КРАТКИЕ СООБЩЕНИЯ

УДК 553.086;551.351.2

УНИКАЛЬНАЯ САБАНТУЙСКАЯ ХРОМИТОВАЯ ПАЛЕОРОССЫПЬ В ОСАДОЧНОМ ЧЕХЛЕ ВОСТОЧНО-ЕВРОПЕЙСКОЙ ПЛАТФОРМЫ

© 2020 г. И. Р. Рахимов^{а, *}, Д. Е. Савельев^{а, **}, В. В. Холоднов^{b, ***}, Д. А. Замятин^{b, ****}

^аИнститут геологии УФИЦ РАН, ул. К. Маркса, 16/2, Уфа, 450077 Россия ^bИнститут геологии и геохимии им. А.Н. Заварицкого УрО РАН, ул. Ак. Вонсовского, 15, Eкатеринбург, 620016 Россия *e-mail: rigel92@mail.ru **e-mail: savl71@mail.ru ***e-mail: holodnov@igg.uran.ru ****e-mail: holodnov@igg.uran.ru ****e-mail: dzamyatin85@gmail.com Поступила в редакцию 29.04.2019 г. После доработки 16.03.2020 г. Принята к публикации 20.04.2020 г.

В разрезе осадочного чехла Восточно-Европейской платформы выявлено новое хромитовое рудопроявление, названное Сабантуйским. Оно локализовано в верхнеказанских песчаных отложениях эрозионной надпойменной террасы руч. Мал. Беркутла на юго-западе республики Башкортостан. В статье приводятся первые результаты геологических, литологических и минералого-геохимических исследований нового рудопроявления, имеющего признаки ископаемой прибрежно-морской россыпи. Содержание Cr_2O_3 в хромитовых песчаниках (хромитолитах) составляет 15.9–17.2 мас. %. Основную массу тяжелой фракции (67%) слагают слабо- и среднеокатанные зерна хромшпинелидов размером 0.15–0.25 мм. Их минералогические особенности свидетельствуют о близости к хромшпинелидам из ультрамафитов офиолитовых комплексов.

Ключевые слова: Восточно-Европейская платформа, пермские песчаники, палеороссыпь, хромиты

DOI: 10.31857/S0016777020050068

введение

В строении осадочного чехла Восточно-Европейской платформы (ВЕП) значительным распространением пользуются отложения пермской системы. В юго-восточной части платформы особенно широко развиты морские и прибрежно-морские карбонатно-терригенные отложения биармийского отдела перми (казанский, уржумский ярусы), покрывающие обширные холмистые равнины Южного Предуралья. Стратиграфия и литология этих отложений слабо изучена, даже несмотря на то, что с ними связаны знаменитые стратиформные месторождения меди (Полезные ..., 2016). Другие типы оруденения, связанные с данными отложениями, не были известны.

ХАРАКТЕРИСТИКА ОБЪЕКТА ИССЛЕДОВАНИЙ

Сабантуйское хромитовое рудопроявление было выявлено в разрезе верхнеказанских отложений, фрагментарно обнаженных в левом берегу руч. Мал. Беркутла у северной оконечности с. Федоровка Федоровского района Республики Башкортостан (фиг. 1). В физико-географическом отношении местность представляет собой южный отрог Бугульминско-Белебеевской возвышенности ВЕП. Геологический разрез представлен полимиктовыми песчаниками с прослоями песчанистых окремнелых известняков (нижняя пачка мощностью не менее 20 м) и известково-песчанистыми мергелями (верхняя пачка мошностью до 3 м) – породами, относимыми к белебеевской свите (P₂bl) (Князев, 2011). Ниже залегают осадочные породы средне-позднепалеозойского и рифейского возраста (Синицын, Синицына, 1965ф¹). Хромитовые песчаники обнаруживаются в виде элювиальных обломков глыбовой размерности вдоль склона на протяжении 200-250 м по азимуту ССЗ 350°. Довольно большое их количество было найдено вблизи небольшой горной выработки у верхней бровки берега. Рядом с

¹ Синицын И.М., Синицына Г.И. Объяснительная записка к геологической карте СССР масштаба 1 : 200000, Лист № 40-XXVI. М.: Министерство геологии БТГУ, Т. 1, 1965. 170 л.

