ГЕОЛОГИЯ РУДНЫХ МЕСТОРОЖДЕНИЙ, 2020, том 62, № 6, с. 483—502

ПОСВЯЩАЕТСЯ 90-ЛЕТИЮ ИГЕМ РАН

УДК 553.44,553.08

МИНЕРАЛОГИЯ БЛАГОРОДНЫХ МЕТАЛЛОВ В РУДАХ ПОЛИМЕТАЛЛИЧЕСКОГО МЕСТОРОЖДЕНИЯ БИКСИЗАК (ЮЖНЫЙ УРАЛ, РОССИЯ)

© 2020 г. О. Ю. Плотинская^{а, *}, К. А. Новоселов^b, Р. Зелтманн^c

^аИнститут геологии рудных месторождений, петрографии, минералогии и геохимии РАН, Старомонетный пер., 35, Москва, 119017 Россия ^bЮжно-Уральский федеральный центр минералогии и геоэкологии УрО РАН, Институт минералогии, г. Миасс, 456317 Россия ^cDepartment of Earth Sciences, Natural History Museum, Center for Russian and Central EurAsian Mineral Studies, Cromwell Road, London SW7 5BD, UK *e-mail: plotin@igem.ru Поступила в редакцию 30.05.2020 г. После доработки 29.06.2020 г.

Принята к публикации 01.07.2020 г. Изучена минералогия золота и серебра на полиметаллическом месторождении Биксизак (Южный Урал, Россия). Минерализация относится к метасоматическому оруденению в карбонатных толщах, связанному со скарнами, которое развивается в периферических зонах порфирово-эпитермальных систем. Установлено разнообразие минеральных форм благородных металлов. Наиболее

широко распространено самородное золото (пробность 853–939) в ассоциации с халькопиритом и сфалеритом. Также установлены: теллуридная ассоциация (тетрадимит, гессит, штютцит, петцит, галенит, теллуровисмутит, волынскит, раклиджит, алтаит, самородное золото пробности 830–900) и серебро-пирсеит-акантитовая ассоциация (акантит/аргентит, и пирсеит-полибазит и минералы ряда самородное золото – самородное серебро, от самородного золота с пробностью 747 до самородного серебра). Показано, что разнообразие минеральных форм благородных металлов контролируется снижением температуры и вариациями фугитивностей серь и теллура.

Ключевые слова: золото, серебро, теллуриды, полиметаллические месторождения, Южный Урал **DOI:** 10.31857/S0016777020060040

введение

Порфирово-эпитермальные (Коваленкер, 2006), или телескопированные порфировые системы играют ведущую роль в обеспечении мировых запасов Си, Мо, Аи, Re и других остродефицитных стратегических металлов (Sillitoe, 2010). Такие системы могут включать разнотипные месторождения медно- или молибден-порфировые, золото-серебряные эпитермальные, скарновые, метасоматические в карбонатных толщах. И если порфировые и эпитермальные месторождения в литературе охарактеризованы достаточно детально, то метасоматическому оруденению в карбонатных толщах, в том числе и связанному со скарнами, уделяется незаслуженно мало внимания. Стратиформная морфология рудных тел и массивные текстуры руд, выдержанный характер распределения полезных компонентов определяют экономический потенциал таких объектов и делают их достаточно интересными для исследования. Минерализация такого типа описана в регионах Эрцберг, Индонезия (Prendergast et al., 2005), Потрериллос, Чили (Thompson et al., 2004), Сьерро де Паско, Перу (Baumgartner al., 2008), Кассандра, Греция (Siron et al., 2019) и ряде других. На территории России редким примером такого оруденения является месторождение Биксизак (Грабежев, Широбокова, 1991; Грабежев и др., 1998; Плотинская и др., 2010). На месторождении охарактеризованы условия минералообразования, особенности химического состава основных рудных минералов, источники вещества (Плотинская и др., 2010, 2015; Plotinskaya et al. 2014, 2017₁). Однако особенности химического состава минералов благородных металлов, которые являются важным элементом зональности порфирово-эпитермальной системы и могут быть использованы в качестве прогнозно-поисковых критериев, до сих пор были охарактеризованы лишь фрагментарно. Это определило важность изучения минералогии золота и серебра в рудах месторождения Биксизак.

КРАТКАЯ ГЕОЛОГИЧЕСКАЯ ХАРАКТЕРИСТИКА

Месторождение Биксизак находится примерно в 40 км к юго-западу от г. Челябинска в пределах Восточно-Уральской вулканогенной зоны Южного Урала и приурочено к центральной части Биргильдинско-Томинского рудного узла (Грабежев и др., 1998; Сначёв, Кузнецов, 2009; Серавкин, Сначёв, 2012). На территории рудного узла развиты нижне-среднеордовикские базальты бимодальной формации (саргазинская свита), среднеордовикско-силурийские известняки, вулканогенно-осалочные отложения анлезит-лапитового состава (березняковская свита), предположительно силурийского возраста, и нижнекаменноугольные андезитовые туфы с прослоями мраморов (Грабежев и др., 1998; Язева, Бочкарев, 1998; Сначёв, Кузнецов, 2009). Интрузивные породы представлены многочисленными малыми телами диоритовых и андезитовых порфиритов биргильдинско-томинского комплекса силурийского возраста (Грабежев и др., 2013), которые считаются комагматичными с березняковской свитой (Пужаков, 1999; Грабежев и др., 1998), а также Челябинским гранитоидным массивом раннекаменноугольно-раннемезозойского возраста (Каллистов, 2014). На территории рудного узла находятся Сипорфировые месторождения Томинское и Биргильдинское и Au-Ag-эпитермальные объекты (Березняковское рудное поле, Мичуринское рудопроявление). Все они пространственно и генетически связаны с интрузиями биргильдинско-томинского комплекса (Грабежев и др., 1998). Эти объекты с разной степенью детальности охарактеризованы в работах (Ромашова, 1984; Грабежев, Молошаг, 1993; Грабежев и др., 1995, 1997, 1998, 2000; Бакшеев и др., 2012; Lehmann et al., 1999; Plotinskaya et al., 2014, 2017_{1.2}, 2018; и др.).

Месторождение Биксизак было открыто в ходе ГДП-50 в 1988–1995 гг. (Грабежев, Широбокова, 1991; Кузнецов и др., 2018). Территория месторождения, площадью примерно 3 × 3 км, сложена андезит-дацитовыми туфами березняковской свиты, которые подстилаются известняками биксизакской свиты ($O_2 - S_1$). Основание разреза сложено афировыми базальтами саргазинской свиты ордовикского возраста (фиг. 1). Интрузивные породы представлены телами андезитовых и диоритовых порфиритов биргильдинско-томинского комплекса (Пужаков, 1999; Сначёв, Кузнецов, 2009). На востоке территории известняки, находящиеся в контакте с интрузией диоритовых порфиритов, скарнированы, а сама интрузия вмещает молибден-меднопорфировую минерализацию (Пужаков, 1999).

Рудные тела залегают согласно с вмещающими породами и имеют пластовую или линзовидную форму (фиг. 1). В целом рудная залежь в плане

имеет размеры 700—1000 м в длину и 400—800 м в ширину и полого погружается на запад (Грабежев и др., 1998). Текстуры руд вкрапленные, прожилково-вкрапленные, иногда массивные. Основные рудные минералы: пирит, сфалерит, магнетит, гематит, блеклые руды, халькопирит и арсенопирит. Сфалерит маложелезистый, он содержит по 84 анализам: Fe – от 0.1 до 1.6 мас. %, среднее 0.5 мас. %, Cd – 0.2–0.5, среднее 0.4 мас. % (Plotinskaya et al., 2014). Блеклые руды по составу варьируют от теннантита-(Fe) до тетраэдрита-(Zn) с переменными количествами Аg (Плотинская и др., 2015).

На месторождении Биксизак выделено два участка – Западный и Восточный, которые различаются условиями локализации, химизмом и минеральным составом руд (Грабежев и др., 1998). Прожилково-вкрапленная полиметаллическая минерализация Западного участка приурочена к прослоям окварцованных и анкеритизированных известняков в андезит-дацитовых туфах. В центральной зоне широко распространены халькопирит и блеклая руда, часто встречаются гнезда барита, а на периферии пирит, халькопирит, гематит и галенит (Плотинская и др., 2010). Рудная минерализация Восточного участка приурочена к кровле известняков биксизакской свиты и образует несколько прослоев вкрапленных, иногда массивных, халькопирит-пирит-сфалеритовых руд мощностью до первых метров (Грабежев и др., 1998). Восточный участок характеризуется заметно более высокими содержаниями Zn и Рь, а Западный – Си и Ад. В отдельных пробах содержания золота достигают 3 г/т, а серебра – более 150 г/т (Пужаков, 1999). Прогнозные ресурсы цинка (Р₂) приняты в количестве 1000 тыс. т (Кузнецов и др., 2018).

