КРАТКИЕ СООБЩЕНИЯ

УДК 553.2

СОСУЩЕСТВУЮЩИЕ ТЕТРАЭДРИТ—(Zn) И СФАЛЕРИТ НА ЗОЛОТОРУДНОМ МЕСТОРОЖДЕНИИ ТЕРЕМКИ (ВОСТОЧНОЕ ЗАБАЙКАЛЬЕ): ХИМИЧЕСКИЙ СОСТАВ И УСЛОВИЯ ОБРАЗОВАНИЯ

© 2021 г. Н. Г. Любимцева^{*a*, *}, В. Ю. Прокофьев^{*a*}, Н. С. Бортников^{*a*}

^аИнститут геологии рудных месторождений, петрографии, минералогии и геохимии РАН, Старомонетный пер., 35, Москва, 119017 Россия

> *e-mail: luy-natalia@yandex.ru Поступила в редакцию 05.03.2021 г. После доработки 30.05.2021 г. Принята к публикации 07.06.2021 г.

На золоторудном месторождении Теремки выделена парагенетическая ассоциация тетраэдрита-(Zn) и сфалерита. Определены химические составы этой пары сосуществующих минералов. В тетраэдрите-(Zn) соотношения Sb/(Sb + As) и Fe/(Fe + Zn) изменяются соответственно от 0.66 до 0.97 и от 0.28 до 0.40. Между соотношениями Sb/(Sb + As) и Fe/(Fe + Zn) установлена отрицательная корреляция. Содержание Fe в сфалерите изменяется от 0.88 до 1.43 мас. % (1.5–2.5 мол. % FeS). Оценены температура и фугитивность серы при отложении тетраэдрит-(Zn)-сфалеритового парагенезиса, которые изменялись от 130 до 280°С и от 10^{-13.2} до 10^{-8.1} соответственно.

Ключевые слова: месторождение Теремки, тетраэдрит-(Zn), сфалерит, сосуществующие минералы, распределение Fe и Zn, геотермометр, условия образования

DOI: 10.31857/S0016777021050038

введение

Реконструкция условий минералообразования, выявление закономерностей распределения элементов между сосуществующими минералами это одна из ключевых проблем современной минералогии, геохимии и учения о рудных месторождениях. При решении вопросов генезиса руд значительный интерес представляют минералы переменного состава, соотношение элементов в которых определяется физико-химическими параметрами минералообразующего флюида и закономерностями их распределения между минералом и флюидом.

Объектом исследования были выбраны сосуществующие блеклая руда и сфалерит золоторудного месторождения Теремки (Восточное Забайкалье). Эти два сульфида обладают широкими вариациями состава, часто находятся в ассоциации, и их химический состав (и его изменение) нередко используется в качестве индикатора физикохимических условий образования руд. Область использования минеральной ассоциации блеклой руды и сфалерита для оценки температур расширилась благодаря исследованиям термодинамических свойств этой пары минералов (Raabe, Sack, 1984; Sack, Loucks, 1985; Сэк, 2017; и др.). Месторождение Теремки находится в 5 км от крупного золоторудного месторождения Дарасун. Ассоциации минералов на этих месторождениях схожи, однако на месторождении Теремки ассоциации не изучены с той же детальностью (Тимофеевский, 1972; Прокофьев и др., 2004; Любимцева и др., 2018_{1,2}; и др.). Условия образования продуктивной стадии месторождения Теремки были определены по данным изучения флюидных включений в кварце (Прокофьев и др., 2004; Prokofiev et al., 2010), а изучение рудных минералов переменного состава, таких как блеклая руда и сфалерит, которые могут находиться в ассоциации с самородным золотом, с этой целью не проводилось.

КРАТКАЯ ХАРАКТЕРИСТИКА МЕСТОРОЖДЕНИЯ

Месторождение Теремки расположено в Читинской области, вблизи населенного пункта Вершино-Дарасунский (фиг. la, б). Месторождение состоит из серии пологих золоторудных турмалин-кварцевых сульфидных жил и зон вкрапленных руд и связано с системой разломов и гранодиорит-порфирами амуджиканского комплекса

(J₂-K₁), вмещающими породами являются габброиды (Pz₁) и гранитоиды среднепалеозойского-раннемезозойского возраста (Тимофеевский, 1972; Прокофьев и др., 2004: Prokofiev et al., 2010: и др.) (фиг. 1в). Минерализация золоторудных жил сформировалась в три стадии: раннерудную (кварц, турмалин, серицит, пирит, арсенопирит, халькопирит), продуктивную (кварц, пирит, халькопирит, сфалерит, блеклая руда, галенит, марказит, халькопирит, самородное золото, самородное серебро, пирротин, бурнонит, самородный висмут, висмутин, матильдит, айкинит, козалит, тетрадимит и др.) и пострудную (кварц, карбонат). Зерна самородного золота округлые, с плавными границами, размером до 50 мкм, находятся в срастаниях с кварцем, халькопиритом, сфалеритом, галенитом и минералами висмута. В некоторых жилах можно проследить смену от зальбандов к центру кварц-турмалиновых и кварц-пиритовых ассоциаций кварц-сульфидными парагенезисами с самородным золотом и кварц-карбонатными агрегатами в центре жил. Раздробленные кварцтурмалиновые и пиритовые обломки часто сцементированы сульфидами.