Фиг. 1. Местонахождение Сабантуйского хромитового рудопроявления. Серым цветом выделена область распространения пермских отложений (на дневной поверхности).

этой выемкой первым автором статьи был пройден шурф глубиной 1.7 м, в котором на уровне 0.7 м от поверхности были вскрыты коренные пласты и прослои сплошных хромитовых песчаников (фиг. 2) – хромитолитов (Систематика ..., 1998). Текстура отложений слоистая, выраженная. прежде всего, не в рассортировке зерен по крупности, а в концентрированных скоплениях хромитов. Рудные слои (сплошные хромитолиты) варьируют по мощности от 1 до 130 мм. В породах с тонкими слоями хромитолитов удалось диагностировать косо-волнистый и полого-волнистый типы слоистости пород (фиг. 2а, б), характеризующиеся близсимметричным характером ряби. Вид соотношения серий сложно однозначно идентифицировать, но существующие признаки позволяют предположить непараллельно-срезанный выпуклый тип взаимоотношений слоев.

В составе обломков полимиктовых песчаников преобладают кварциты (35%), метавулканиты (32%) и шпинелиды (17%). Цемент песчаников карбонатный с объемной долей 27.2–39.5%, по структуре – пелитоморфный или мелкозернистый контактового типа. По гранулометрическому составу граувакки соответствуют среднезернистой (класс крупности 0.2–0.4 мм), а хромитолиты – мелкозернистой (0.15–0.25 мм) разновидности песчаников, им присуща хорошая степень отсортированности. Обломочные зерна характеризуются преимущественно слабо- и среднеокатанной морфологией.

МИНЕРАЛОГИЯ ХРОМИТОЛИТОВ

Минералогическое изучение зерен обломочных шпинелидов из 5 образцов наиболее концен-

2020

трированных хромитолитов (D₄-31, D₄-32, D₅-13a, D_5 -13ах, D_5 -18ах) было проведено на сканирующем электронном микроскопе Tescan Vega 3 в ИПСМ РАН (Уфа) и электронно-зондовом микроанализаторе САМЕСА SX100 в ИГГ УрО РАН (Екатеринбург). Химический состав пород определен рентгенофлуоресцентным (Carl Zeiss VRA-30) методом в ИГ УФИЦ РАН (Уфа). Содержание Cr₂O₃ в хромитолитах составляет 15.9–17.2 мас. %. В составе тяжелой фракции отмечаются практически лишь минералы группы шпинели и ильменит (фиг. 2в), среди которых значительно преобладают хромшпинелиды (табл. 1). Очень редко встречаются зерна других минералов – ширкона. титанита, граната, амфибола. Выход тяжелой фракции в хромитолитах варьирует от 52 до 69%. а в переслаивающихся с ними полимиктовых песчаниках – до 12%.

По степени химической однородности зерна шпинелидов могут быть разделены на следующие подтипы: 1) однородные; 2) с простой зональностью типа "ядро-край"; 3) с ламеллярной структурой; 4) сложно-зональные; 5) с многочисленными включениями, вплоть до формирования "губчатых" структур. По морфологическим характеристикам и степени окатанности обломки рудных минералов могут быть разделены на изометричные (овальные, квадратные, треугольные, ромбовидные), удлиненные (удлиненно-овальные, прямоугольные, пластинчатые, заостренные) и изогнутые.

Наибольшим разнообразием состава и морфологии отличаются зерна хромшпинелидов. Для них характерны все типы зональности. Зональность, выраженная в наличии четкого ядра и внешней регенерационной каймы, более характерна для окатанных зерен, что, вероятно, указывает на их экзогенное преобразование. Ядра таких зерен представлены хромшпинелидами с низким содержанием Fe³⁺ и варьирующим отношением Cr/Al. а каймы состоят из хроммагнетита или магнетита. Аналогично сложно-зональные зерна состоят из реликтов хромшпинелидов с низким содержанием Fe³⁺ и вторичных выделений из хроммагнетита и магнетита. Данный тип зональности, скорее всего, имеет эндогенную природу и связан с низкотемпературным метаморфизмом.

