УДК 553.26+544.31+550.41+544.03

МЕДЬ В ГИДРОТЕРМАЛЬНЫХ СИСТЕМАХ: ТЕРМОДИНАМИЧЕСКОЕ ОПИСАНИЕ КОМПОНЕНТОВ СИСТЕМЫ Cu(I)–O–H

© 2023 г. Н. Н. Акинфиев^{а, b,} *, А. В. Зотов^а

^аИнститут геологии рудных месторождений, петрографии, минералогии и геохимии РАН, Старомонетный пер., 35, Москва, 119017 Россия

^b Российский государственный геологоразведочный университет имени С. Орджоникидзе, ул. Миклухо-Маклая, 23, Москва, 117997 Россия

*e-mail: akinfiev@igem.ru

Поступила в редакцию 27.06.2022 г. После доработки 22.07.2022 г. Принята к публикации 22.07.2022 г.

Проведена обработка имеющихся в литературе экспериментальных данных по растворимости Cu (мет.) и Cu₂O (куприт) в воде в гидротермальных условиях. Проведены ключевые эксперименты по растворимости куприта при 300°C, давлении насыщенного пара H₂O в зависимости от pH раствора. В результате получен набор значений термодинамических свойств для 25°C, 1 бар и параметров уравнения моделей HKF (Хелгесон–Киркхэм–Флауэрс) и AD (Акинфиев–Даймонд) для гидроксокомплексов Cu(I), позволяющие описывать их поведение в широком диапазоне температур (0–600°C), давлений (1–3000 бар) и плотностей водного флюида (0.01–1 г см⁻³). Методами термодинамического моделирования показано, что ион Cu⁺ является доминирующим в кислой и слабощелочной области водного растворителя во всем исследованном диапазоне температур и давлений. Влияние нейтрального гидроксокомплекса CuOH начинает сказываться в щелочной области при T > 300°C и растет с увеличением температуры. Второй гидроксокомплекс меди

 $Cu(OH)_{2}^{-}$ проявляет себя лишь в сильнощелочной области, причем температура практически не влияет на его поведение.

Ключевые слова: медь, комплексообразование, термодинамические свойства, гидротермальный процесс, моделирование

DOI: 10.31857/S0016777023010021, EDN: LARZSH

введение

Для понимания процессов переноса и осаждения меди при образовании месторождений, в первую очередь медно-порфировых, важно знать термодинамические свойства иона и комплексных соединений меди(I) в гидротермальных растворах. В настоящей работе рассматривается только простейшая система Cu(I)–O–H.

Работа предпринята в связи со значительными расхождениями результатов экспериментов, проведенных Л. Варьяш и др. (1989) и Д.А. Палмером с коллегами (Palmer et al., 2001, 2011). В этих исследованиях различно оценивается устойчивость как иона Cu⁺, так и нейтрального комплекса Cu(OH)_{aq}.

ЭКСПЕРИМЕНТАЛЬНОЕ ИССЛЕДОВАНИЕ РАСТВОРИМОСТИ АССОЦИАЦИИ Си_(КР) + Си₂О_(КУПРИТ) В ЗАВИСИМОСТИ ОТ рН ПРИ 300°С И ДАВЛЕНИИ НАСЫЩЕННОГО ПАРА

Методика эксперимента

Опыты проведены закалочным методом в автоклавах из титанового слава BT-8, футерованных фторопластом. Внутренний объем автоклавов ~25 мл. Растворимость определялась в воде, растворах борной кислоты (ос. ч.) и буры (х. ч.), а также в 0.002 *m* растворе NaOH (ос. ч.). Все растворы готовили на деионизированной воде MilliQ. Раствор 0.002 *m* NaOH (ос. ч.) готовили непосредственно перед опытом разведением высококонцентрированного раствора NaOH водой,

Таблица 1. Растворимость куприта (в присутствии самородной меди) в воде при 300° С и давлении насыщенного пара H_2O

№ автоклава	рН(25°С) измер.	lg <i>m</i> (Cu)	$\lg m(Cu)_{cp.}$	
1	5 57	-5.07	5 1	
1	5.57	-5.12	-3.1	
2	5 00	-5.09	5 10	
5	5.00	-5.14	-5.12	
4	5.72	-5.14	-5.14	
5	5.49	-4.97	5.0	
5		-5.02	-5.0	
7	5.6	-4.98	5.01	
/	5.0	-5.04	-5.01	
0	5 50	-4.86	1 00	
0	5.58	-4.89	-4.88	
9	5.51	-5.19	-5.19	
10	5.49	-5.2	-5.2	
Среднее	5.61		-5.08	
±(0.95)			0.10	

предварительно очищенной от углекислоты кипячением с барботированием аргона.

В качестве твердых фаз использовали мелкие (0.2-0.5 мм) кристаллы куприта Cu₂O и мелкодисперсную металлическую медь (99.9%). Были использованы кристаллы куприта, полученные Л.Н. Варьяш в автоклавах при гидротермальном окислении меди (Варьяш и др., 1989). В этих опытах куприт образовывал щеточки на кусочках (2–3 мм) меди (х. ч.). Следов присутствия двухвалентной меди (CuO) после опыта рентгеновским методом не обнаружено.

