Sp. Publ. 4, 59 p.

McDonough W.F., Sun S.-S. (1995) The composition of the Earth. *Chem. Geol.* **120**, 223-253.

Rayner N., Stern R.A., Carr S.D. (2005) Grain-scale variations in trace element composition of fluid-altered zircon, Acasta Gneiss Complex, northwestern Canada. *Contrib. Mineral. Petrol.* **148**, 721-734.

Valley J.W., Kinny P.D., Schulze D.J., Spicuzza M.J. (1998) Zircon megacrysts from kimberlite: oxygen isotope variability among mantle melts. *Contrib. Mineral. Petrol.* **133**, 1-11.

Valley J.W., Lackey J.S., Cavosie A.J., Clechenko C.C., Spicuzza M.J., Basei M.A.S., Bindeman I.N., Ferreira V.P., Sial A.N., King E.M., Peck W.H. (2005) 4.4 billion years of crustal maturation: oxygen isotope ratios of magmatic zircon. *Contrib. Mineral. Petrol.* **150**, 561-580.

Watson E.B, Wark D.A., Thomas J.B. (2006) Crystallization thermometers for zircon and rutile. *Contrib. Mineral. Petrol.* **151**, 413-433.

Williams I.S. (1998) U-Th-Pb geochronology by ion microprobe. *Rev. Econ. Geol.* 7, 1-35.

Xie L., Wang R., Chen X., Qiu J., Wang D. (2005) Th-rich zircon from peralka line A-type granite: Mineralogical features and petrological implications. *Chinese Sci. Bull.* **50**, 809-817.