ВЗАИМООТНОШЕНИЯ МИНЕРАЛОВ

Рудные минералы на месторождении Теремки представлены обломками мономинеральных зерен и срастаниями сульфидов размером 1–2 мм и меньше, сцементированных карбонатом, а также образуют вкрапленность во вмещающей породе (фиг. 2a, б).

Наблюдение взаимоотношений минералов под микроскопом показало, что блеклая руда (тетраэдрит) и сфалерит совместно с галенитом, халькопиритом и карбонатом выполняют интерстиции между зернами кварца. Галенит-халькопирит-тетраэдритовые агрегаты цементируют раздробленные зерна раннего пирита (фиг. 2в) и образуют крупнозернистые агрегаты, сцементированные карбонатом (фиг. 2д, е). Взаимоотношения тетраэдрита и халькопирита в этих агрегатах неоднозначны. Наблюдаются как срастания со взаимными ровными границами между зернами этих минералов (фиг. 2д, е, з, 3б, г), так и прожилки тетраэдрита, секущие халькопирит (фиг. 2з, 3в). Сфалерит-галенит-халькопирит-тетраэдритовые агрегаты образуют крупнозернистые агрегаты в карбонате (фиг. 2ж, 3в), совместно с карбонатом выполняют интерстиции между зернами кварца (фиг. 3г), мелкие зерна этих агрегатов цементируются карбонатом (фиг. 3а, б). Эмульсионная вкрапленность халькопирита в сфалерите, приуроченная к халькопирит-галенитовым срастаниям, образующим цепочки выделений, свидетельствует о замещении сфалерита этими минералами (фиг. 2ж). Вероятно, на месторождении присутствуют две генерации блеклой руды: ранняя (тетраэдрит) образует взаимные срастания с халькопиритом, галенитом и сфалеритом, а другая – поздняя – обрастает ранние агрегаты тетраэдрита, замещает халькопирит и в виде тончайших прожилков проникает в сфалерит и галенит.

Одинаковое положение тетраэдрита и сфалерита относительно ранних минералов, ровные границы, отсутствие пересечений и коррозионных взаимоотношений между ними указывают на близкое по времени образование этих минералов при достижении равновесных условий.

ХИМИЧЕСКИЙ СОСТАВ ТЕТРАЭДРИТА И СФАЛЕРИТА

Химический состав тетраэдрита и сфалерита изучен с помощью рентгеноспектрального микроанализатора (РСМА) Сатевах-тісговеат (аналитик Н.Н. Кононкова, ГЕОХИ РАН). Условия анализа: ток зонда – 30 нА, ускоряющее напряжение – 20 кВ, диаметр пучка зонда – 2–5 мкм.

По данным PCMA (51 анализ), тетраэдрит-(Zn) на месторождении Теремки содержит низкие концентрации Ag (0.5–0.9 мас. %) и Bi (до 1 мас. %): соотношения Sb/(Sb + As) – 0.66–0.97 и Fe/(Fe + Zn) – 0.27–0.43 (фиг. 4а). Между соотношениями Sb/(Sb + As) и Fe/(Fe + Zn) в тетраэдрите отмечается средняя отрицательная корреляция (коэффициент корреляции –0.6).

Сфалерит на месторождении (по данным 15 анализов) характеризуется низкими содержаниями Fe: 0.52–2.39 мас. % (0.9–4.2 мол. % FeS), концентрации Cu не превышают 0.56 мас. %, Cd 0.24– 0.86 мас. %. Ранее сообщалось, что содержание Fe в

Фиг. 1. Географическая (а, б) и геологическая (в) схемы размещения золоторудного месторождения Теремки (Восточное Забайкалье). Геологическая схема составлена по материалам Дарасунской ГРЭ и с использованием материалов геологической съемки масштаба 1 : 200000. 1 – метаморфических комплекс (PR₁): гнейсы и кристаллические сланцы; 2 – кручининский габбро-амфиболитовый комплекс (Pz₁k); 3-6 – крестовский комплекс (Pz₁k): 3 – гранодиориты, диориты, 4 – граниты, плагиограниты, 5 – граниты, 6 – дайки лампрофиров; 7-8 – аманский комплекс (Ta): 7 – граниты, гранодиориты, диориты, диориты, монцодиориты, 8 – граниты, аляскиты; 9-13 – амуджиканский комплекс (J_3as): 9 – риолиты, фельзиты и их туфы и лавобрекчии, 10 – гранит-порфиры и плагиогранит-порфиры, 11 – дайки гранит-порфиров, 12 – дайки фельзитов, 13 – дайки лампрофиров; 14 – нерчуганский комплекс ще лочных гранитов (J_3n); 15-16 – раннемеловой субвулканический комплекс (K_1): 15 – риолиты, фельзиты, перлиты, 7 – аллювиальные отложения (Q_{IV}); 18 – тектонические нарушения: достоверные (а), предполагаемые (б); 19 – внемасштабные метасоматические тела: березитов (а), турмалинитов (б); 20 – контур месторождения.