Наиболее типичное строение рудной залежи на Восточном участке представлено на фиг. 2. В висячем боку залегают туфы андезит-дацитового состава с интенсивными карбонат-серицит-хлоритовыми изменениями. Интенсивность хлоритизации нарастает с глубиной, вплоть до образования хлоритолитов с вкрапленностью пирита. Хлоритовые метасоматиты сменяются массивными пиритовыми рудами, мощность которых достигает первых метров. Пирит цементируется карбонатом доломит-анкеритового ряда. Ниже массивные руды переходят в густовкрапленные пирит-халькопирит-сфалеритовые руды с отдельными интервалами массивных пирит-сфалеритовых или халькопирит-сфалеритовых руд. В отдельных случаях с глубиной увеличивается доля магнетита и гематита. В некоторых скважинах интервалы массивных и вкрапленных руд неоднократно чередуются (фиг. 1в). С глубиной руды сменяются известняками с редкой вкрапленностью пирита и гематита и просечками турмалина. Последний относится к промежуточным членам

Фиг. 1. Тектоническая схема Южного Урала, Восточно-Уральская вулканогенная зона выделена цветом, положение Биргильдинско-Томинского рудного узла отмечено звездочкой (а), схематическая геологическая карта месторождения Биксизак (б) и разрез (в) по (Грабежев и др., 1998; Сначёв, Кузнецов, 2009) с изменениями. 1 – березняковская свита, вулканогенно-осадочные породы; 2 – биксизакская свита, известняки и мрамора; 3 – саргазинская свита, базальты и их туфы; 4 – андезитовые (а) и диоритовые (б) порфириты биргильдинско-томинского комплекса; 5 – рудные тела; 6 – тектонические нарушения; 7 – скважины и их номера на карте (а) и разрезе (б).

ряда дравит—окси-дравит (Бакшеев, Плотинская, 2011).

На месторождении установлены следующие основные минеральные ассоциации (фиг. 3): гематит-магнетитовая; пирит-арсенопиритовая; халькопирит-сфалеритовая; блеклорудно-халькопиритовая; сульфосолей висмута; теллуридная и серебро-пирсеит-акантитовая (Плотинская и др., 2010; 2015; Plotinskaya et al., 2014). Установить временные соотношения между ассоциациями удается не всегда, и, возможно, зачастую они имеют не стадийный, а фациальный характер. **Гематитмагнетитовая** ассоциация встречается в подошве рудных тел и представлена вкрапленностью магнетита и гематита в кварце, карбонате или в хлорит-серицит-карбонатных метасоматитах. Минерализация **пирит-арсенопиритовой** ассоциации развита на Восточном участке и представлена кварц-карбонат-арсенопиритовыми прожилками. Помимо арсенопирита здесь изредка встречаются пирит и блеклая руда-1. Минералы **блеклорудно-халькопиритовой ассоциации** (распространенные — блеклая руда-2, пирит, халькопирит, галенит и редкие — зигенит и арсенопирит) присутствуют в центральной зоне рудного тела Западного участка (Плотинская и др., 2010; 2015). Остальные ассоциации будут подробно охарактеризованы ниже.

Фиг. 2. Строение рудной зоны в скважине 49. а – общий вид, отмечены номера образцов, упоминаемых в статье, б – туфобрекчия серицитизированная, карбонатизированная и хлоритизированная, обр. 49/343; в – эпидот-хлорит-карбонат-серицитовый метасоматит, обр. 49/354.2; г – известняк желтый с пятнами гематита и вкрапленностью сульфидов, обр. 49/360.8.

МЕТОДИКА АНАЛИЗА

Химический состав минералов был изучен на сканирующих электронных микроскопах: Jeol JSM-5610 LV с энергодисперсионным спектрометром Link-ISIS (аналитик – Н.В. Трубкин, ИГЕМ РАН), СЭМ РЭММА-202М с ЭДП (аналитик – В.А. Котляров, Институт минералогии УрО РАН) и на ZEISS EVO 15LS SEM с энергодисперсионным спектрометром Oxford Instruments XMax (EDX) (Natural History Museum, London, UK) по стандартным методикам.

Химический состав самородного золота был изучен на микрозонде JEOL JXA-8200 (EPMA) с пятью волновыми дисперсионными спектрометрами (ЦКП "ИГЕМ-Аналитика", аналитик И.Г. Грибоедова) при следующих условиях: ускоряющее

Ассоциация Минерал	Гематит- магнетитовая	Іирит-арсено- пиритовая	Калькопирит- сфалеритовая	Блеклорудно- халько- пиритовая	Сульфосолей висмута	Теллуридная	Серебро- пирсеит- акантитовая
Гематит							
Магнетит			· ·	? i	? i	?	? i
Пирротин	-	-?					
Арсенопирит							
Пирит							
Блеклая руда		1	2	3			4 —
Халькопирит							
Зигенит			— ?				
Сфалерит							
Галенит				-	—		
Au-Ag самородное			_	•		_	_
Сульфосоли Си-Рb-Ві					_		
Теллуриды Au, Ag, Pb, Bi						-	_
Пирсеит-полибазит							_
Акантит/аргентит							_
Кварц							
Турмалин	_						
Мусковит-парагонит							
Барит	- ?						
Хлорит		-					
Доломит-анкерит							
Сидерит							
Кальцит							
Восточный	ХХ	_	XXX	Х	X	Х	X
Западный	ХХ	XX	Х	XX	_	_	

Фит. 3. Последовательность минералообразования на месторождении Биксизак по (Плотинская и др., 2010, 2015 с изменениями).

2020

напряжение — 20 кВ, ток в образце — 20 нА, экспозиция 10—20 с; аналитические линии: L_{α} для Au, Ag и Te, K_{α} для Cu и M_{β} для Hg; стандарты: HgS для Hg и химически чистые металлы для остальных элементов. Пределы обнаружения (1 σ) 0.01—0.05 мас. %.

МИНЕРАЛЬНЫЕ АССОЦИАЦИИ БЛАГОРОДНЫХ МЕТАЛЛОВ

На Западном участке в блеклых рудах определены заметные примеси Ag от 0.6 до 16 мас. %, обычно 2–6 мас. % (Плотинская и др., 2015), но

ГЕОЛОГИЯ РУДНЫХ МЕСТОРОЖДЕНИЙ том 62 № 6

Фиг. 4. Образцы руд месторождения Биксизак, содержащие Au-Ag минерализацию. а – обр. 39/279.7, густая гнездовидная вкрапленность сфалерита и пирита среди доломита; б – обр. 48/287, массивная сфалеритовая руда с гнездами пирита и халькопирита и прожилками карбоната; в – обр. 44/292, массивная пиритовая руда; г – обр. 44/293, густая прожилково-гнездовая вкрапленность пирита, сфалерита и редкого халькопирита в доломите; д – обр. 49/360.3, вкрапленность и гнезда галенита и сфалерита с прожилками пирита. Здесь и далее: Ру – пирит, Sp – сфалерит, Dol – доломит, Сср – халькопирит, Ser – серицит.

собственные минеральные формы благородных металлов не установлены. В рудах Восточного участка минералы благородных металлов встречаются в нескольких ассоциациях. пробном самородном золоте встречаются просечки более низкопробного золота (фиг. 5д), в котором помимо Ag (52–59 мас. %), присутствует Hg (2–4.7 мас. %). Можно предположить, что это золото относится уже к другой ассоциации.

Халькопирит-сфалеритовая ассоциация

Минералы халькопирит-сфалеритовой ассоциации (фиг. 4) представлены сфалеритом, халькопиритом, пиритом, блеклой рудой и редким самородным золотом. Единственным минералом благородных металлов в этой ассоциации является самородное золото, которое установлено в семи образцах из двадцати изученных.

Самородное золото образует редкие включения в сульфидах – пирите, халькопирите и сфалерите (фиг. 5). Наиболее высокопробное золото (934-939) обнаружено в виде мельчайших (около 10 × 20 мкм) выделений в пирите (фиг. 5а). В халькопирите, который замещает и обрастает пирит, самородное золото имеет пробность от 853 до 915 (фиг. 56, в). Наиболее крупные выделения самородного золота достигают первых сотен микрометров, они встречены в халькопирит-сфалерит-карбонатных просечках (фиг. 5б, в), но обычно их размер не превышает 50 мкм (фиг. 5г, д). Выделения самородного золота обычно однородны по составу, а единственной примесью в них является Ag, содержания Cu и Hg не установлены (табл. 1). В единичных случаях, однако, в высоко-

Теллуридная ассоциация

Минералы теллуридной ассоциации установлены только в одном образце (44/292), который представляет собой массивный агрегат кристаллов пирита размером 1–2 мм, сцементированных карбонатом (фиг. 4б и 6а).