В целом, состав зерен хромшпинелидов характеризуется широкими вариациями отношения Cr/Al и связанными с ними изменениями отношения Mg/Fe⁺². Однородным зернам и реликтовым участкам зональных зерен соответствуют низкие содержания Fe³⁺ и примесных элементов, из которых лишь в редких случаях отмечается присутствие Ti (до 0.34 мас. %), Zn (до 0.46 мас. %), V (до 0.48 мас. %). При формировании вторичной каймы зональных зерен вместе с увеличением концентрации FeO (общее) происходит рост со-

Фиг. 2. Хромитовые песчаники Сабантуйского рудопроявления: а) прослои хромитолитов с косо-волнистой слоистостью; б) прослои хромитолитов с полого-волнистой слоистостью; в) электронно-микроскопическое BSE-изображение хромитолита. Сг – хромшпинелид, М – магнетит и титаномагнетит, I – ильменит.

держания Ті (до 0.63 мас. % ТіО₂), появляется Мп (0.59–2.14 мас. % МпО), в отдельных случаях фиксируется Ni (до 0.71 мас. % NiO). В табл. 2 приведены представительные микрозондовые анализы хромшпинелидов Сабантуйского рудопроявления.

ОБСУЖДЕНИЕ И ВЫВОДЫ

Анализ составов детритовых шпинелидов с использованием классификационных диаграмм Al³⁺-Cr³⁺-Fe³⁺ и Mg#-Cr# (фиг. 3) с целью установления формационной принадлежности их ис-

-						
№ п/п	Минерал	Содержание (%)				
1	Хромшпинелид	67				
2	Ильменит	17				
3	Титаномагнетит	11				
4	Магнетит	5				
5	Титанит	ед. зерна				
6	Циркон	ед. зерна				
7	Гранат	ед. зерна				
8	Амфибол	ед. зерна				

Таблица 1. Средний минеральный состав тяжелой фракции хромитолитов Сабантуйского рудопроявления

точников показал, что хромшпинелиды Сабантуйского рудопроявления соответствуют хромшпинелидам офиолитовых ассоциаций. На диаграмме $Al^{3+}-Cr^{3+}-Fe^{3+}$ (фиг. 3а) они образуют непрерывное протяженное поле, отвечающее мантийному тренду дифференциации. Следует отметить, что "однородные" зерна в целом являются более хромистыми по сравнению с "зональными" зернами. Составы изученных зерен полностью перекрываются с составами хромшпинелидов наиболее крупного офиолитового комплекса Южного Урала массива Крака. На диаграмме Mg#-Cr# (фиг. 3б) изученные хромшпинелиды также формируют протяженный рой точек, обнаруживающий отрицательную корреляцию между хромистостью и магнезиальностью шпинелидов, что является характерным признаком эндогенных шпинелидов из ультрамафитов офиолитовых комплексов (Barnes, Roeder, 2001). Присутствие в образцах значительного количества зерен ильменита и титаномагнетита не противоречит "офиолитовой природе" обломочных зерен, поскольку минералы данного состава в значительном количестве встречаются в телах габбро и пироксенитов, ассоциирующих с мантийными перидотитами, в том числе и на массиве Крака (Савельев и др., 2016).

геолого-литологическим условиям По и структурно-текстурным особенностям Сабантуйское рудопроявление хромитов может быть отнесено к типу прибрежно-морских россыпей. Терригенный материал отложений хорошо отсортирован, они характеризуются косо-волнистой и полого-волнистой слоистостью с четко выраженными прослоями высоко концентрированных рудных прослоев – хромитолитов. Зерна рудных минералов обладают слабоокатанной или среднеокатанной формой. их размер отвечает классу 0.15-0.25 мм. Указанные признаки характерны отложениям, сформированным в зоне литорали (Лаломов, Таболич, 2013).