Твердые фазы (смесь куприта и меди) помещали в чашечку, расположенную в верхней части автоклава. Она располагалась выше уровня раствора при комнатной температуре и заполнялась раствором при температуре опыта. На дно автоклава помещали немного (~5 мг) стружки металлического алюминия (99.99%), реагирующего с водой с образованием водорода, тем самым препятствуя возможному окислению меди на начальных этапах опыта. Следов присутствия двухвалентной меди (CuO) в твердых фазах после опыта рентгеновским методом не обнаружено.

Опыты проводили в вертикальной печи при температуре $300 \pm 3^{\circ}$ С и давлении насыщенного пара H₂O. Длительность опыта составляла 14 дней. Кратковременные опыты показали, что 5–7 дней достаточно для достижения равновесия.

Величину pH измеряли после опыта при $T = 25^{\circ}$ C и рассчитывали при $T = 300^{\circ}$ C с использованием программного комплекса HCh.

В конце опыта автоклавы закаливали в холодной воде, после чего из каждого автоклава отбирали по две пробы с фильтрацией через 0.05 мкм фильтр Millipore. Концентрация меди в пробах определялась методом атомной абсорбции в пламени на спектрометре фирмы Varian SpectrAA Duo (аналитик Л.Ф. Карташова). Разница концентраций меди, определенных в двух параллельных пробах из одного автоклава, как правило, не превышала 10% (или 0.05 lgm(Cu)). Разница концентраций, обнаруженная в разных автоклавах с одинаковым составом раствора, выше. Погрешность среднего значения растворимости куприта $(\lg m(Cu))$ в воде, рассчитанного для 8 автоклавов, при доверительной вероятности 95% составляет ±0.10 (табл. 1).

РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ

Состав исходных растворов и определенные равновесные концентрации меди приведены в табл. 1 и 2. Зависимость равновесных концентраций меди от рассчитанных значений pH растворов показана на фиг. 1. При этом к нашим данным, приведенным в табл. 2, добавлены результаты экспериментов Варьяш и др. (1989) в более щелочных условиях (0.3–1 *m*NaOH). Символами обозначены экспериментальные данные, линии

равновесных концентраций Cu^+ и $Cu(OH)_2^-$ рассчитаны с использованием программы OptimA (Shvarov, 2015). Приведенным линиям соответствуют значения химического потенциала иона Cu^+ и комплекса $Cu(OH)_2^- +27.777$ и -320.081 кДж моль⁻¹ (или -56.225 кДж моль⁻¹ для его НКГ эквивалента CuO^-). При этом термодинамические свойства

В(OH)_{3 аq}, B(OH)₄⁻ были приняты по (Акинфиев и др., 2006), O₂(aq) и H₂(aq) – по (Akinfiev, Diamond, 2003), а OH⁻, Na⁺ и NaOH(aq) заимствованы из базы термодинамических данных SUPCRT92 (Johnson et al., 1992) и ее дополнений (Sverjensky et al., 1997; Shock et al., 1997). Коэффициенты активности рассчитывались по уравнению Дебая—Хюккеля во 2-м приближении (Helgeson et al., 1981).

Наблюдаемая зависимость $\lg m(Cu)$ от pH (фиг. 1) определенно указывает на то, что в данных условиях нейтральным комплексом CuOH_{aq} можно пренебречь ($m(CuOH_{aq}) < 10^{-7}$). Полученная величина растворимости Cu₂O за счет иона Cu⁺ близка к данным Варьяш и др. (1989) и существенно выше, чем по данным Пальмера с коллегами (Palmer et al., 2011). Вместе с тем, устойчивость нейтрального комплекса CuOH_{aq} в работе Варьяш и др. (1989) очень сильно завышена.

2023

АКИНФИЕВ, ЗОТОВ

m(NaOH)	$m(Na_2B_4O_7)$	<i>m</i> (H ₃ BO ₃)	pH _{25°C}	pH _{300°C}	lg <i>m</i> (Cu)	Источник
0	0	0	5.61	6.34	-5.08 ± 0.10	Наст. работа
0.002	0	0	8.54	8.58	-6.30 ± 0.15	Наст. работа
0.002	0	0		8.58	-6.26 ± 0.15	Наст. работа
0	0.1	0	9.1	9.18	-5.52 ± 0.15	Наст. работа
0	0.1	0		9.18	-6.02 ± 0.15	Наст. работа
0	0.001	0.05	7.76	7.97	-6.39 ± 0.15	Наст. работа
0	0.001	0.05		7.97	-6.44 ± 0.15	Наст. работа
0	0	0.05	5.95	6.04	-4.99 ± 0.20	Наст. работа
0.3	0	0		10.36	-4.33 ± 0.25	Варьяш, 1989
1	0	0		10.71	-3.82 ± 0.30	Варьяш, 1989

Таблица 2. Растворимость куприта Cu_2O (в присутствии самородной меди) при 300°C и давлении насыщенного пара в воде и близнейтральных и щелочных растворах (pH_{300°C} от 6 до 10)

Фиг. 1. Растворимость ассоциации Cu(мет.) + Cu₂O(куприт) в зависимости от расчетного значения pH при $T = 300^{\circ}$ C и давлении насыщенного пара H₂O. Символы – эксперимент, линии – расчетные значения растворимости с образованием Cu⁺ и Cu(OH)₂⁻ (CuO⁻ в модели HKF) (см. пояснения в тексте).