Теллуриды образуют выделения размером не более первых десятков микрометров. Обычно они встречаются в виде включений в карбонате (фиг. 6а, б), часто совместно с халькопиритом, блеклой рудой и галенитом выполняют просечки в пирите (фиг. 6в), в некоторых случаях образуют в пирите включения, расположенные по зонам роста (фиг. 6г, л), иногла приурочены к границам пирита и халькопирита (фиг. 6е, ж) или к сфалериту (фиг. 6з). Наиболее широко распространены теллуриды висмута – тетрадимит Bi₂Te₂S и серебра – гессит Ag_2Te , реже штютцит $Ag_{5-x}Te_3$, которые образуют срастания друг с другом или с микронными выделениями самородного золота (фиг. 6в, г, д, табл. 2). В срастании с гесситом нередко встречается петцит Ад₃АиТе₂ (фиг. 6е, ж, з), а с тетрадимитом – галенит, теллуровисмутит Bi₂Te₃,

Фиг. 5. Самородное золото из халькопирит-сфалеритовой ассоциации. а – включение самородного золота в пирите, обр. 48/288.8; б и в – обр. 44/292.9, самородное золото (пробность 864–875) с халькопиритом, сфалеритом, блеклой рудой, карбонатом и кварцем образуют прожилки в пирите; г – самородное золото (пробность 854) в сфалерите, обр. 44/293; д – обр. 39/279.7, самородное золото в сфалерите и на границе сфалерита и карбоната, на врезке – увеличенный фрагмент в обратно-рассеянных электронах, просечка более низкопробного самородного золота; е – обр. 48/287, самородное золото (пробность 707) на границе галенита и блеклой руды. Здесь и далее: Аu – самородное золото (число обозначает пробность), Fhl – блеклая руда, Gn – галенит, Qtz – кварц.

волынскит AgBiTe₂, раклиджит Bi₂PbTe₄ и, в единичных случаях, алтаит PbTe (фиг. 6е, ж, и). Галенит, тетрадимит и теллуровисмутит содержат заметные примеси Se – до 1.8, 2 и до 1 мас. % соответственно (фиг. 7, табл. 2). Гессит и петцит часто образуют взаимные прорастания (фиг. 6е, з), которые позволяют предполагать распад высокотемпературного твердого раствора гессит-петцит, экспериментально установленного в работе (Cabri, 1965) или одновременную кристаллизацию этих минералов.

Самородное золото в этой ассоциации образует самостоятельные выделения в пирите или микронные сростки с галенитом и теллуридами серебра, обычно со штютцитом или гесситом и петцитом, его пробность составляет 830—900.

Ассоциация сульфосолей висмута

Сульфосоли висмута, как и теллуриды, установлены только в одном образце (44/293). В образце присутствует гнездовидная вкрапленность пирита, халькопирита, сфалерита в доломите. Минералы висмута образуют гнезда размером первые десятки микрометров или прожилковидные выделения в карбонатах. Они представляют собой сложные срастания самородного висмута, висмутина, галенита, халькопирита (фиг. 8a, б), в редких случаях встречается эмплектит (фиг. 8в). Иногда присутствует виттихенит, который образует каймы вокруг агрегатов висмутина, халькопирита и галенита (фиг. 8а).

Серебро-пирсеит-акантитовая ассоциация

Минералы этой ассоциации установлены только в одном образце (49/360.3), который представляет собой серый окварцованный известняк с вкрапленностью и гнездами пирита, галенита и сфалерита и гнездами карбоната. Акантит/аргентит Ag₂S (точная диагностика невозможна из-за малых размеров выделений) и пирсеит-полибазит $[(Ag,Cu)_6(As,Sb)_2S_7][Ag_9CuS_4]$ встречаются в карбонате, обрастающем кварц, и нередко образуют тесные срастания друг с другом (фиг. 9а–г), а также с минералами ряда самородное золото – самородное серебро (фиг. 9д-и). Чаще встречается пирсеит (табл. 3), но иногда отмечаются выделения промежуточного пирсеит-полибазитового состава, характеризующиеся плавной зональностью с постепенным преобладанием то одного, то другого минала (фиг. 9г). Обычно пирсеитполибазит содержит мельчайшие вростки халькопирита, реже галенита. Минералы ряда самородное золото – самородное серебро по составу варьируют от самородного золота с пробностью

2020

				Сод	ержан	ие, ма	ic. %		Проб-	_
N⁰	Образец	Ассоциация	Ag	Au	Hg	Fe	Cu	Сумма	ность	Формула
1	48/288.8*	В пирите	6.09	93.82	_	-	-	99.91	939	Au _{0.89} Ag _{0.11}
2			6.56	93.24	—	_	—	99.80	934	Au _{0.89} Ag _{0.11}
3			6.09	93.94	—	—	—	100.00	939	Au _{0.89} Ag _{0.11}
4			6.42	93.56	—	—	—	99.98	936	Au _{0.89} Ag _{0.11}
5	48/303.9*	В пирите в трещинке	13.09	85.32	—			98.41	867	Au _{0.78} Ag _{0.22}
6			8.41	89.97	-	_	—	98.38	915	Au _{0.85} Ag _{0.15}
7	44/292.9*	В интерстициях	12.72	86.54	—	_	0.31	99.57	872	Au _{0.79} Ag _{0.21}
8		пирита золото срас-	12.46	86.95	_	_	0.14	99.55	875	Au _{0.79} Ag _{0.21}
9		тается с халькопири-	12.84	86.60	—	—	0.35	99.79	871	Au _{0.79} Ag _{0.21}
10		том, сфалеритом, блеклой рудой	13.06	86.44	—	—	0.26	99.76	869	Au _{0.78} Ag _{0.22}
11		energian pygen	12.76	86.62	—	_	0.24	99.62	872	Au _{0.79} Ag _{0.21}
12			13.58	86.10	—	_	0.36	100.04	864	Au _{0.78} Ag _{0.22}
13	44/292	В пирите	13.09	85.76	—	0.72	—	99.57	868	Au _{0.78} Ag _{0.22}
14	44/292*	С гесситом, петци- том	16.59	83.41	_	_	_	100**	834	Au _{0.73} Ag _{0.27}
15		С гесситом	13.24	86.76	_	_	_	100**	868	Au _{0.78} Ag _{0.22}
16			10.32	89.68	—	_	—	100**	897	Au _{0.83} Ag _{0.17}
17			14.02	85.98	_	_	—	100**	860	Au _{0.77} Ag _{0.23}
18	44/293	В сфалерите	17.97	79.23	_	_	_	97.20	815	Au _{0.71} Ag _{0.29}
19			14.46	84.27	—	_	—	98.73	854	Au _{0.76} Ag _{0.24}
20	39/279.7*	С халькопиритом	14.54	84.24	_	_	_	98.78	853	Au _{0.76} Ag _{0.24}
21	39/279.7	В сфалерите	22.89	75.92	—	0.29	—	99.11	768	Au _{0.65} Ag _{0.35}
22			23.40	76.02	—	0.22	—	99.64	765	Au _{0.64} Ag _{0.36}
23			22.26	77.50	—	0.17	—	99.94	777	Au _{0.66} Ag _{0.34}
24			22.12	77.49	—	0.16	—	99.77	778	Au _{0.66} Ag _{0.34}
25			21.93	78.18	_	0.10	_	100.21	781	Au _{0.66} Ag _{0.34}
26			38.26	58.72	2.19	0.08	—	99.25	592	Au _{0.45} Ag _{0.53} Hg _{0.02}
27			41.77	51.72	4.68	1.04	—	99.20	527	Au _{0.39} Ag _{0.58} Hg _{0.03}
28			21.48	77.69	—	0.27	—	99.44	783	Au _{0.66} Ag _{0.34}
29			21.60	77.15	—	0.40	—	99.14	781	Au _{0.66} Ag _{0.34}
30			21.70	77.81	—	0.29	—	99.79	782	Au _{0.66} Ag _{0.34}
31			20.82	79.30	—	0.00	—	100.12	792	$Au_{0.68}Ag_{0.32}$
32	49/360.3*	С пирсеитом	24.86	73.51	_			98.37	747	Au _{0.62} Ag _{0.38}
33		и аргентитом	45.56	52.51	_	_	_	98.07	535	Au _{0.39} Ag _{0.61}
34			45.86	54.65	—	_	—	100.50	544	Au _{0.39} Ag _{0.61}
35			69.97	28.06	-	—	-	98.02	286	$Au_{0.18}Ag_{0.82}$
36			71.45	22.34	6.22	—	-	100**	223	$Au_{0.14}Ag_{0.82}Hg_{0.04}$
37			74.50	19.89	5.60	—	-	100**	199	$Au_{0.12}Ag_{0.85}Hg_{0.03}$
38			96.00	4.00	-	—	-	100**	40	$Au_{0.02}Ag_{0.98}$
40			100.0	_	_	_	—	100**	0	Ag

Таблица 1. Химический состав самородных золота и серебра

Примечание. * — энергодисперсионный анализ, ** — анализ нормирован к 100 мас. % из-за малого размера зерна, прочерк — содержания ниже предела обнаружения.