Источник сноса Сабантуйской хромитовой палеороссыпи установить по имеющимся данным пока весьма сложно. В фондовой и опубликованной литературе отсутствуют какие-либо сведения о площадной распространенности хромитовых залежей в отложениях рассматриваемого региона и о непосредственной близости источников хромшпинелидов. Какие-либо аномалии в строении осадочного слоя (мощность > 4 км) земной коры, связанные с тектоническими нарушениями и магматическими процессами, по результатам изучения многочисленных материалов бурения и карт геофизи-

										· · · · · · · · · · · · · · · · · · ·	
N⁰	TiO ₂	Cr_2O_3	V_2O_3	Al_2O_3	FeO	MnO	MgO	NiO	ZnO	CoO	Total
1	0.06	42.45	0.22	25.8	20.04	0.64	9.62	0.04	0.73	0.11	99.7
2	0.27	33.12	0.03	1.21	57.33	1.22	1.43	0.43	0.33	0.08	95.45
3	0.06	56.85	0.12	1.73	35.42	0.56	2.72	0.02	0.23	0.02	97.73
4	0.09	31.28	0.21	34.76	20.01	0.12	12.25	0.12	0.23	0.07	99.15
5	0.22	60.28	0.09	8.64	18.67	0.07	11.08	0.07	0.03	0.05	99.19
6	0.06	52.73	0.21	15.59	20.27	0.14	9.66	0.05	0.17	0.09	98.97
7	0.31	50.72	0.13	17.35	19.51	0.14	10.63	0.08	0.17	0.03	99.07
8	0.04	58.13	0.17	5.52	29.28	0.29	4.61	0.05	0.28	0.11	98.47
9	0	50.17	0.19	21.31	16.6	0.09	11.34	0.06	0.1	0.04	99.88
10	0.15	49.97	0.26	18.75	19	0.18	10.12	0	0.24	0.02	98.69
11	0.03	22.54	0.12	46.09	13.01	0.09	16.61	0.24	0.13	0.02	98.88
12	0.13	40.05	0.2	22.56	25.52	0.2	9.37	0.12	0.18	0.02	98.35
13	0.05	35.59	0.17	33.21	15.77	0.09	13.12	0.09	0.3	0.09	98.47

Таблица 2. Представительные микрозондовые анализы хромшпинелидов Сабантуйского рудопроявления (мас. %)

Примечание. 1, 9 – центр, 2 – край зерна с простой зональностью; 3 – губчатое (пористое) зерно; 4–8, 11 – однородные зерна; 10 – центр ламеллярного зерна; 12 – край губчатого зерна с простой зональностью; 13 – центр сложно-зонального зерна. Анализы выполнены с помощью электронно-зондового микроанализатора САМЕСА SX100 в ЦКП "Геоаналитик", ИГГ УрО РАН (аналитик к.г.-м.н. Д.А. Замятин).

Фиг. 3. Классификационные диаграммы $Al^{3+}-Cr^{3+}-Fe^{3+}$ (а) и Mg#-Cr# (б) для хромшпинелидов из хромитовых песчаников Сабантуйского рудопроявления: 1 – хромшпинелиды однородного строения, 2 – хромшпинелиды зонального строения; 3–5 – поля составов хромшпинелидов из: 3 – офиолитов, 4 – концентрически-зональных (платиноносных) массивов, 5 – расслоенных интрузивных массивов. Поля составов хромшпинелидов из ультрамафитов различной формационной принадлежности даны из (Barnes, Roeder, 2001).

ческих полей здесь не были выявлены. Сложно представить, что источником могли быть полностью разрушенные в настоящее время "местные" протрузии гипербазитов, поскольку нет никаких прямых следов их былого присутствия, например, в виде реликтов кор выветривания (нонтронитовых, монтмориллонитовых) или индикаторных россыпных минералов (оливин, пироксены, платинометалльные и др.) в изученных отложениях. Учитывая значительную удаленность выявленного рудопроявления, высокую концентрацию хромшпинелидов в изученных отложениях вплоть до формирования сплошных слоев хромитолитов, слабую окатанность зерен, а также ограниченное распространение Сабантуйской палеороссыпи, всерьез рассматривать офиолитовые комплексы складчатого Урала (ближайший массив – Крака, фиг. 1) в качестве питающей провинции тоже вряд ли возможно. Столь дальний перенос шпинелидов (на расстояние более 200 км) с образованием рудных концентраций не отмечается где-либо в мире (Кухаренко, 1961; Monograph ..., 2013).