ТЕРМОДИНАМИЧЕСКИЕ СВОЙСТВА ВОДНЫХ ЧАСТИЦ В СИСТЕМЕ Си–О–Н В ШИРОКОМ ДИАПАЗОНЕ ТЕМПЕРАТУР И ДАВЛЕНИЙ

Методика расчетов

Для предсказания поведения частиц водных растворов при высоких параметрах состояния в относительно плотных ($\rho > 0.35$ г см⁻³) гидротермальных растворах мы используем широко применяемую модифицированную модель HKF (Хелгесон–Киркхэм–Флауэрс) (Helgeson et al., 1981; Tanger, Helgeson, 1988; Shock, Helgeson, 1988; Shock et al., 1989; Sverjensky et al., 1997; Shock et al., 1997).

При более низких плотностях из-за усиления ассоциации электролитов водный флюид содержит преимущественно электронейтральные компоненты. Для расширения возможностей их термодинамического описания на области, включающие и малоплотный водный флюид, в настоящей работе использовано уравнение состояния (УС) AD (Akinfiev, Diamond, 2003; Akinfiev, Plyasunov, 2014). Предложенное УС основано на знании термодинамических свойств компонента в состоянии идеаль-

ного газа $\mu_g^{\circ}(T)$ и содержит всего 3 эмпирических параметра (ξ , *a*, *b*), ответственных за гидратацию этой молекулы. Выражение для химического потенциала компонента в водном окружении $\mu_{aq}^{\circ}(P,T)$ при заданных давлении *P* и температуре *T*

 $\mu_{aq}(P,T)$ при заданных давлении P и температуре T имеет вид:

$$\mu_{aq}^{\circ}(P,T) = \mu_{g}^{\circ}(T) - RT \ln N_{w} + + (1-\xi)RT \ln f_{1}^{\circ} + RT\xi \ln \left(\frac{10RT}{M_{w}}\rho_{1}^{\circ}\right) + (1) + RT\rho_{1}^{\circ} \left[a + b\left(\frac{10^{3}}{T}\right)^{0.5}\right],$$

где $R = 8.31441 \, \text{Дж моль}^{-1} \text{K}^{-1}$ – универсальная газовая постоянная, $N_{\text{w}} = 55.508 \text{ моль } \text{кг}^{-1}$, $M_{\text{w}} = 18.0152 \text{ г моль}^{-1}$, f_1° – фугитивность (МПа) и ρ_1° – плотность (г см⁻³) чистой воды при заданных *РТ*-параметрах.

Термодинамические свойства растворителя $H_2O(f_1^\circ, \rho_1^\circ)$ приняты по (Wagner, Pruß, 2002). Для нелетучих компонентов термодинамические свойства $\mu_g^\circ(T)$ рассчитывались методами квантовой химии (DFT B3LYP с набором базовых функций 6-311+G(d,p) для всех атомов) с использованием пакета программ Gaussian 09W, Revision C.01 (Frisch et al., 2009). Термохимическим расчетам предшествовала процедура оптимизации структуры молекулы, при этом все молекулярные

структуры были проанализированы на отсутствие мнимых частот с помощью программы GaussView 5.

Знание термодинамических свойств газовой молекулы при стандартных условиях $S_g^{\circ}(T_r)$ и зависимости теплоемкости от температуры $C_{p,g}^{\circ}(T)$ позволяет рассчитать химический потенциал газовой молекулы при заданной температуре *T*:

$$\mu_{g}^{\circ}(T) = \mu_{g}^{\circ}(T_{r}) - S_{g}^{\circ}(T_{r})(T - T_{r}) + \int_{T_{r}}^{T} C_{p,g}^{\circ}(T) dT - T \int_{T_{r}}^{T} C_{p,g}^{\circ}(T) d(\ln T).$$
(2)

Обработка экспериментальных данных проводилась следующим образом.

1. Сначала с помощью программы OptimA (Shvarov, 2015) рассчитывались значения химических потенциалов Си-содержащих водных компонентов при заданных в гидротермальном эксперименте давлении и температуре с учетом экспериментальной погрешности. Программа OptimA, совмещенная с расчетным комплексом HCh, дает возможность обрабатывать данные одновременно по нескольким экспериментам, выполненным в одной и той же химической системе (но с разными составами) при одних и тех же условиях (температуре и давлении). Оптимизация значений химических потенциалов проводилась с весами, обратно пропорциональными квадрату экспериментальной погрешности. При этом термодинамические данные "базовых" компонентов (Na^+ , OH^- , Cl^- ,) и электронейтральных молекул NaCl(aq), NaOH(aq) были заимствованы из базы термодинамических данных SUPCRT92 (Johnson et al., 1992) и ее дополнений (Sverjensky et al., 1997; Shock et al., 1997) без какого-либо пересмотра и уточнения. НКГ параметры HCl(aq) были приняты по работе (Tagirov et al., 1997).