Фиг. 6. Теллуриды Bi, Ag и Pb, обр. 44/292, изображения в обратно-рассеянных электронах. а – тетрадимит и блеклая руда в карбонате, цементирующем пирит; б – блеклая руда, тетрадимит и гессит в доломите; в – прожилок в пирите, выполненный блеклой рудой, галенитом, халькопиритом, штютцитом и самородным золотом; г – включения тетрадимита и гессита в пирите; д – тетрадимит, гессит, самородное золото и петцит в пирите; е – гессит, петцит, тетрадимит и теллуровисмутит на границе пирита и халькопирита; ж – гессит, петцит, волынскит и тетрадимит на границе пирита и халькопирита; з – гессит, петцит, галенит и тетрадимит в сфалерите; и – алтаит, волынскит и раклиджит в пирите. Ank – анкерит, Tdm – тетрадимит, Hs – гессит, St – штютцит, Ptz – петцит, Vol – волынскит, Tbs – теллуровисмутит, Alt – алтаит, Ruck – раклиджит.

Фиг. 7. Диаграммы Au–Ag–Te (а) и Bi–Pb–(Te + S + Se) (б) для теллуридов и сульфотеллуридов месторождения Биксизак (ат. %).

ГЕОЛОГИЯ РУДНЫХ МЕСТОРОЖДЕНИЙ том 62 № 6 2020

	Минерал	Ag	Au	Cu	Pb	Bi	S	Se	Te	Total	Формула
1	Виттихенит	_	_	36.28	_	42.38	19.78	_	_	98.45	Cu _{2.87} Bi _{1.02} S _{3.11}
2	Эмплектит	—	—	18.60	—	62.64	19.07	-	—	100.30	Cu _{0.99} Bi _{1.01} S _{2.00}
3	Ві самородный	—	_	_	_	99.89	—	-	—	99.89	Bi _{1.00}
4	»	_	_	—	_	100.04	_	_	_	100.04	Bi _{1.00}
5	Висмутин	—	—	1.07	6.07	75.22	17.60	—	—	99.97	Bi _{1.99} S _{3.01}
6	Гессит	62.13	—	—	—		—	—	37.84	99.97	Ag _{1.02} Te _{1.98}
7	»	62.84	_	—	—	_	—	_	36.43	99.27	Ag _{0.99} Te _{2.01}
8	»	62.62	_	—	_	_	_	_	37.96	100.58	$Ag_{1.98}Te_{1.02}$
9	»	63.10	_	_	_	_	_	—	37.09	100.19	$Ag_{2.00}Te_{1.00}$
10	»	63.55	—	—	—	—	—	—	37.47	101.00	$Ag_{2.00}Te_{1.00}$
11	Петцит	44.25	21.93	—	_		—	—	32.06	98.24	Ag _{3.18} Au _{0.86} Te _{1.95}
12	»	42.42	24.96	—	_	_	_	—	34.13	101.51	Au _{0.97} Ag _{3.00} Te _{2.04}
13	»	41.95	26.12	—	_	_	_	_	33.05	101.11	$Au_{1.02}Ag_{2.99}Te_{1.99}$
14	Штютцит	56.78	—	—	—		—	—	40.88	97.66	Ag _{4.93} Te _{3.00}
15	»	58.84	_	_	_	—	-	_	41.06	99.91	Ag _{5.08} Au _{3.00}
16	Алтаит	—	—	—	62.55	_	—	_	39.04	101.60	Pb _{0.99} Te _{1.01}
17	»	—	_	—	61.82	_	—	0.84	37.31	99.97	Pb _{0.99} (Te _{0.97} Se _{0.04)1.01}
18	Волынскит	19.66	—	—	—	37.20	_	_	45.04	101.90	Ag _{1.02} Bi _{1.00} Te _{1.98}
19	Галенит	_	_	_	86.14	_	11.74	1.85	_	99.74	$Pb_{1.03}(S_{0.91}Se_{0.06})_{0.97}$
20	»	_	—	—	86.38	_	11.79	1.42	_	99.60	$Pb_{1.04}(S_{0.92}Se_{0.04})_{0.96}$
21	»	—	_	—	84.46	_	11.63	1.84	—	97.93	$Pb_{1.03}(S_{0.91}Se_{0.06})_{0.97}$
22	Раклиджит	_	_	_	20.5	34.74	_	0.56	44.81	100.61	$Pb_{1.11}Bi_{1.87}(Te_{3.94}Se_{0.08})$
23	Теллуровисмутит	—	—	_	—	52.77	—	0.26	47.78	100.81	Bi _{2.00} (Te _{2.97} Se _{0.03}) _{3.00}
24	»	_	_	—	_	50.59	0.34	—	48.03	98.96	$Bi_{1.92}(Te_{2.99}S_{0.09})_{3.08}$
25	»	_	_	—	_	52.59	_	—	48.48	101.07	Bi _{1.99} Te _{3.01}
26	»	—	_	—	—	51.53	0.25	0.30	46.97	99.05	$Bi_{1.97}(Te_{2.94}S_{0.06}Se_{0.03})_{3.03}$
27	»	—	_	—	_	51.67	0.43	0.30	46.77	99.17	$Bi_{1.96}(Te_{2.90}S_{0.11}Se_{0.03})_{3.04}$
28	Тетрадимит	_	_	_	_	59.81	4.28	0.97	35.05	100.10	$Bi_{2.03}Te_{1.94}(S_{0.95}Se_{0.09})_{1.03}$
29	»	—	_	—	_	58.01	4.12	0.82	35.32	98.27	$Bi_{2.00}Te_{2.00}(S_{0.93}Se_{0.08})_{1.01}$
30	»	—	-	—	-	59.29	4.28	0.53	35.35	99.45	$Bi_{2.02}Te_{1.98}(S_{0.95}Se_{0.05})_{1.00}$
31	»	_	-	_	-	60.09	4.25	0.91	36.01	101.26	$Bi_{2.01}Te_{1.98}(S_{0.93}Se_{0.08})_{1.01}$

Таблица 2. Представительные анализы минералов свинца, висмута и серебра по данным энергодисперсионного анализа

Примечание. Анализы 1-5 - образец 44/293, анализы 6-31 - образец 44/292.

Фиг. 8. Сульфосоли Ві-месторождения Биксизак, обр. 44/293, изображения в обратно-рассеянных электронах. а – срастание халькопирита, галенита и висмутина и каймы виттихенита среди доломита; б – самородный висмут, галенит и висмутин среди доломита; в – самородный висмут, галенит и эмплектит среди доломита. Віs – висмутин, Wit – виттихенит, Ві – самородный висмут, Еттр – эмплектит.

747 (фиг. 9ж) до самородного серебра (фиг. 9з, и). Встречаются выделения промежуточного состава (фиг. 9е), причем наиболее серебристые разности содержат примеси Hg (до 6 мас. % по данным энергодисперсионного анализа). Более ранними исследованиями (Грабежев, Широбокова, 1991) при помощи рентгеновского метода установлены миаргирит AgSbS₂, штромейерит AgCuS и ксантоконит Ag₃AsS₃, и их, по-видимому, следует отнести к этой же ассоциации.

Таким образом, состав минералов ряда самородное золото — самородное серебро закономерно меняется от высокопробного самородного золота в халькопирит-сфалеритовой ассоциации к самородному серебру в серебро-пирсеит-акантитовой (фиг. 10). В низкопробном самородном золоте иногда обнаруживается примесь ртути до 6 мас. %.