Фиг. 2. Взаимоотношения минералов в рудах Теремкинского месторождения. а – обломки сульфидов и их срастания (черное) сцементированы карбонатом (белое); б – агрегаты сульфидов образуют гнезда и вкрапленность (светлое) во вмещающих нерудных минералах (темно-серое); сульфиды совместно с карбонатом (Carb) выполняют интерстиции между зернами кварца (Qz); в – катаклазированный пирит (Py) сцементирован галенит-халькопирит-тетраэдритовым агрегатом; г – на крупнозернистый тетраэдрит (Td) нарастает галенит-тетраэдритовый агрегат; трещины в нем залечены карбонатом; д – агрегат тетраэдрита с включениями халькопирита (Ccp) и галенита (Gn) в карбонате; е – зерна тетраэдрита и срастания тетраэдрита с галенитом и халькопиритом сцементированы карбонатом; ж – срастание тетраэдрита, сфалерита (Sp) и галенита. Галенит в срастании с халькопиритом образует цепочки выделений в сфалерите. Сфалерит на контактах с сульфидами и по периферии содержит эмульсионную вкрапленность халькопирита; з – галенит-халькопирит-тетраэдритовый агрегат, тетраэдритовый агрегат, с сульфидами и по периферии содержит эмульсионную вкрапленность халькопирита; з – галенит-халькопиритом как взаимные срастания с ровными границами, так и замещает его, образуя сесть прожилков. Здесь и далее: точками отмечены РСМА-анализы и указаны температуры, рассчитанные для сосуществующих тетраэдрита-(Zn) и сфалерита (по усредненным составам) и для неоднородного тетраэдрита-(Zn). Фотографии в отраженном свете.

Фиг. 3. Взаимоотношения сосуществующих тетраэдрита-(Zn) и сфалерита в рудах Теремкинского месторождения. а – обломки зерен тетраэдрита и срастания тетраэдрита со сфалеритом, кристаллы кварца сцементированы карбонатом; б – агрегат тетраэдрита с включениями сфалерита, галенита и халькопирита в карбонате; в – аллотриоморфнозернистое срастание тетраэдрита, сфалерита и халькопирита. Тетраэдрит замещает халькопирит, образуя в нем прожилки и корродируя по краям, проникает по контакту халькопирита и сфалерита, содержит включения галенита; г – сфалеритгаленит-халькопирит-тетраэдритовый агрегат с карбонатом выполняют интерстиции между зернами кварца. Фотографии в отраженном свете.

Фиг. 4. Состав тетраэдрита-(Zn) (а, б) и гистограмма рассчитанных температур кристаллизации тетраэдрит-сфалеритового парагенезиса (в) Теремкинского месторождения. Пунктиром на фиг. 4а обозначена область составов блеклой руды, сосуществующей со сфалеритом, на месторождении Дарасун (Любимцева и др., 2018₂).

сфалерите варьирует от 1.74 до 8.2 мас. %, что соответствует 3.0–13.8 мол. % FeS (Прокофьев и др., 2004).

Сосуществующие тетраэдрит-(Zn) и сфалерит были найдены в образце из жилы № 2 (обр.2419шт82). Состав тетраэдрита-(Zn) (мас. %): Cu 38.76– 39.86, Ag 0.60–0.94, Zn 4.69–5.54, Fe 1.82–2.63, Sn 0.11–0.27, Cd до 0.14, Hg до 0.17, Sb 19.96– 27.95, As 0.50–6.46, Bi 0.05–0.77, Te до 0.07, S 24.23–24.86, Se до 0.09; обобщенная формула $\begin{array}{l} (Cu_{10.09-10.24}Ag_{0.09-0.14})_{\Sigma(10.20-10.38)}(Zn_{1.18-1.40}Fe_{0.54-0.78}Sn_{0.02-0.04}Cd_{0-0.02}Hg_{0-0.01})_{\Sigma(1.95-2.02)}(Sb_{2.68-3.83}As_{0.11-1.41}Bi_{0-0.06}Te_{0-0.01})_{\Sigma(3.96-4.17)}(S_{12.53-12.70}Se_{0-0.02})_{\Sigma(12.53-12.70)};\\ \text{соотношения Sb/(Sb + As) 0.66-0.97 и Fe/(Fe + Zn) 0.28-0.40 (табл. 1, 2). Состав сфалерита (мас. %): Zn 64.36-65.51, Fe 0.88-1.43, Cu до 0.56, Cd 0.29-0.86, S 32.64-33.42; обобщенная формула (Zn_{0.96-0.97}Fe_{0.02-0.03}Cu_{0-0.01}Cd_{0-0.01})_{\Sigma(0.99-1.00)}S_{1.00-1.01};\\ \text{железистость} - 1.5-2.5 мол. % FeS. \end{array}$

УСЛОВИЯ ОБРАЗОВАНИЯ СФАЛЕРИТ-ТЕТРАЭДРИТОВЫХ ПАРАГЕНЕЗИСОВ

Описанные выше взаимоотношения тетраэдрита и сфалерита предполагают равновесные условия их кристаллизации, что позволяет использовать эту пару минералов для определения температуры образования с помощью методов геотермометрии.