Расчеты коэффициентов активности у проводились по уравнению Дебая—Хюккеля во 2-м приближении (Helgeson et al., 1981):

$$\lg \gamma = -\frac{Az_i^2 \sqrt{I}}{1+4.5B\sqrt{I}} - \lg(1+0.018m^*),$$

где *m*^{*} — сумма моляльных концентраций всех компонентов раствора.

2. Имеющиеся в литературе и полученные из эксперимента значения химических потенциалов Cu(I)-содержащих компонентов в ряде *PT*-точек, обрабатывались затем в помощью программы OptimB, также совмещенной с пакетом HCh (Shvarov, 2015). Назначение этой программы – нахождение параметров модифицированной модели Хелгесона-Киркхама-Флауэрса (HKF) (Tanger, Helgeson, 1988) компонента по экспериментальным значениям свободной энергии частицы, измеренным при различных значениях

№ 1 2023

Минерал	$\Delta_f G^{ m o}_{298},$ кДж моль $^{-1}$	$S^{ m o}_{298},$ Дж моль ⁻¹ К ⁻¹	<i>V</i> °, см ³ моль ^{−1}	$\Delta_{f} H_{298}^{ m o},$ кДж моль $^{-1}$	$C_p^{\circ}(T, \mathbf{K})$ (273—1273 K), Дж моль ⁻¹ K ⁻¹
Cu(кр.)	0	33.14 ± 0.03	7.113	0	$60.84 - 2.875 \times 10^{-2}T + 3.331 \times 10^{5} \times$
					$\times T^{-2} - 5.671 \times 10^2 T^{-0.5} + 1.420 \times 10^{-5} T^2$
Cu ₂ O(куприт)	-147.8 ± 0.1	92.4 ± 0.3	23.44	-170.6 ± 0.1	$4.26 \times 10^2 - 2.508 \times 10^{-1}T + 4.898 \times$
					$\times 10^{6} T^{-2} - 6.078 \times 10^{3} T^{-0.5} + 9.244 \times 10^{5} T^{2}$

Таблица 3. Термодинамические свойства твердых фаз, принятые в настоящей работе по Robie, Hemingway (1995)

температуры и давления. Веса значениям химических потенциалов точек *w* задавались в соответствии с доверительным интервалом химического потенциала σ , вычисленного программой OptimA на предыдущем шаге: *w* = 1/ σ . Величины свобод-

ной энергии $\Delta_f G_{298}^{\circ}$, энтропии S_{298}° и параметра Борна ω молекулы при стандартных условиях вначале рассчитывались с использованием корреляций по методу, предложенному в (Shock et al., 1997), а затем при необходимости уточнялись в основном теле программы OptimB. Аналогичным образом в процедуру оптимизации были включены параметры c_1 и c_2 уравнения теплоемкости при условии постоянства $C_{p,298}$. Значения параметров $a_1...a_4$, характеризующих зависимость мольного объема от температуры и давления, рассчитывались с использованием корреляционных соотношений (Shock et al., 1997).

3. Для CuOH(aq) нейтрального комплекса также имеются экспериментальные данные по его присутствию в малоплотных водных флюидах. В связи с этим для описания его термодинамических свойств во всем диапазоне экспериментальных условий было использовано УС AD. При этом расчет эмпирических параметров модели

 $(\mu_g^{\circ}(T_r), \xi, a, b)$ проводился методом линейной регрессии (уравнение 1) экспериментальных значе-

ний химических потенциалов $\mu_{aq}^{\circ}(P,T)$, полученных в OptimA.

РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЕ

Cu^+

В процессе оптимизации термодинамических параметров иона были использованы результаты, полученные на основе первичных экспериментальных данных по растворимости твердых фаз (табл. 3). Соответствующие значения химического потенциала $Cu^+ \mu^{\circ}(Cu^+)$ при экспериментальных значениях температуры и давления представлены в табл. 4 и на фиг. 2. Видно, что значения $\mu^{\circ}(Cu^+)$, представленные Palmer (2011), противоречат весьма надежному значению, принятому в сводке Wagman et al. (1982) при стандартных условиях, а при повышенных температурах – данным Варьяш (1989) и настоящей работы. Поэтому в дальнейшем данным Palmer (2011) был придан нулевой статистический вес.

Значения энтропии S_{298}° иона и его химическо-

го потенциала μ_{298}° при стандартных условиях были приняты согласно Wagman et al. (1982) и не участвовали в процессе оптимизации. Параметр Борна ω иона рассчитан, исходя из значения его кристаллохимического радиуса $r_x = 0.6$ Å (Shannon, 1976). Величины теплоемкости $C_{p,298}$ и мольного объема V_{298} иона рассчитаны с использованием корреляционных зависимостей этих термодинамических параметров с энтропией, предложенных в работе Shock et al. (1997). Оптимизированные значения параметров модели НКF иона Cu⁺ представлены в табл. 5, а сравнение расчета с экспериментом — в табл. 4 и на фиг. 2.

$Cu(OH)^{-}_{2}(CuO^{-})$

В щелочных условиях растворимость куприта определяется вторым гидроксокомплексом меди (I)

 $Cu(OH)_2^-$. В рамках модели НКF этот комплекс принято записывать в виде дегидратированной частицы CuO⁻, этому формализму мы и будем следовать в дальнейшем.