Карбонаты

Карбонаты, наряду с кварцем, являются основными жильными минералами на месторождении, а в образцах с благороднометальной минерализацией они доминируют над кварцем. Карбонаты пред-

N⁰	Минерал	Ag	Cu	As	Sb	S	Итоги	формула на 29 к.ф.
1	Полибазит-(As)	67.86	7.24	1.94	6.13	15.31	98.48	$[(Ag_{3.8}, Cu_{2.4})_{6.2}(As_{0.6}Sb_{1.1})_{1.7}S_{6.1}][Ag_9CuS_4]$
2	Пирсеит-(Sb)	66.02	9.87	4.37	3.37	16.76	100.40	$[(Ag_{3.9},Cu_{2.3})_{6.2}(As_{1.2}Sb_{0.6})_{1.8}S_7][Ag_9CuS_4]$
3	Пирсеит	65.53	10.12	7.19	_	16.4	99.24	$[(Ag_{3.8},Cu_{2.4})_{6.2}As_2S_{6.8}][Ag_9CuS_4]$
4	»	67.65	8.97	6.92	_	16.51	100.05	$[(Ag_{4,2},Cu_{2,0})_{6,2}As_2S_{6,9}][Ag_9CuS_4]$
5	»	69.32	8.36	7.17	_	16.82	101.67	$[(Ag_{4,4},Cu_{1.7})_{6,1}As_2S_{6,9}][Ag_9CuS_4]$
6	Акантит-аргентит	85.20	_	_	_	13.36	98.56	$Ag_{1.96}S_{1.04}$
7	»	87.90	—	—	—	12.09	99.99	Ag _{2.05} S _{0.95}

Таблица 3. Химический состав минералов серебра (образец 49/360.3) по данным энергодисперсионного анализа

Фиг. 9. Минералы серебро-пирсеит-акантитовой ассоциации месторождения Биксизак, обр. 49/360.3, изображения в обратно-рассеянных электронах. а – галенит, пирсеит и аргентит среди доломита; б – пирсеит и галенит на границе кварца и доломита; в – акантит/аргентит и пирсеит среди кутнагорита; г – зональный пирсеит-полибазит обрастает акантит/аргентит и халькопирит среди доломита; д – ртутистый "кюстелит" (пробность 199–223) с пирсеитом и галенитом нарастает на пирит; е – "электрум" (пробность 535) обрастает самородным серебром (пробность 286) и пирсеитом; ж – срастание самородного золота (пробность 747) и самородного серебра среди пирсеита в доломите; з – самородное серебро и галенит в полибазите среди доломита; и – самородное серебро в пирсеите с включениями халькопирита обрастает акантит-аргентитом. Gn – галенит, Ру – пирит, Сср – халькопирит, Prs – пирсеит, Dol – доломит, Киt – кутнагорит, Qtz – кварц, Arg – акантит/аргентит, Pol – полибазит, Ag – самородное серебро.

Фиг. 10. Гистограмма пробности минералов ряда самородное золото – самородное серебро.

ГЕОЛОГИЯ РУДНЫХ МЕСТОРОЖДЕНИЙ том 62 № 6 2020

Фиг. 11. Карбонаты месторождения Биксизак, изображения в обратно-рассеянных электронах. а – кальцит обрастает зональный доломит, обр. 39/279.7; б – доломит обрастает пирит, на него нарастает анкерит с включениями теллуридов, обр. 44/292; в – сульфосоли висмута (Bi-ss) в доломите, обр. 44/293.

ставлены кальцитом и минералами группы доломита. Минералы группы доломита распространены наиболее широко, они ассоциируют с минералами халькопирит-сфалеритовой ассоциации и обрастают более ранний пирит (фиг. 6а). Они образуют агрегаты идиоморфных или субидиоморфных кристаллов размером до 1 мм, обычно первые сотни мкм (фиг. 11а). В таких кристаллах нередко встречается осцилляторная зональность, которая выражена в колебаниях содержаний FeO и MgO. По составу (табл. 4) они отвечают доломиту-(Fe) с заметными количествами FeO (6—15 мас. %) и низкими содержаниями MnO (0.6—3.2 мас. %).

Иногда идиоморфные кристаллы доломита обрастает кальцит (фиг. 11а), а иногда – минералы группы доломита более поздней генерации. Последние, как правило, представляют собой ксеноморфные выделения, характеризующиеся пятнистой зональностью или нерегулярной осцилляторной зональностью, несущие признаки неоднократного растворения и переотложения и насыщенные минералами теллуридной ассоциации или ассоциации сульфосолей висмута (фиг. 7а, 11б, в). По сравнению с идиоморфными доломитами такие карбонаты характеризуются более высокой железистостью. Так, в образие 44/293 сульфосоли висмута и самородный висмут ассоциируют с доломитом, содержащим 11-15 мас. % FeO, тогда как более ранний доломит содержит 3-9 мас. % FeO. В образце с золото-теллуридной ассоциацией (44/292) ранний доломит, обрастающий пирит, содержит 6.4–16.2 мас. % FeO, тогда как поздний карбонат, содержащий включения

теллуридов Ag, Bi, Pb, - 14.2-28 мас. % FeO и по составу соответствует анкериту-(Mg) (табл. 4).

В образце с серебро-пирсеит-акантитовой ассоциацией (49/360.3) ранний карбонат также представлен доломитом 6.3–9.1 мас. % FeO. Карбонат, содержащий включения пирсеита, акантита/аргентита и самородного серебра (фиг. 9а), отличается повышенными содержаниями FeO (10.2–12.5 мас. %) и MnO (10–15.3 мас. %) и соответствует промежуточному составу доломит-анкерит-кутнагорит (табл. 4).

Таким образом, химический состав карбонатов заметно варьирует в зависимости от минеральных ассоциаций: доломит-(Fe) входит в состав халькопирит-сфалеритовой ассоциации и ассоциации сульфосолей висмута, анкерит-(Mg) принадлежит к теллуридной ассоциации, а кутнагорит-доломит-анкерит — к серебро-пирсеитакантитовой ассоциации (фиг. 12).

Хлорит

В изученных образцах хлорит присутствует только в обр. 44/293. Он образует агрегаты размером несколько сотен микрон, которые обрастают сфалерит, пирит и халькопирит, в свою очередь, обрастающие доломитом-(Fe). По составу (табл. 5) хлорит довольно однородный и соответствует клинохлор-дафниту с незначительной долей амезит-судоитового минала. Температура, рассчитанная по хлориту из обр. 44/293 по (Котельников и др., 2012), составила 268–274°С.

№ 6 2020

Таблица 4. І онного анал	зариации химическ иза	coro coctai	за карбонатов	группы долом	ита в образца	х с золото-сер	ебряной мине	рализацией п	о данным энеј	ргодисперси-
J. J. Constant				Macco	Bble %			Мольн	the %	
ле ооразца	Ассоциация	NUL- BU	MgO	CaO	MnO	FeO	MgCO ₃	CaCO ₃	MnCO ₃	FeCO ₃
39/279.7	Халькопирит- сфалеритовая	6	<u>10.61–13.12</u> 12.21	<u>30.23–31.52</u> 30.88	$\frac{0.64 - 3.52}{1.66}$	8.06–13.29 10.21	<u>25.96–32.01</u> 29.71	<u>46.33–50.76</u> 49.18	$\frac{0.81 - 4.42}{2.08}$	<u>9.98–16.36</u> 12.68
48/287	*	1	17.66	30.29	1.54	5.49	40.69	50.19	2.02	7.10
44/292	\$	44	<u>9.61–16.65</u> 12.38	<u>27.03–29.68</u> 28.38	$\frac{1.05 - 3.19}{1.92}$	$\frac{6.40-16.21}{11.25}$	24.26–39.69 30.78	<u>48.29–53.68</u> 50.78	$\frac{1.48-4.52}{2.73}$	<u>8.60–22.96</u> 15.71
*	Теллуридная	15	<u>2.37 –10.43</u> 6.84	$\frac{26.84-29.29}{27.85}$	$\frac{0.64-5.03}{1.87}$	$\frac{14.19-28.02}{19.65}$	<u>6.28–26.16</u> 19.65	<u>49.72–53.51</u> 51.40	0.96–7.28 2.73	20.24-41.64 28.36
44/293	Халькопирит- сфалеритовая	14	<u>11.92–17.30</u> 14.85	<u>28.17–31.90</u> 29.34	<u>0.79–1.82</u> 1.25	$\frac{3.09-9.04}{5.66}$	<u>30.67–43.46</u> 37.25	<u>50.90–59.03</u> 52.97	$\frac{1.12-2.58}{1.79}$	<u>4.36–12.66</u> 7.99
*	Сульфосолей висмута	12	<u>9.44–12.42</u> 10.97	<u>26.72–28.32</u> 27.44	$\frac{1.82 - 3.02}{2.27}$	$\frac{10.93 - 14.96}{12.71}$	24.48–31.33 28.03	<u>48.73–52.01</u> 50.42	$\frac{2.68-4.46}{3.31}$	<u>15.94–21.76</u> 18.24
49/360.3	Халькопирит- сфалеритовая	3	<u>13.55–17.68</u> <u>15.31</u>	<u>30.38–33.76</u> 32.36	<u>2.09–7.02</u> 3.99	$\frac{6.29 - 9.10}{7.98}$	<u>29.43–36.32</u> 33.79	<u>49.86–52.95</u> 51.43	2.88-8.68 4.97	<u>8.56–10.48</u> 9.82
*	Серебро-пирсе- ит-акантитовая	٢	$\frac{4.78 - 10.13}{6.48}$	<u>25.44–32.49</u> 29.56	<u>9.94–15.33</u> 12.56	$\frac{6.54 - 12.50}{10.64}$	<u>12.18–22.82</u> 15.77	<u>49.22-54.83</u> 52.02	$\frac{15.34 - 19.62}{17.45}$	<u>8.26–18.36</u> 14.75
Примечание.	В числителе – миним	лум и максі	имум, в знамена	ателе – среднее.						