Температуры кристаллизации сосуществующих тетраэдрита-(Zn) и сфалерита рассчитаны по геотермометру (Sack, Loucks, 1985), в основе которого лежат данные распределения Fe и Zn между этими минералами и термодинамическая модель теннантит-тетраэдритового твердого раствора. Распределение Fe и Zn между сосуществующими блеклой рудой и сфалеритом характеризуется реакцией обмена Fe и Zn между тетраэдритом и сфалеритом:

$$\frac{1}{2}Cu_{10}Fe_{2}Sb_{4}S_{13} + ZnS_{p}S = \frac{1}{2}Cu_{10}Zn_{2}Sb_{4}S_{13} + FeS_{p}S_{p}$$

и взаимной реакцией:

$$Cu_{10}Fe_{2}Sb_{4}S_{13}+Cu_{10}Zn_{2}As_{4}S_{13}=Cu_{10}Zn_{2}Sb_{4}S_{13}+Cu_{10}Fe_{2}As_{4}S_{13},\\ Td-(Fe)$$

которые описывают изменение состава в изоморфной серии теннантит-тетраэдрита.

Температуры, рассчитанные по сфалерит-блеклорудному геотермометру (Sack, Loucks, 1985), находятся в диапазоне $(130-245) \pm 25^{\circ}$ С, оценены для 5 участков, показанных на фиг. 2ж, 3. Из рассчитанных 13 значений температур: 8 — получены по анализам, выполненным на контактах сосуществующих зерен минералов (130–245°С); 5 — по усредненных анализам составов сосуществующих зерен минералов на каждом участке (175–210°С) (табл. 1).

Температуры кристаллизации неоднородного тетраэдрита-(Zn), сосуществующего со сфалеритом постоянного состава, рассчитаны по геотермометру, разработанному для блеклой руды с осцилляторной зональностью (Raabe, Sack, 1984). Применение этого геотермометра основано на "принципе локального равновесия" (Коржинский, 1973). Авторы этого геотермометра предполагают изотермальное отложение зональной блеклой руды и локальное равновесие относительно обмена Fe и Zn между водным раствором и каждой последовательной зоной роста блеклой руды, при которых сфалерит имеет постоянный состав, а отношение Fe/Zn в зоне роста обусловлено условиями осмотического равновесия обмена Fe и Zn.

Применение геотермометра (Raabe, Sack, 1984) к неоднородной блеклой руде предполагает постоянный состав сфалерита, сосуществующего с этой блеклой рудой. Поскольку содержание Fe в сфалерите в парагенезисе с тетраэдритом-(Zn) практически не варьирует (находится в диапазоне 1.5–2.5 мол. % FeS), следовательно, мы можем предположить, что достигалось осмотическое равновесие обмена Fe и Zn между тетраэдритом-(Zn) и сфалеритом.

Температура рассчитывалась по уравнению:

$$T(K) = -((664 \pm 30)/m),$$

где T(K) — температура Кельвина, m — наклон кривой, определенный из точек составов зональной блеклой руды, нанесенных на график As/(As + + Sb) против ln(Zn/Fe).

Температуры по неоднородному тетраэдриту-(Zn) были оценены для трех участков, представленных на фиг. 2г-е, и лежат в интервале 195– 280°С (табл. 2). На фиг. 46 показаны вариации состава тетраэдрита-(Zn) и определен наклон прямой линии регрессии для каждого участка.

Фугитивность серы оценена с использованием данных о рассчитанных температурах кристаллизации сосуществующих сфалерита и тетраэдрита-(Zn) и содержаниях FeS в сфалерите, ассоциирующем с сульфидами железа, последнее из которых является функцией температуры, давления и активности серы (Barton, Toulmin, 1966; Scott, Barnes, 1971; Добровольская и др., 1991). Ее величина вычислялась по уравнению (Lusk, Calder, 2004):

$$lg fS_2 = 11.01 - 9.49(1000/K) + + [0.187 - 0.252(1000/K)] (FeS^{Sp}) + + [0.35 - 0.2(1000/K)] (CuS^{Sp}),$$

где K – температура Кельвина; FeS^{Sp} и CuS^{Sp} – соответственно мольные доли FeS и CuS в сфалерите.

Рассчитанная по уравнению (Lusk, Calder, 2004) фугитивность серы при отложении сфалерит-тетраэдритовых парагенезисов попадает в область значений $10^{-13.0}-10^{-8.1}$.