Значения химического потенциала µ°(CuO-), полученные путем обработки имеющихся экспериментальных данных по растворимости куприта, представлены в табл. 6. Параметр Борна ω(CuO⁻) был принят по результатам квантовохимического расчета размера полости гидратированного иона $Cu(OH)_{2}^{-}$ по методу SMD (Marenich et al., 2009), включенного в пакет Gaussian09 (Frisch M.J. et al., 2009). Значения энтропии S_{298}^{o} иона CuO⁻ и его химического потенциала μ^{o}_{298} при стандартных условиях, а также параметры c_1 и с2 уравнения теплоемкости оптимизировались в программе OptimB (Shvarov, 2015) при некоторых заданных значениях $C_{p,298}$ и V_{298} этого иона. Затем эти последние уточнялись с учетом корреляционных зависимостей с энтропией, предложенных в

<i>T</i> , °C	<i>Р</i> , бар	μ°(Cu ⁺), Дж моль ⁻¹	2σ, Дж моль ⁻¹	Твердые фазы Источник		μ°(Cu ⁺) _{model} , Дж моль ⁻¹
25	1	49980	200	Cu ₂ O	Wagman et al., 1982	49980
19.5	1	45685	336	Cu ₂ O	Palmer, 2011	50200
25	1	45526	171	Cu ₂ O	Palmer, 2011	49979
50	1	45509	124	Cu ₂ O	Palmer, 2011	48 892
51.8	1	45310	311	Cu ₂ O	Palmer, 2011	48808
75	1	45400	133	Cu ₂ O	Palmer, 2011	47637
100	1.0	44666	286	Cu ₂ O	Palmer, 2011	46204
150	4.8	41618	324	Cu ₂ O	Palmer, 2011	42843
200	15.5	39325	362	Cu ₂ O	Palmer, 2011	38933
250	39.8	37 517	902	Cu ₂ O	Palmer, 2011	34648
300	85.9	36097	329	Cu ₂ O	Palmer, 2011	30216
350	165.3	36649	716	Cu ₂ O	Palmer, 2011	25347
300	500	26789	1447	Cu(кр.)	Варьяш, 1989	28917
350	500	26951	695	Cu(кр.)	Варьяш, 1989	23840
350	1000	26829	870	Cu(кр.)	Варьяш, 1989	22324
450	500	7785	1244	Cu(кр.)	Варьяш, 1989	3928
450	1000	17 101	1664	Cu(кр.)	Варьяш, 1989	9139
300	85.9	27777	4260	$Cu_2O + Cu(\kappa p.)$	Наст. работа	30216

Таблица 4. Химические потенциалы иона Cu⁺, $\mu^{\circ}(Cu^{+})$, в Дж моль⁻¹, установленные в результате обработки первичных экспериментальных данных по растворимости Cu/Cu₂O и результаты расчета с параметрами из табл. 5

Таблица 5. Стандартные термодинамические свойства (298.15 К, 1 бар) и НКГ параметры компонентов водного раствора, принятые (для OH⁻) и полученные (для Cu⁺ и CuO⁻) в настоящей работе

Компо- нент	$\Delta_f G_{298}^{\circ}{}^a$	$\Delta_f H_{298}^{\circ}{}^{\mathrm{a}}$	$S_{298}^{\circ}{}^{6}$	$C_{p,298}^{\circ}$ ⁶	V ₂₉₈ [°] ^в	$a_1 \times 10^{\Gamma}$	$a_2 \times 10^{-2a}$	<i>a</i> ₃ ^д	$a_4 \times 10^{-4e}$	c_1^{6}	$c_2 \times 10^{-4e}$	$\omega \times 10^{-5a}$	Источник
OH^-	-37 595	-54977	-2.56	-32.80	-4.18	1.2527	0.0738	1.8423	-2.7821	4.1500	-10.346	1.7246	Johnson et al., 1992
Cu^+	11945		9.70	13.66	-7.99	0.9243	-5.5244	7.9213	-2.5506	37.8575	-8.9250	0.6653	Наст. работа
CuO ⁻	-19574		-2.45	-12.69	-13.11	0.3673	-6.8845	8.4559	-2.4944	-55.4517	25.7204	1.0433	Наст. работа
-	9	_1	Гб	-1 r	r_1 p	3 _1	Г	_1 ~	_1 π т	r _1	1 e	17	_1

Примечание. ^а кал моль⁻¹; ⁶ кал моль⁻¹ K^{-1} ; ^в см³ моль⁻¹; ^г кал моль⁻¹ бар⁻¹; ^а кал K моль⁻¹ бар⁻¹; ^е кал K моль⁻¹.

работе Shock et al. (1997). Следующий итерационный цикл вновь включал оптимизацию S_{298}^{o} (CuO⁻) и μ_{298}^{o} (CuO⁻), c_1 и c_2 с учетом полученных на предыдущем этапе значений $C_{p,298}$ и V_{298} . Итерации сходятся довольно быстро, полученные значения параметров модели НКГ иона CuO⁻ представлены в табл. 5, а сравнение расчета с экспериментом — в табл. 6 и на фиг. 3.