Исходя из вышесказанного, для оценки возможных механизмов образования Сабантуйской хромитовой палеороссыпи резонно обратиться к проблеме происхождения гипербазитового массива Крака. Данный вопрос является весьма дискуссионным, но отметим, что одной из наиболее популярных является шарьяжная теория их формирования (Казанцева и др., 1971; Пучков, 2010). Согласно данным работам, Крака представляет собой клипп, и, соответственно, каков был размер первичного офиолитового покрова, неизвестно. В связи с этим уместно предположить возможность продвижения офиолитового аллохтона далеко на запад в сторону ВЕП (во время пермского орогенеза), ближе к тем морфоструктурным и литодинамическим обстановкам, которые были благоприятны для накопления хромитовых россыпей типа Сабантуйской. Породообразующие минералы офиолитового комплекса, возможно, были уничтожены гипергенными процессами.

Таким образом, выявленное Сабантуйское рудопроявление хромитов по ряду геолого-литологических признаков отнесено к типу прибрежно-морских россыпей с возрастом P_2kz_2 . Продуктивный горизонт имеет мощность не менее 1 м, протяженность развития хромитолитов в субмеридиональном направлении не менее 200 м, но площадь развития неизвестна. Для определения точных параметров рудопроявления и более информативных геологических признаков для установления источников сноса необходимо детальное картирование с бурением скважин.

БЛАГОДАРНОСТИ

Авторы выражают благодарность Р.М. Рахимову за оказанную при полевых работах помощь.

ФИНАНСИРОВАНИЕ

Исследования выполнены при финансовой поддержке РФФИ (грант №18-35-00391) и Государственного задания ИГ УФИЦ РАН по теме № 0252-2017-0012, а также в рамках госбюджетных исследований ИГГ УрО РАН по теме № 0393-2016-0020 (№ госрегистрации АААА-А18-118052590029-6).

СПИСОК ЛИТЕРАТУРЫ

Казанцева Т.Т., Камалетдинов М.А., Гафаров Р.А. Об аллохтонном залегании гипербазитовых массивов Крака на Южном Урале // Геотектоника. 1971. № 1. С. 96–102.

Князев Ю.Г. Государственная геологическая карта российской Федерации масштаба 1 : 1000000 листа N-40 (третье поколение) / Спб.: ВСЕГЕИ, 2011.

Кухаренко А.Л. Минералогия россыпей. М.: Госгеолтехиздат, 1961. 318 с.

Лаломов А.В., Таболич С.Э. Локальные геолого-динамические факторы формирования комплексных прибрежно-морских россыпей тяжелых минералов. М.: ГЕОС, 2013. 223 с.

Полезные ископаемые Республики Башкортостан (металлы) / Под ред. Ковалев С.Г., Салихов Д.Н., Пучков В.Н. Уфа: Альфа-реклама, 2016. 554 с.

Пучков В.Н. Геология Урала и Приуралья (актуальные вопросы стратиграфии, тектоники, геодинамики и металлогении). Уфа: ДизайнПолиграфСервис, 2010. 280 с.

Савельев Д.Е., Сергеев С.Н., Бажин Е.А. Рудная минерализация в переходном мантийно-коровом комплексе офиолитового массива Средний Крака (Южный Урал) // Изв. отделения наук о Земле и природных ресурсов АН РБ. Геология. 2016. № 22. С. 38–46.

Систематика и классификации осадочных пород и их аналогов / Ред. Шванов В.Н., Фролов В.Т., Сергеева Э.И. и др. Спб: Недра, 1998. 352 с.

Barnes S., Roeder P. The Range of spinel compositions in terrestrial mafic and ultramafic rocks. Journal of Petrology. 2001. V. 42. P. 2279–2302.

Monograph on chromite / Controller general C.S. Gundewar. New Delhi: IBM Press, 2013. 162 p.