ГЕОЛОГИЯ РУДНЫХ МЕСТОРОЖДЕНИЙ

496

ПЛОТИНСКАЯ и др.

том 62 № 6 2

²⁰²⁰

Фиг. 12. Диаграмма CaFeCO₃ – CaMgCO₃ – CaMnCO₃ (моль. %) для карбонатов, ассоциирующих с золото-серебряной минерализацией.

ОБСУЖДЕНИЕ РЕЗУЛЬТАТОВ

Условия минералообразования

В образцах, содержащих охарактеризованные выше ассоциации золота и серебра, флюидные включения не были обнаружены. Однако ранее (Плотинская и др., 2010) в сфалерите из Восточного участка, содержащем включения самородного золота, были установлены флюидные включения, которые характеризуются температурами гомогенизации 148–156°С и низкой соленостью (0.6–2.6 мас. % NaCl-экв.) при преобладании хлорида натрия. В сфалерите, не ассоциирующем с самородным золотом, температура гомогенизации аналогичных по составу включений составила 190–231°С (Plotinskaya et al., 2014). Гетерогенизация флюида в обоих случаях не наблюдалась, и указанные температуры можно считать минимальными температурами минералообразования. Мощность вулканитов березняковской свиты, перекрывающей оруденение, составляет минимум 1 км (Кузнецов и др., 2018). При гидростатическом режиме давление на такой глубине составляло около 100 бар, а значит, поправка на давление не превышает 10–20°С (Potter, 1977) и полученные температуры близки к истинным.

Тем не менее, разнообразие ассоциаций минералов благородных металлов, по-видимому, контролировалось и другими факторами. Установленный нами набор минералов позволяет определить области стабильностей основных ассоциаций благородных металлов рудного поля в координатах $f_{s_2} - f_{Te_2}$ для температуры 200°С с использованием данных из (Barton, Skinner, 1979; Barton, Toulmin, 1964; Afifi et al., 1988). Поле стабильности ассоци

Таблица 5.	Химический	состав	хлорита	из обр.	44/293

N⁰	SiO ₂	Al ₂ O ₃	FeO	MgO	Сумма	Si	Al	Fe"	Mg	Al(IV)	Al(VI)	Si/Al	X(Fe)	X(Mg)	<i>T</i> , °C*
1	24.03	20.6	27.81	10.91	83.35	5.48	5.53	5.29	3.70	2.52	3.01	0.99	0.59	0.41	268
2	23.88	21.39	27.71	10.84	83.82	5.40	5.70	5.24	3.65	2.60	3.11	0.95	0.59	0.41	274

Примечание. * – по (Котельников и др., 2012).

Фиг. 13. Диаграмма fTe_2-fS_2 для минеральных ассоциаций благородных металлов месторождения Биксизак. Пунктирные линии – содержания FeS в сфалерите, равновесном с пиритом по (Czamanske, 1974), штриховые линии – содержания Ag в самородном золоте, равновесном с гесситом по (Afifi et al., 1988), штрих-пунктирная линия – содержания Ag в самородном золоте, равновесном с акантит-аргентитом, по (Barton, Toulmin, 1964). Ассоциации: Au – золото-халькопирит-сфалеритовая, Te – теллуридная, Ag – серебро-пирсеит-акантитовая. Po – пирротин, Bn – борнит, Tn – теннантит, Lz – люцонит.

ации самородного золота в халькопирит-сфалеритовой ассоциации ограничено пространством стабильности халькопирита и линиями равновесия самородное золото-калаверит и галенит-алтаит (фиг. 13). Интервал стабильности сфалерита с FeS от 0.5 до 1 моль. % заметно сужает интервал f_{s_2} . Это несколько противоречит тому, что указанная ассоциация является на месторождении наиболее распространенной. Однако прожилковидная форма некоторых золотин, а также то, что они часто приурочены к границам зерен сфалерита (фиг. 7г, д), предполагает, что, по крайней мере, часть самородного золота образовалась после сфалерита, а не в равновесии с ним. Это значительно расширяет поле стабильности этой ассоциации.

Поле стабильности теллуридной ассоциации находится выше линии висмутин-теллуровисмутит и захватывает поля стабильности и галенита, и алтаита. Фугитивность Te_2 ограничена максимальным и минимальным содержаниями серебра (X(Ag) в самородном золоте в срастании с гесситом (0.27 и 0.17 соответственно). Линия равновесия гессит-петцит при 200°С (Бортников и др., 1988) близка к верхнему пределу стабильности теллуридной ассоциации.

Поле стабильности серебро-пирсеит-акантитовой ассоциации ограничено линией равновесия акантит-гессит, а f_{s_2} — минимальным содержанием серебра в электруме, находящемся в равновесии с акантитом-аргентитом (X(Ag) \approx 0.4) (Barton, Toulmin, 1964). Таким образом, разнообразие минеральных форм золота и серебра контролируется вариациями фугитивности теллура и серы.

Благородные металлы на других объектах Биргильдинско-Томинского узла

В рудах Березняковского эпитермального Au– Ад рудного поля широко распространены теллуриды золота и серебра (калаверит, сильванит, креннерит, петцит, штютцит и гессит), алтаит, самородный Те и др. Иногда отмечаются теллурантимон, колорадоит, нагиагит, а также тетрадимит и другие теллуриды висмута. Самородное золото высокопробное, преобладает пробность выше 950, но изредка встречаются и более низкие значения (620–858). Теллуридные формы благородных металлов преобладают над самородным золотом (Плотинская и др., 2009 и цитируемая литература).

На Мичуринском Cu–Pb–Zn–Ag–Au эпитермальном рудопроявлении присутствует самородное золото пробностью 750–850 в ассоциации с халькопиритом, теннантитом и галенитом. Также выявлены теллуриды серебра и висмута (теллуровисмутит, гессит, петцит, волынскит, тетрадимит) (Plotinskaya et al., 2014).

На Калиновском участке Томинского меднопорфирового месторождения установлено три ассоциации минералов благородных металлов (Плотинская, 2016). (1) Пирит-халькопиритовая ассоциация с самородным золотом пробностью 758-974. (2) Ассоциация сульфосолей висмута (минералы висмутин-айкинитовой серии и матильдит) с магнетитом, гематитом, пиритом, халькопиритом и самородным золотом пробностью 819-935. (3) Золото-теллуридная ассоциация (гессит, штютцит, колорадоит, галенит-клаусталит Pb(S,Se) и редкие самородное золото (пробность около 810), петцит, сильванит, теллуровисмутит и науманит Ag₂Se. Ассоциации (2) и (3) характерны для периферических зон месторождения и, по-видимому, связаны с наложенным эпитермальным этапом (Плотинская, 2016).

Таким образом, теллуридные формы благородных металлов распространены на территории Биргильдинско-Томинского рудного узла достаточно широко. Наибольшее сходство с минерализацией месторождения Биксизак установлено на рудопроявлении Мичурино, которое ранее было отнесено нами к сильно эродированной эпитермальной системе (Plotinskaya et al., 2014).

При этом из всех упомянутых объектов Биксизак отличается наиболее широкими вариациями состава минералов ряда самородное золото - самородное серебро. Обычно снижение пробности самородного золота объясняют снижением температуры, фугитивности серы и/или кислорода, и падением Au/Ag отношения во флюиде в процессе минералообразования (Palyanova, 2008). Поэтому большой интервал пробности самородного золота часто характерен для малоглубинных низкосульфидизированных эпитермальных месторождений, что объясняется разнообразием механизмов осаждения благородных металлов (быстрое остывание, вскипание, смешение магматогенных и метеорных вод и комбинации этих механизмов) (Morrison et al., 1991). В случае с месторождением Биксизак, однако, это маловероятно. Здесь отсутствуют брекчиевые текстуры и текстуры выполнения открытых полостей, а руды имеют, главным образом, метасоматическое происхождение. Нельзя исключать, что определенную роль играл контрастный состав вмещающих пород, который не наблюдается на остальных объектах Биргильдинско-Томинского узла и который определял контрастный состав минералообразующего флюида.