2021

иdп 1		$\lg fS_2$	-9.3			-8.1	C 01	-10.2	10.2	C .01-		-11.0			1	•		4. Y-	8 3	
серь		T, °C	211			241	10.7	761	10.0	061		176			271	101		/.07	111	0.04
івности	г, мол.%	CuS		<u>0.09-0.86</u> 0.33		0.09		0.17		0.86			0.06 - 0.14	0.09		0.06		$\frac{0-0.27}{0.14}$		0.27
и фугити	Сфалери	FeS		2.12-2.22 2.16		2.17		2.14		2.12			2.24-2.49	2.40		2.24		$\frac{1.93 - 2.02}{1.97}$		1.93
ературы	тидде	Fe/(Zn + + Fe)	$\frac{0.28 - 0.36}{0.32}$		0.28		0.34		0.36		0.37 - 0.40	0.38			0.37		$\frac{0.28 - 0.35}{0.31}$		0.31	
а и темп	Тетраз	Sb/(As + + Sb)	$\frac{0.78 - 0.93}{0.86}$		0.87		0.85		0.78		0.82 - 0.89	0.86			0.88		$\frac{0.73 - 0.97}{0.84}$		0.72	
алерит		Сумма	100.82	99.61	100.64	69.66	100.32	99.64	101.24	99.42	100.60		99.85		100.30	99.75	100.63	100.68	100.88	100.43
-(Zn) и сф		S	<u>24.43–24.71</u> 24.59	<u>32.64–32.88</u> 32.73	24.51	32.72	24.43	32.64	24.71	32.66	24.40-24.59	24.49	32.68-33.16	32.94	24.47	32.99	<u>24.23–24.86</u> 24.59	$\frac{33.11 - 33.42}{33.27}$	24.84	33.11
аэдрита		Bi	<u>0.05-0.77</u> 0.31		0.18		0.77		0.05		0.21-0.57	0.32			0.57		$\frac{0.15 - 0.46}{0.33}$		0.15	
цих тетр		As	$\frac{1.29-4.28}{2.67}$		2.37		2.75		4.28		1.98-3.46	2.52			2.25		$\frac{0.50 - 5.22}{2.86}$		5.22	
ществуюи	%	Sb	<u>24.15–27.47</u> 25.72		26.38		24.86		24.15		24.82-26.61	25.80			25.75		<u>22.34-27.95</u> 24.95		22.34	
130B cocyl	ентрация, мас	Cd	н.п.о.	$\frac{0.51 - 0.56}{0.54}$	н.п.о.	0.54	н.п.о.	0.55	н.п.о.	0.56	н.п.о0.11	н.п.о.	0.33 - 0.45	0.41	н.п.о.	0.45	н.п.о.	$\frac{0.63 - 0.86}{0.75}$	н.п.о.	0.63
роанали	Конце	Sn	$\frac{0.17 - 0.27}{0.22}$		0.22		0.17		0.27		0.19-0.22	0.21			0.22		$\frac{0.11 - 0.22}{0.18}$		11.0	
ных мик и		Fe	$\frac{1.85-2.46}{2.12}$	$\frac{1.21 - 1.27}{1.24}$	1.88	1.24	2.27	1.22	2.46	1.21	2.45-2.63	2.53	1.28-1.43	1.38	2.45	1.28	$\frac{1.82 - 2.34}{2.04}$	$\frac{1.11 - 1.17}{1.14}$	2.09	1.11
оспекталь и Теремк		υZ	$\frac{5.03 - 5.54}{5.32}$	<u>64.36–65.08</u> 64.89	5.54	65.07	5.19	65.06	5.03	64.36	4.69-4.97	4.81	64.91-65.28	65.06	4.82	64.99	<u>5.04–5.49</u> 5.35	<u>65.37–65.51</u> 65.44	5.49	65.37
і рентгенс орождени		Cu	<u>38.92–39.60</u> <u>39.23</u>	0.06-0.56	38.92	0.06	39.16	0.11	39.60	0.56	38.96-39.39	39.23	0.04 - 0.09	0.06	38.96	0.04	<u>39.03–39.86</u> <u>39.41</u>	<u>н.п.о0.18</u> 0.09	39.86	0.18
езультать 1 на мест		Ag	$\frac{0.62 - 0.72}{0.66}$		0.64		0.72		0.62		0.60-0.81	0.70			0.81		$\frac{0.69 - 0.94}{0.85}$		69.0	
I. Р.		и	4	4	-	-	-	-	-	-	4	-	"	5	1	-	4	7	-	-
ща 1 10ж6	.1	ниМ	Td	Sp	Td	Sp	Τd	Sp	Τd	Sp	ΡE		u.S.	2	Td	Sp	Td	Sp	Td	Sp
абли с отл		Φ		~	~	4 ^{3a}	10	5	2	~			50	20	_	0	~	4 3 _B	10	
Т их	Ц	л įV	-	(4	(1)	4	41	ý		~	5	1	10		Ξ	11	10	14	10	16

482

ЛЮБИМЦЕВА и др.