Нейтральный гидроксокомплекс Си(OH)(H₂O)₇ (CuOH,aq)

Существование нейтрального гидроксокомплекса CuOH, aq в плотных водных растворах обнаружено Palmer (2011) лишь при температурах до

ГЕОЛОГИЯ РУДНЫХ МЕСТОРОЖДЕНИЙ том 65 № 1

100°С. При более высоких температурах его вклад в растворимость куприта нивелируется присутствием ионов Cu⁺ или CuO⁻. В малоплотных водных флюидах ($\rho_{H_2O} \le 0.2 \ r \ cm^{-3}$) из-за уменьшения диэлектрической проницаемости воды присутствие ионов в растворе существенно снижается, так что в этих условиях растворимость определяется нейтральным комплексом. Экспериментальные данные по растворимости в таких областях плотности водного растворителя можно использовать для установления термодинамических свойств нейтрального гидроксокомплекса CuOH,aq.

В настоящее время имеются две экспериментальные работы, посвященные растворимости куприта в малоплотных флюидах. В работе Росо-

2023

Фиг. 2. Значения химического потенциала иона Cu^+ по экспериментальным данным. Залитые точки соответствуют расчетным значениям с параметрами из табл. 5.

Таблица 6. Химические потенциалы иона CuO⁻, μ° (CuO⁻), в кДж моль⁻¹, установленные в результате обработки первичных экспериментальных данных по растворимости меди и куприта Cu/Cu₂O и результаты расчета с параметрами из табл. 5

<i>T</i> , °C	Р, бар	µ°(CuO [−]), кДж моль ^{−1}	2σ, Дж моль ⁻¹	Источник	μ°(CuO ⁻) _{модель} , кДж моль ⁻¹
25	1	-87.172	5.273	Palmer, 2011	-81.899
50	1	-81.912	0.366	Palmer, 2011	-81.546
51.8	1	-79.513	-1.998	Palmer, 2011	-81.511
75	1	-80.430	-0.469	Palmer, 2011	-80.898
100	1.01	-82.277	2.398	Palmer, 2011	-79.878
200	15.55	-69.573	-2.016	Palmer, 2011	-71.588
250	39.76	-60.411	-4.189	Palmer, 2011	-64.600
300	87.88	-52.524	-2.487	Palmer, 2011	-55.010
350	165.29	-40.162	-0.018	Palmer, 2011	-40.180
150	4.76	-80.041	3.432	Варьяш, 1989	-76.609
200	15.55	-73.655	2.066	Варьяш, 1989	-71.588
250	39.76	-69.783	5.184	Варьяш, 1989	-64.600
275	59.46	-68.717	8.516	Варьяш, 1989	-60.202
300	85.88	-56.217	1.207	Варьяш, 1989	-55.010
300	85.88	-56.225	1.215	Наст. работа	-55.010

Фиг. 3. Экспериментальные значения химического потенциала иона CuO⁻ по экспериментальным данным по растворимости куприта. Залитые точки соответствуют расчетным значениям с параметрами из табл. 5.

ск, Stewart (1963) изучалась растворимость куприта в сверхкритическом паре H_2O при температуре $\approx 620^{\circ}C$ и давлениях 186–310 бар, соответствующих плотностям водного растворителя 0.06–0.09 г см⁻³. В работе Palmer (2011) исследовалась растворимость куприта при температурах 200–350°C и давлениях ниже давления насыщенного пара H_2O ($\rho_{H_2O} \le 0.015-0.1$ г см⁻³), а также при сверхкритической температуре 400°C и давлениях 93–190 бар, соответствующих плотностям $\rho_{H_2O} = 0.035-0.1$ г см⁻³. Зависимость изотерм растворимости от фугитивности воды при этих температурах (фиг. 4) свидетельствует о существенном влиянии гидратации на растворимость, так

что реакцию растворения следует записывать в виде:

$$0.5Cu_2O + (n+0.5)H_2O = CuOH(H_2O)_n$$

где n = 6-8. Столь высокие гидратационные числа даже в области малоплотных сверхкритических флюидов согласуются с недавно опубликованными расчетами методами молекулярной динамики при изучении стехиометрии хлоридных комплексов серебра (Messerly et al., 2022) при повышенных температурах и низких плотностях H_2O (до 0.1 г см⁻³).

Поскольку имеющиеся экспериментальные данные охватывают весьма широкий диапазон плотностей растворителя, недоступный модели

Таблица 7. Термодинамические свойства нейтрального гидроксокомплекса Cu(I), рассчитанные в настоящей работе

Компонент	Свойства в с	состоянии идеал	ьного газа	Параметры УС AD			
	$\Delta_f G^\circ_{298},$ кДж моль $^{-1}$	S [°] ₂₉₈ , Дж моль ^{−1} К ^{−1}	С _{р, 298} , Дж моль ^{−1} К ^{−1}	ξ	a, cm ³ r ⁻¹	<i>b</i> , см ³ К ^{0.5} г ⁻¹	
$CuOH(H_2O)_7$	-1818.074 ± 16.9	280.5 ± 99.9	951 ± 108	-2.92 ± 0.40	-50.91 ± 17.28	49.45 ± 12.92	

Фиг. 4. Зависимость равновесной моляльной концентрации меди во флюиде от фугитивности воды при растворении куприта Cu_2O в сверхкритическом водном паре при 400°С (Palmer, 2011) и 620°С (Pocock, Stewart, 1963).