Благородные металлы в рудах стратиформных месторождений Урала

Золото-серебряная минерализация хорошо изучена на южноуральских колчеданных месторождениях, связанных с девонскими вулканогенными формациями. Самородное золото является обычным минералом в колчеданных рудах и, как правило, характеризуется высокой пробностью 800–900 (Зайков и др., 2001; Викентьев, 2004; Belogub et al., 2005). Самородное серебро встречается значительно реже. Также минералогической редкостью являются сульфосоли серебра.

Стратиформные полиметаллические объекты, локализованные в терригенно-карбонатных породах, охарактеризованы значительно хуже, как геологически, так и минералогически (Серавкин, Сначёв, 2012). Наиболее широко месторождения этого типа развиты на западном склоне Южного Урала, в рифейских отложениях депрессионнорифтогенных прогибов вдоль восточного края Русской платформы, но минералогически они изучены слабо. В Магнитогорской вулканогенной мегазоне известно Амурское стратиформное цинковое месторождение в девонских породах, которое большинство авторов последнее время относят к типу SEDEX (Новоселов, Белогуб, 2008; Сначёв и др., 2015). Здесь установлены золотисто-ртутистое серебро (Ag_{0.75}Hg_{0.20}Au_{0.05}) и блеклые руды, содержащие до 7.9 мас. % Ад (Новоселов, Белогуб, 2011). В Восточно-Уральской мегазоне известны месторождения Пластовской (или Андрее-Юльевской) группы, залегающие в рифейских породах (Новоселов, Белогуб, 2008; Серавкин, Сначёв, 2012; Контарь, 2013). На одном из них, Андреевском месторождении, описано самородное золото, пробность которого варьирует от 740 до 960 (Храмов, 2015).

На Биксизакском месторождении золото и серебро присутствуют в самородной и, реже, теллуридной формах, встречаются сульфиды и сульфосоли серебра, кроме того, серебро присутствует в виде примеси в блеклых рудах (Плотинская и др., 2015). Таким образом, Биксизакское месторождение характеризуется наиболее разнообразным набором минералов-концентраторов благородных металлов среди стратиформных месторождений Урала. Основной причиной тому является генетическая связь оруденения с порфирово-эпитермальной системой, гипотетическим центром которой является интрузия биргильдинско-томинского комплекса. Как было показано выше, разнообразие минеральных форм золота и серебра и широкое развитие теллуридных форм характерно для всех порфирово-эпитермальных систем Биргильдинско-Томинского рудного узла (Plotinskaya et al., 2014).

выводы

На месторождении Биксизак установлено разнообразие минеральных форм благородных металлов. Наиболее широко распространено самородное золото (пробность 853—939) в халькопиритсфалеритовой ассоциации. В отдельных образцах установлены теллуридная ассоциация (тетрадимит, гессит, штютцит, петцит, галенит, теллуровисмутит, волынскит, раклиджит, алтаит, самородное золото пробности 830—900) и серебро-пирсеит-акантитовая ассоциация (акантит/аргентит, и пирсеит-полибазит и самородные элементы от самородного золота с пробностью 747 до самородного серебра).

Химический состав карбонатов меняется в зависимости от минеральной ассоциациии: халькопирит-сфалеритовая ассоциация и ассоциация сульфосолей висмута сопровождаются доломитом-(Fe), теллуридная ассоциация — анкеритом-(Mg), а серебро-пирсеит-акантитовая — кутнагорит-доломит-анкеритом.

Разнообразие минеральных форм благородных металлов контролируется снижением температуры и вариациями фугитивностей серы и теллура.

БЛАГОДАРНОСТИ

Авторы благодарят В.А. Котлярова (Институт минералогии ЮУ НЦ МиГ УрО РАН), Н.В. Трубкина и И.Г. Грибоедову (ИГЕМ РАН) за выполненные анализы, а также В.А. Коваленкера и Н.С. Бортникова (ИГЕМ РАН) за замечания, которые помогли улучшить статью.

ФИНАНСИРОВАНИЕ

Работа выполнена в рамках Государственного задания ИГЕМ РАН.

СПИСОК ЛИТЕРАТУРЫ

Бакшеев И.А., Плотинская О.Ю. Турмалин месторождений Биргильдинско-Томинского рудного узла, Ю. Урал // Минералогия Урала-2011. Сборник научных статей: Матер. VI Всерос. Совещ. (22–26 августа 2011 г.). Отв. ред. Е.П. Макагонов. Миасс–Екатеринбург: УрО РАН, 2011. С. 129–133.

Бакшеев И.А., Плотинская О.Ю., Япаскурт В.О., Вигасина М.Ф., Брызгалов И.А., Грознова Е.О., Марущенко Л.И. Турмалин месторождений Биргильдинско-Томинского рудного узла, Южный Урал // Геология руд. месторождений. 2012. Т. 54. № 6. С. 540–556.

Бортников Н.С., Крамер Х., Генкин А.Д., Крапива Л.Я., Санта-Крус М. Парагенезисы теллуридов золота и серебра в золоторудном месторождении Флоренсия (Республика Куба) // Геология руд. месторождений. 1988. № 2. С. 49-61. Викентьев И.В. Условия формирования и метаморфизм колчеданных руд. М.: Научный мир, 2004. 344 с.

Грабежев А.И. Молошаг В.П. Цинк-медь-серебро-золотое оруденение Томинского медно-порфирового рудного узла (Южный Урал) // ДАН. 1993. Т. 330. № 3. С. 349–351.

Грабежев А.И., Широбокова Т.И. Новый тип серебромедно-цинкового оруденения на Южном Урале // Докл. АН СССР. 1991. Т. 318. № 5. С. 1191–1194.

Грабежев А.И., Русинова О.В., Жухлистов А.П., Мурзин В.В. Вертикальная рудно-метасоматическая зональность Томинского медно-порфирового рудного узла (Южный Урал, Россия) // Геология руд. месторождений. 1995. Т. 37. № 6. С. 500–510.

Грабежев А.И., Сотников В.И., Карпухина В.С. Изотопный состав пирита и карбоната из разноглубинных месторождений медно-порфировой колонны // Геохимия. 1997. № 2. С. 238–240.

Грабежев А.И., Кузнецов Н.С., Пужаков Б.А. Рудно-метасоматическая зональность медно-порфировой колонны натриевого типа (парагонит-содержащие ореолы, Урал). Екатеринбург: Изд-во УГГГА, 1998. 172 с.

Грабежев А.И., Сазонов В.Н., Мурзин В.В., Молошаг В.П., Сотников В.И., Кузнецов Н.С., Пужаков Б.А., Покровский Б.Г. Березняковское золоторудное месторождение (Южный Урал, Россия) // Геология руд. месторождений. 2000. Т. 42. № 1. С. 38–52.

Грабежев А.И., Беа Ф., Монтеро М.П., Ферштатер Г.Б. U-Pb SHRIMP возраст цирконов из диоритов Томинско-Березняковского рудного поля (Южный Урал, Россия): эволюция Аu-Аg-эпитермально-Сu-порфировой системы // Геология и геофизика. 2013. Т. 54. № 11. С. 1705–1713.

Зайков В.В., Масленников В.В., Зайкова Е.В., Херрингтон Р. Рудно-формационный и рудно-фациальный анализ колчеданных месторождений Уральского палеоокеана. Миасс: Институт минералогии УрО РАН, 2001. 315 с.

Каллистов Г.А. Длительность и возрастные этапы становления челябинского гранитоидного батолита // ЕЖЕГОДНИК-2013, Труды Института геологии и геохимии им. академика А.Н. Заварицкого, вып. 161. 2014. С. 343–349.

Коваленкер В.А. Условия формирования и факторы крупномасштабного концентрирования золота порфировых и эпитермальных месторождений // Крупные и суперкрупные месторождения рудных полезных ископаемых. Том 2. Стратегические виды рудного сырья. М.: ИГЕМ РАН, 2006. С. 143–214.

Контарь Е.С. Геолого-промышленные типы месторождений меди, цинка, свинца на Урале (геологические условия размещения, история формирования, перспективы). Департамент по недропользованию по Уральскому федеральному округу (Уралнедра). Екатеринбург: Изд-во УГГУ, 2013. 199 с.