ГЕОЛОГИЯ РУДНЫХ МЕСТОРОЖДЕНИЙ том 63 № 5 2021

	$\lg fS_2$	-10.6		=			4 .8-	10.2		5 C C C	7.61-	е 0.07 кон-
	T, °C	180		131	101		233	186	001	961	671	l5), Т зы на
т, мол.%	CuS		$\frac{0.11 - 0.47}{0.29}$		0.11		0.47		0.08-0.12 0.11		0.12	.09 (ан.] – анали
Сфалери	FeS		$\frac{1.53 - 2.13}{1.83}$		1.53		2.13		$\frac{0.92-4.23}{1.84}$		1.24	:. %): Se (стальные
тиды	Fe/(Zn + + Fe)	$\frac{0.30 - 0.37}{0.34}$		0.37		0.30		$\frac{0.30 - 0.34}{0.32}$		0.30		ание (мас 23—24), о
Тетраз	Sb/(As + + Sb)	<u>0.65-0.83</u> 0.80		0.66		0.82		$\frac{0.81 - 0.86}{0.84}$		0.86). Содерж 4, 17–18,
	Сумма	100.52	100.20	99.40	100.11	101.06	100.28	101.17	98.67	101.46	98.77	ы (<2б) 0, 13—1
	s	24.34–24.84 24.58	$\frac{33.37 - 33.39}{0.38}$	24.84	33.39	24.77	33.37	<u>24.57–24.63</u> 24.60	$\frac{32.32 - 32.53}{32.39}$	24.63	32.53	обнаружени ан. 1–2, 9–1
	Bi	$\frac{0.19 - 0.57}{0.42}$		0.54		0.57		0.22-0.60		0.22		предела нализы (;
	As	<u>2.32–6.46</u> 3.63		6.46		3.28		<u>2.63–3.49</u> 3.02		2.63		– ниже енные аі
% .	Sb	<u>19.96–25.94</u> 24.12		19.96		24.7		24.83–25.95 25.44		25.95		дов, н.п.о. ие. Усредн
нтрация, мас	Cd	н.п.о.–0.14 н.п.о.	$\frac{0.29 - 0.31}{0.31}$	н.п.о.	0.32	0.14	0.29	<u>н.п.о0.12</u> н.п.о.	<u>н.п.о0.30</u> 0.21	0.12	н.п.о.	ство анали нее значен
Конце	Sn	$\frac{0.18 - 0.23}{0.21}$		0.18		0.22		0.19-0.22		0.22		нден – средн
	Fe	$\frac{2.03 - 2.51}{2.24}$	$\frac{0.88 - 1.23}{1.06}$	2.51	0.88	2.03	1.23	<u>1.98–2.24</u> 2.08	$\frac{0.52 - 2.39}{1.04}$	1.98	0.70	іерит, <i>n</i> – аменател
	Zn	$\frac{4.93 - 5.43}{5.19}$	<u>65.08–65.45</u> 65.27	4.98	65.45	5.43	65.08	<u>5.14-5.35</u> 5.27	<u>63.26–65.69</u> 64.96	5.35	65.39	, Sp – сфал тавов, в зн
	Cu	<u>38.76–39.44</u> 39.21	$\frac{0.07 - 0.31}{0.19}$	39.32	0.07	39.08	0.31	<u>39.39–39.64</u> 39.51	<u>0.05-0.08</u> 0.07	39.64	0.08	эдрит-(Zn) апазон сос
	Ag	$\frac{0.61 - 0.92}{0.79}$		0.61		0.84		0.64-0.73 0.70		0.72		d — тетра гтеле — ди
	и	5	7		-	-	-	e e	4	-	-	ие. Т исли
.1	ниМ	Td	Sp	Td	Sp	Td	Sp	Td	Sp	Td	Sp	ечані . В ч
	лар Фиг	7	∞	9 3r	0	_	5		4 23	5	9	рим(н. 7)
ц,	л оN	-		-	Ď.	7	7	6	Ď.	5	5	П (а

СОСУЩЕСТВУЮЩИЕ ТЕТРАЭДРИТ–(Zn) И СФАЛЕРИТ

483

Таблица 1. Продолжение

ГЕОЛОГИЯ РУДНЫХ МЕСТОРОЖДЕНИЙ том 63 № 5 2021

		Кон	центра	ция, ма	с. %				Fe/(7n + Fe)	$\Delta c/(\Delta c + Ch)$	ln(Zn/Ee)	2	J₀ L
<u> </u>	Zn	Fe	Sn	Sb	As	Bi	s	Сумма	10/ 11/ 11/	(nc + ev)/ev	(2.1/117)111	Ξ.	7, 0
44	5.38	1.95	0.19	26.61	1.72	0.33	24.39	100.70	0.30	0.10	0.86		
86	5.05	2.35	0.23	23.50	4.52	0.18	24.96	101.48	0.35	0.24	0.61		
52	5.28	2.06	0.20	25.52	3.05	Н.П.О.	24.34	100.61	0.31	0.16	0.78		
47	5.21	2.05	0.20	25.80	2.25	0.45	24.18	100.25	0.32	0.12	0.78	-1.20	280 ± 25
.14	5.08	2.39	0.07	22.66	5.34	0.28	25.11	101.84	0.36	0.28	09.0		
.26	4.96	2.29	0.13	25.70	2.41	0.42	24.42	100.29	0.35	0.13	0.62		
.70	5.04	2.33	0.20	23.01	4.56	0.35	24.79	100.87	0.35	0.24	0.61		
3.96	5.33	1.96	0.19	26.30	1.62	0.55	24.45	100.01	0.30	0.09	0.84		
).32	5.17	2.15	0.15	26.10	2.44	0.27	24.47	100.72	0.33	0.13	0.72		
9.29	5.34	2.00	0.24	26.21	1.69	0.61	24.39	100.52	0.30	0.09	0.82		
9.24	5.38	1.92	0.22	26.48	1.82	09.0	24.44	100.76	0.29	0.10	0.87	1.01	cc + 7 cc
8.91	5.59	1.75	0.22	27.33	0.96	0.71	23.99	99.94	0.27	0.05	1.00	10.1-	C2
99.6	5.51	1.98	0.19	25.54	3.10	0.07	24.69	101.27	0.30	0.16	0.87		
).63	5.20	2.17	0.20	24.87	3.62	0.21	24.88	101.39	0.33	0.19	0.72		
.02	5.17	2.11	0.23	27.05	1.74	0.13	24.43	100.60	0.32	0.09	0.74		
9.91	4.95	2.48	0.17	24.50	3.89	0.23	24.92	101.73	0.37	0.21	0.53		
9.62	5.09	2.28	0.13	26.69	2.03	0.22	24.57	101.29	0.34	0.11	0.65		
.47	5.08	2.22	0.18	26.31	1.90	0.81	24.28	100.97	0.34	0.11	0.67	-1.42	194 ± 21
.65	4.87	2.41	0.19	24.96	3.00	0.50	24.84	101.13	0.37	0.16	0.55		
.64	4.92	2.55	0.23	24.03	3.99	0.39	25.02	101.55	0.38	0.21	0.50		