Фиг. 5. Растворимость куприта с образованием нейтрального гидроксокомплекса. Точки – эксперимент: а) в малоплотном водном флюиде ($\rho_{H_2O} = 0.035 - 0.1 \text{ г см}^{-3}$) при $T = 400^{\circ}$ C (Palmer, 2011); б) – в малоплотном водном флюиде ($\rho_{H_3O} = 0.05 - 0.09 \text{ г см}^{-3}$) при $T = 620^{\circ}$ C (Pocock, Sewart, 1963). Линии – расчет с использованием данных для CuOH(H₂O)₇ из табл. 7.

HKF, описание растворимости куприта с образованием нейтрального гидроксокомплекса проводилось на основе уравнения состояния AD. Проведенный анализ показал, что наилучшее описание всего набора экспериментальных данных реализуется при использовании стехиометрии водного комплекса $CuOH(H_2O)_7$. Оптимизированные параметры этого комплекса приведены в табл. 7, а сравнение расчета с экспериментом на фиг. 5.

Фиг. 6. Рассчитанная растворимость металлической меди Cu(мет.) в присутствии редокс-буфера Ni–NiO в зависимости от pH при 300°C, $P_{\text{Hac.}}$, 450°C, 1 кбар и 600°C, 1.5 кбар. Пунктиром показано положение точки нейтральности при заданных *T*, *P*.

ЗАКЛЮЧЕНИЕ

Рекомендуемые в настоящей статье значения термодинамических параметров для иона Cu⁺ и

гидроксокомплекса Cu(OH)₂⁻ (CuO⁻) позволяют надежно описывать их термодинамические свойства в широком диапазоне температур (0–600°C) и давлений (1–3000 бар) в рамках модели HKF. Свойства нейтрального комплекса Cu(OH)(H₂O)₇ определены с использованием модели AD (Akinfiev, Diamond, 2003). Они с достаточной точностью воспроизводят экспериментальные данные в малоплотных флюидах ($\rho_{H_2O} = 0.01-0.09$ г см⁻³), но для их надежной экстраполяции на высокие давления требуется дополнительное экспериментальное подтверждение.

Фиг. 6 иллюстрирует резкое увеличение растворимости меди (Cu_{kp}) в воде при росте температуры. При этом увеличивается роль иона и снижается влияние второго гидроксокомплекса $Cu(OH)_2^-$. Показанные на фигуре соотношения отвечают редокс-буферу Ni–NiO. Увеличение фугитивности кислорода на 4 порядка (примерно соответствующее буферу гематит–магнетит) приводит к увеличению растворимости меди на порядок.

Все приведенные соображения относятся к простой системе Cu–O–H без участия дополнительных лигандов (Cl⁻, HS⁻ и др.). Их роль рассматривается в статье Рубцовой и др. (2023) этого же номера журнала.

БЛАГОДАРНОСТИ

Авторы благодарны Л.Н. Варьяш за предоставленный для опытов кристаллический куприт и С. Аксенову, принявшему участие в экспериментальной работе.

ФИНАНСИРОВАНИЕ

Работа выполнена при финансовой поддержке гранта РНФ 20-17-00184.

СПИСОК ЛИТЕРАТУРЫ

Акинфиев Н.Н, Воронин М.В., Зотов А.В., Прокофьев В.Ю. Экспериментальное исследование устойчивости хлорборатного комплекса и термодинамическое описание водных компонентов в системе B–Na–Cl–O–H до 350°C // Геохимия. 2006. № 9. С. 937–949.

Варьяш Л.Н. Экспериментальное изучение равновесий в системе Cu–Cu₂O–H₂O в интервале температур 150– 450°С // Геохимия. 1989. № 3. С. 412–422.

Рубцова Е.А., Тагиров Б.Р. и др. Совместная растворимость Си и Ад в хлоридных гидротермальных флюидах (350–650°С, 1000–1500 бар) // Геология руд. месторождений. 2023. В печати.

Akinfiev N.N., Diamond L.W. Thermodynamic description of aqueous nonelectrolytes at infinite dilution over a wide range of state parameters // Geochim. Cosmochim. Acta, 2003. V. 67. №. 4. P. 613–627.

https://doi.org/10.1016/s0016-7037(02)01141-9

2023

Akinfiev N.N., Plyasunov A.V. Application of the Akinfiev– Diamond equation of state to neutral hydroxides of metalloids (B(OH)₃, Si(OH)₄, As(OH)₃) at infinite dilution in water over a wide range of the state parameters, including steam conditions. // Geochim. Cosmochim. Acta, 2014. V. 126. P. 338–351. https://doi.org/10.1016/j.gca.2013.11.013

Born, Von M. Volumen und Hydratationswärme der Ionen. // Zeitschr. Physik, 1920. V. 1. P. 45–48.

Frisch M.J. et al. Gaussian 09, Revision C.01. Gaussian, Inc., Wallingford CT, 2009.