Котельников А.Р., Сук Н.И., Котельникова З.А., Щекина Т.И., Калинин Г.М. Минеральные геотермометры для низкотемпературных парагенезисов // Вестник Отделения наук о Земле РАН. 2012. Т. 4. NZ9001. https://doi.org/10.2205/2012NZ ASEMPG

Кузнецов Н.С., Савельев В.П., Пужаков Б.А., Шох В.Д., Никольский В.Ю., Щулькина Н.Е., Коробова Н.И., Щулькин Е.П. Государственная геологическая карта Российской Федерации. Масштаб 1: 200 000. Издание второе. Серия Южно-Уральская. Лист N-41-VIII (Челябинск). Объяснительная записка. М.: Московский филиал ФГБУ "ВСЕГЕИ", 2018. 116 с.

Новоселов К.А., Белогуб Е.В. Стратиформные свинцово-цинковые руды Южного Урала // Рудогенез: Матер. междунар. конф. (ред. Анфилогов В.Н. и др.). Миасс-Екатеринбург: УрО РАН, 2008. С. 206–209.

Новоселов К.А., Белогуб Е.В. Золото и серебро в сульфидных рудах Амурского цинкового месторождения // Минералогия Урала–2011. Сборник научных статей: Матер. VI Всерос. совещ. (22–26 августа 2011 г.). Миасс– Екатеринбург: УрО РАН, 2011. С. 118–122.

Плотинская О.Ю. Минералы благородных металлов порфировых месторождений (на примере Южного Урала) // Металлогения древних и современных океанов. 2016. № 1. С. 150–153.

Плотинская О.Ю., Грознова Е.О., Коваленкер В.А., Новоселов К.А., Зелтманн Р. Минералогия и условия образования руд Березняковского рудного поля (Южный Урал, Россия) // Геология руд. месторождений. 2009. Т. 51. № 5. С. 414–443.

Плотинская О.Ю., Грознова Е.О., Грабежев А.И., Новоселов К.А. Минералогия и условия формирования руд серебро-полиметаллического рудопроявления Биксизак (Южный Урал, Россия) // Геология руд. месторождений. 2010. Т. 52. № 5. С. 439–456.

Плотинская О.Ю., Грабежев А.И., Зелтманн Р. Состав блеклых руд как элемент зональности порфировоэпитермальной системы (на примере рудопроявления Биксизак, Ю. Урал) // Геология руд. месторождений. 2015. Т. 57. № 1. С. 48–70.

Пужаков Б.А. Продуктивные гранитоиды, метасоматоз и оруденение Биргильдинско-Томинского рудного узла: Дис. ... канд. геол.-мин. наук. Екатеринбург: ИГиГ УрО РАН, 1999.

Ромашова Л.Н. Биргильдинское медно-порфировое месторождение // Геология руд. месторождений. 1984. № 2. С. 20–30.

Серавкин И.Б., Сначёв В.И. Стратиформные полиметаллические месторождения Восточной провинции Южного Урала, Россия // Геология руд. месторождений. 2012. Т. 54. № 3. С. 253–264.

Сначёв В.И., Кузнецов Н.С. Геология стратиформного полиметаллического месторождения Биксизак (Восточно-Уральская мегазона) // Геологический сб. 2009. № 8. С. 204–209.

Сначёв М.В., Сначёв А.В., Пучков В.Н. Новые данные по геологическому строению Амурского стратиформного месторождения (Южный Урал) // ДАН. 2015. Т. 463. № 5. С. 571–575.

Храмов А.А. К минералогии Андреевского месторождения золота (Южный Урал) // ЕЖЕГОДНИК-2014,

Труды Института геологии и геохимии им. акад. А.Н. Заварицкого. 2015. № 162. С. 188–191.

Язева Р.Г., Бочкарев В.В. Геология и геодинамика Южного Урала: Опыт геодинам. картирования / Екатеринбург: Рос. АН. Урал. отд-ние. Ин-т геологии и геохимии им. акад. А.Н. Заварицкого, 1998. 203 с.

Afifi A.M., Kelly W.C., Essene. J. Phase relations among tellurides, sulfides, and oxides: I. Thermochemical data and calculated equilibria // Econ. Geol. 1988. V. 83. P. 377–394.

Barton P.B. Jr, Skinner B.J. Sulfide mineral stabilities // Geochemistry of hydrothermal ore deposits. N.Y.: Wiley Interscience, 1979. P. 278–403.

Barton P.B. Jr., Toulmin P. The electrum-tarnish method of determination of the fugacity of sulfur in laboratory sulfide systems: Geochim. Cosmochim. Acta. 1964. V. 28. P. 619–640.

Baumgartner R., Fontboté L., Vennemann T. Mineral zoning and geochemistry of epithermal polymetallic Zn–Pb–Ag–Cu–Bi mineralization at Cerro de Pasco, Peru // Econ. Geol. 2008. V. 103. P. 493–537.

Belogub E., Novoselov K., Zaykov V. Gold-silver paragenetic evolution in ore deposits of the Magnitogorsk paleoisland arc, Southern Urals // Geochemistry, mineralogy and petrology. 2005. V. 43. C. 7-13.

Cabri L.J. Phase relations in the Ag-Au-Te system and their mineralogical significance // Econ. Geol. 1965. V. 60. C. 1569–1606.

Czamanske G.K. The FeS content of sphalerite along the chalcopyrite-pyrite-bornite sulfur fugacity buffer // Econ. Geol. 1974. V. 69. P. 1328–1334.

Lehmann B.J., Heinhorst J., Hein U., Neumann M., Weisser J.D., Fedosejev V.V. The Bereznjakovskoe gold trend, Southern Urals, Russia // Mineral. Deposita. 1999. V. 34. P. 241–249.

Morrison G.W., Rose W.J., Jaireth S. Geological and geochemical controls on the silver content (fineness) of gold in gold-silver deposits // Ore Geol. Rev. 1991. V. 6. \mathbb{N}_{9} 4. P. 333–364.

Palyanova G. Physicochemical modeling of the coupled behavior of gold and silver in hydrothermal processes: Gold fineness, Au/Ag ratios and their possible implications // Chemical Geology. 2008. V. 255. P. 399–413.

Plotinskaya O.Y., Grabezhev A.I., Groznova E.O., Seltmann R., Lehmann B. The Late Paleozoic porphyry-epithermal spectrum of the Birgilda–Tomino ore cluster in the South Urals, Russia // Journal of Asian Earth Sciences. 2014. V. 79. Part B. P. 910–931.

https://doi.org/10.1016/j.jseaes.2013.01.015

2020

Plotinskaya O.Y., Chugaev A.V., Seltmann R. Lead isotope systematics of porphyry-epithermal spectrum of the Birgilda-Tomino ore cluster in the South Urals, Russia // Ore Geol. Rev. 2017₁. V. 85. P. 204–215.

Plotinskaya O.Y., Grabezhev A.I., Tessalina S., Seltmann R., Groznova E.O., Abramov S.S. Porphyry deposits of the Urals: geological framework and metallogeny // Ore Geol. Rev. 2017₂. V. 85. P. 153–173.

Plotinskaya O.Y., Abramova V.D., Groznova E.O., Tessalina S.G., Seltmann R., Spratt J. Trace element geochemistry of

molybdenite from porphyry Cu deposits of the Birgilda-Tomino ore cluster (South Urals, Russia) // Mineral. Magazine. 2018. V. 82 (S1). P. S281–S306.

Potter II R.W. Pressure correction for fluid inclusions homogenization temperatures based on the volumetric properties of the system NaCl $-H_2O$ // Journal of Research of the U.S. Geological Survey. 1977. V. 5. No. 5. P. 603–607.

Prendergast K., Clarke G.W., Pearson N.J., Harris K. Genesis of pyrite-Au–As–Zn–Bi–Te zones associated with Cu-Au skarns: evidence from the Big Gossan and Wanagon Gold deposits, Ertsberg district, Papua, Indonesia // Econ. Geol. 2005. V. 100. P. 1021–1050.

Sillitoe R.H. Porphyry copper systems. Econ. Geol. 2010. V. 105. P. 3–41.

Siron C.R., Thompson J.F.H., Baker T., Darling R., Dipple G. Origin of Au-Rich carbonate-hosted replacement deposits of the Kassandra mining district, Northern Greece: evidence for late Oligocene, structurally controlled, and zoned hydrothermal systems // Econ. Geol. 2019. V. 114. P. 1389–1414.

Thompson J.F.H., Gale V.G., Tosdal R.M., Wright W.A. Chapter 4. Characteristics and formation of the Jerynimo carbonate-replacement gold deposit, Potrerillos District, Chile // Society of Economic Geologists Special Publication 11. 2004. P. 75–95.