ГЕОЛОГИЯ РУДНЫХ МЕСТОРОЖДЕНИЙ

ЛЮБИМЦЕВА и др.

484

№ 5 2021

том 63

ОБСУЖДЕНИЕ

Сообщалось, что рудообразующий флюид Теремкинского месторождения близок по составу и физико-химическим параметрам к флюиду месторождения Дарасун (Прокофьев и др., 2004 и ссылки там), что также отражается в схожести составов минералов руд. Сходство обнаружено также и в составах блеклой рулы и сфалерита на этих месторождениях. Железистость сфалерита на месторождении Теремки варьирует от 0.52 до 8.20 мас. %, что соответствует 0.9-13.8 мол. % FeS (Прокофьев и др., 2004 и данная работа), на Дарасуне – от 0.45 до 4.71 мас. % (0.8–8.2 мол. % FeS) (Любимцева и др., 2018₂ и ссылки там). Состав блеклой руды на месторождениях несколько отличается. На месторождении Дарасун установлен почти полный диапазон составов твердого раствора теннантит-тетраэдрита с непрерывным изоморфизмом между Sb и As и между Fe и Zn (Любимцева и др., 2018₁). На месторождении Теремки был обнаружен только тетраэдрит-(Zn). Однако в блеклых рудах обоих месторождений между соотношениями Sb/(Sb + As) и Fe/(Fe + Zn) проявляется отрицательная корреляция.

Составы сосуществующих тетраэдрита и сфалерита на этих месторождениях также похожи. Железистость сфалерита на месторождении Теремки 0.88-1.43 мас. % (1.5-2.5 мол. % FeS), на Дарасуне – 0.79–2.80 мас. % (1.4–4.9 мол. % FeS) (Любимцева и др., 2018₂). Тетраэдрит на месторождении Теремки попадает в область составов тетраэдрита месторождения Дарасун (фиг. 4а), но имеет более сурьмянистые составы, сосуществующие со сфалеритом. На месторождении Теремки соотношение Sb/(Sb + As) в тетраэдрите варьирует от 0.66 до 0.97, на Дарасуне – от 0.70 до 0.84 (Любимцева и др., 2018₂). Соотношения Fe/(Fe + Zn) в тетраэдрите схожи: на Теремках – 0.28-0.40, на Дарасуне — 0.20-0.48 (Любимцева и др., 2018₂).

Результаты данного исследования показывают, что формирование сфалерит-тетраэдритовых парагенезисов на золоторудном месторождении Теремки происходило при температуре от 130 до 280°С (фиг. 4в) и фугитивностях серы 10^{-13.0}-10^{-8.1}. Полученные данные хорошо согласуются с температурами гомогенизации (216-298°С) флюидных включений в кварце продуктивной стадии месторождения Теремки (Прокофьев и др., 2004; Prokofiev et al., 2010). Более низкие температуры, рассчитанные для сфалерит-тетраэдритовых агрегатов, можно объяснить более широкой областью кристаллизации ассоциации тетраэдрита со сфалеритом и карбонатом, но без кварца. Фугитивность серы, рассчитанная в представленной работе, сходна с фугитивностью $(10^{-15}-10^{-10})$, определенной по температурам гомогенизации включе-

ГЕОЛОГИЯ РУДНЫХ МЕСТОРОЖДЕНИЙ том 63 № 5

ний в продуктивном кварце в ассоциации со сфалеритом (Прокофьев и др., 2004).

Температуры кристаллизации сфалерит-тетраздритовых парагенезисов на месторождении Теремки (130 до 280°С) ниже, чем температуры образованиях этих парагенезисов на месторождении Дарасун (175–355°С) (Любимцева и др., 2018₂), и больше схожи с температурами формирования бурнонит-зелигманит-блеклорудных парагенезисов (100–250°С) месторождения Дарасун (Любимцева и др., 2019). Фугитивность серы при формировании сфалерит-тетраэдритовых парагенезисов на месторождении Теремки (10^{-13.0}–10^{-8.1}) в целом близка к фугитивности серы на месторождении Дарасун (10^{-11.0}–10^{-5.1}) (Любимцева и др., 2018₂), но отличается более низкими значениями.