Helgeson H.C., Kirkham D.H., Flowers G.C. Theoretical prediction of the thermodynamic behavior of aqueous electrolytes at high pressures and temperatures: IV. Calculation of activity coefficients, osmotic coefficients, and apparent molal and standard and relative partial molal properties to 600°C and 5 kb // Am. Jour. Sci. 1981. V. 291. P. 1249–1516.

Helgeson H.C., Kirkham D.H., Flowers G.C. Theoretical prediction of the thermodynamic behavior of aqueous electrolytes by high pressures and temperatures; IV. Calculation of activity coefficient, osmotic coefficients, and apparent molal and standard and relative partial molal properties to 600°C and 5 KB // Am. Jour. Sci. 1981. V. 291. P. 1249–1516.

Johnson J.W., Oelkers E.H., Helgeson H.C. SUPCRT92: A software package for calculating the standard molal thermodynamic properties of minerals, gases, aqueous species, and reactions from 1 to 5000 bars and 0° to 1000°C // Comp. Geosci. 1992. V. 18. P. 899–947.

Marenich A.V., Cramer C.J., Truhlar D.G. Universal solvation model based on solute electron density and on a continuum model of the solvent defined by the bulk dielectric constant and atomic surface tensions // J. Phys. Chem. B. 2009. V. 113. P. 6378–6396.

Messerly R.A., Yoon T.J., Jadrich R.B., Currier R.P., Maerzke K.A. Elucidating the temperature and density dependence of silver chloride hydration numbers in high-temperature water vapor: A first-principles molecular simulation study // Chem. Geol. V. 594. P. 120766. https://doi.org/10.1016/j.chemgeo.2022.120766

Palmer D.A. Solubility Measurements of Crystalline Cu_2O in Aqueous Solution as a Function of Temperature and pH // J. Solution Chem. 2011. V. 40. P. 1067–1093. https://doi.org/10.1007/s10953-011-9699-x

Pocock F. J., Stewart J. F. The Solubility of Copper and Its Oxides in Supercritical Steam // Journal of Engineering for Power, 1963. V. 85. № 1. P. 33–44. https://doi.org/10.1115/1.3675213

Robie R.A., Hemingway B.S. Thermodynamic properties of minerals and related substances at 298.15 and 1 bar (10^5 pascals) pressure and at high temperatures // U. S. Geol. Surv. Bull. 1995. P. 2131.

Shannon R.D. Revised effective ionic radii and systematic studies of interatomic distances in halides and chalco-genides // Acta Cryst. V. A32. P. 751–767.

Shock E.L., Helgeson H C., Sverjensky D.A. Calculation of the thermodynamic properties of aqueous species at high pressures and temperatures: Standard partial molal properties of inorganic neutral species // Geochim. Cosmochim. Acta. 1989. V. 53. P. 2157–2183.

Shock E.L., Helgeson H.C. Calculation of the thermodynamic and transport properties of aqueous species at high pressures and temperatures: Correlation algorithms for ionic species and equation of state predictions to 5 kb and 1000°C // Geochim. Cosmochim. Acta. 1988. V. 52. P. 2009–2036.

Shock E.L., Sassani D.C., Willis M., Sverjensky D.A. Inorganic species in geologic fluids: Correlations among standard molal thermodynamic properties of aqueous ions and hydroxide complexes // Geochim. Cosmochim. Acta. 1997. V. 61. P. 907–950.

Shock E.L., Sassani D.C., Willis M., Sverjensky D.A. Inorganic species in geologic fluids: Correlations among standard molal thermodynamic properties of aqueous ions and hydroxide complexes // Geochim. Cosmochim. Acta. 1997. V. 61. P. 907–950.

Shvarov Yu.V. A suite of programs, OptimA, OptimB, OptimC, and OptimS compatible with the Unitherm database, for deriving the thermodynamic properties of aqueous species from solubility, potentiometry and spectroscopy measurements // Applied Geochemistry. 2015. V. 55. P. 17–27.

Sverjensky D.A., Shock E.L., Helgeson H.C. Prediction of thermodynamic properties of aqueous metal complexes to 1000°C and 5 kb // Geochim. Cosmochim. Acta. 1997. V. 61. P. 1359–1412.

Sverjensky D.A., Shock E.L., Helgeson H.C. Prediction of thermodynamic properties of aqueous metal complexes to 1000°C and 5 kb // Geochim. Cosmochim. Acta. 1997. V. 61. P. 1359–1412.

Tagirov B.R., Zotov A.V., Akinfiev N.N. Experimental study of dissociation of HCl from to 500°C and from 500 to 2500 bars: Thermodynamic properties of HCl(aq) // Geochim. Cosmochim. Acta. 1997. V. 61. P. 4267–4280.

Tanger IV J.C., Helgeson H.C. Calculation of the thermodynamic and transport properties of aqueous species at high pressures and temperatures: Revised equations of state for standard partial molal properties of ions and electrolytes. // Amer. J. Sci., 1988. V. 288. P. 19–98.

Wagman D.D., Evans W.H., et al. The NBS tables of chemical thermodynamic properties // Phys. Chem. Ref. Data. 1982. V. 11. Suppl. №. 2.

Wagner W., Pruß A. The IAPWS formulation for the thermodynamic properties of ordinary water substances for general and scientific use // J. Phys. Chem. Ref. Data. 2002. V. 31. P. 387–535.