выводы

1. Выделена парагенетическая ассоциация тетраэдрита-(Zn) и сфалерита и установлены сосуществующие составы этой пары минералов на золоторудном месторождении Теремки. В тетраэдрите соотношение Sb/(Sb + As) варьирует от 0.66 до 0.97, Fe/(Fe + Zn) – от 0.28 до 0.40, между соотношениями Sb/(Sb + As) и Fe/(Fe + Zn) установлена отрицательная корреляция. Содержание железа в сфалерите изменяется от 0.88 до 1.43 мас. % (1.5–2.5 мол. % FeS).

2. Оценены условия образования сфалериттетраэдритовых парагенезисов на месторождении: формирование сосуществующих тетраэдрита-(Zn) и сфалерита происходило при температуре 130–280°С и фугитивности серы 10^{-13.2}–10^{-8.1}.

3. Проведено сравнение составов минералов (блеклой руды и сфалерита) и физико-химических параметров формирования (температуры и фугитивности серы) изученного объекта с месторождением Дарасун. Показано сходство составов блеклой руды и сфалерита на этих месторождениях и близость физико-химических параметров формирования продуктивных ассоциаций рудных жил.

БЛАГОДАРНОСТИ

Авторы признательны анонимным рецензентам за конструктивные замечания.

ФИНАНСИРОВАНИЕ

Исследования проведены при финансовой поддержке госзадания 121041500220-0 "Структурно-химические неоднородности и парагенетические ассоциации минералов как отражение процессов петро- и рудогенеза".

2021

СПИСОК ЛИТЕРАТУРЫ

Добровольская М.Г., Бортников Н.С., Наумов В.Б. Железистость сфалерита как показатель режима серы при формировании рудных месторождений // Геология руд. месторождений. 1991. № 5. С. 80–93.

Коржинский Д.С. Теоретические основы анализа парагенезисов минералов. М.: Наука, 1973.

Любимцева Н.Г., Бортников Н.С., Борисовский С.Е., Прокофьев В.Ю., Викентьева О.В. Блеклая руда и сфалерит золоторудного месторождения Дарасун (Восточное Забайкалье, Россия). Часть 1: Минеральные ассоциации и срастания, химический состав и его эволюция // Геология руд. месторождений. 2018₁. Т. 60. № 2. С. 109–140.

Любимцева Н.Г., Бортников Н.С., Борисовский С.Е., Прокофьев В.Ю., Викентьева О.В. Блеклая руда и сфалерит золоторудного месторождения Дарасун (Восточное Забайкалье, Россия). Часть 2: Распределение железа и цинка, флюидные включения, условия образования // Геология руд. месторождений. 2018₂. Т. 60. № 3. С. 251–273.

Любимцева Н.Г., Бортников Н.С., Борисовский С.Е. Сосуществующие бурнонит-зелигманитовый и теннантиттетраэдритовый твердые растворы на золоторудном месторождении Дарасун (Восточное Забайкалье, Россия): оценка температур минералообразования // Геология руд. месторождений. 2019. Т. 61. № 3. С. 85–104.

Прокофьев В.Ю., Зорина Л.Д., Бакшеев И.А., Плотинская О.Ю., Кудрявцева О.Е., Ишков Ю.М. Состав минералов и условия формирования руд Теремкинского месторождения золота (Восточное Забайкалье, Россия) // Геология руд. месторождений. 2004. Т. 46. № 5. С. 385–406.

Сэк Р.О. Термохимия блеклых руд: несмесимость внутри куба составов (Cu,Ag)₁₀(Fe,Zn)₂(Sb,As)₄S₁₃ // Петрология. 2017. Т. 25. № 5. С. 504–522.

Тимофеевский Д.А. Геология и минералогия Дарасунского золоторудного региона. М.: Недра, 1972.

Barton P.B., Toulmin P. Phase relations involving sphalerite in the Fe–Zn–S system // Econ. Geol. 1966. V. 61. \mathbb{N} 5. P. 815–849.

Lusk J., Calder B.O.E. The composition of sphalerite and associated sulfides in reactions of the Cu–Fe–Zn–S, Fe–Zn–S and Cu–Fe–S systems at 1 bar and temperatures between 250 and 535°C // Chem. Geol. 2004. V. 203. No 3. P. 319–345.

Prokofiev V.Y., Garofalo P.S., Bortnikov N.S., Kovalenker V.A., Zorina L.D., Grichuk D.V., Selektor S.L. Fluid inclusion constraints on the genesis of gold in the Darasun district (Eastern Transbaikalia), Russia // Econ. Geol. 2010. V. 105. \mathbb{N} 2. P. 395–416.

Raabe K.C., Sack R.O. Growth zoning in tetrahedrite-tennantite from the Hock Hocking mine, Alma, Colorado // Can. Mineral. 1984. V. 22. P. 577–584.

Sack R.O., Loucks R.R. Thermodynamic properties of tetrahedrite-tennantite: constraints on the interdependence of the Ag \leftrightarrow Cu, Fe \leftrightarrow Zn, Cu \leftrightarrow Fe, and As \leftrightarrow Sb exchange reactions // Am. Mineral. 1985. V. 70. No 11–12. P. 1270– 1289.

Scott S.D., Barnes H.L. Sphalerite geothermometry and geobarometry // Econ. Geol. 1971. V. 66. P. 653–669.