УДК 550.4

ОСОБЕННОСТИ ВЗАИМОДЕЙСТВИЯ ШЕЕЛИТА С РАСТВОРАМИ НСІ ПРИ 400 И 500°С, 100 МПа И РАЗЛИЧНЫХ ƒ(O₂) (ПО ЭКСПЕРИМЕНТАЛЬНЫМ И РАСЧЕТНЫМ ДАННЫМ)

© 2023 г. А. Ф. Редькин^{а, *}, Н. П. Котова^{а, **}

^а Институт экспериментальной минералогии им. академика Д.С. Коржинского РАН, ул. Академика Осипьяна, 4, Черноголовка, Московская область, 142432 Россия *e-mail: redkin@iem.ac.ru **e-mail: kotova@iem.ac.ru Поступила в редакцию 11.05.2022 г. После доработки 03.10.2022 г. Принята к публикации 10.10.2022 г.

Проведены экспериментальные исследования по растворимости шеелита в растворах HCl в интервале концентраций от 0.01 до 0.316 моль кг⁻¹ H₂O при 400 и 500°C, давлении 100 МПа и фугитивности кислорода (водорода), заданной буферами Cu₂O–CuO, Fe₃O₄–Fe₂O₃, Ni-NiO и Co-CoO. Установлено, что шеелит в растворах HCl при указанных параметрах растворяется инконгруэнтно. В растворах, содержащих от 0.01 до 0.0316 *m*HCl, в продуктах опытов, наряду с шеелитом, обнаруживаются незначительные количества оксидов вольфрама WO₃ и (или) WO_{3-x}. В растворах, содержащих от 0.1 до 0.316 *m*HCl, наблюдается образование кальций-вольфрамовых бронз (CTB) Ca_xWO₃, средний состав которых соответствует формуле Ca_{0.07}WO₃. На основе анализа полученных экспериментальных данных рассчитаны свободные энергии образования оксидов вольфрама WO₃, WO_{2.9}, шеелита и кальций-вольфрамовой бронзы. С использованием взаимосогласованных термодинамических данных рассчитана растворимость шеелита в растворах HCl, (Na,K)Cl с участием алюмосиликатных буферов. Показано, что шеелит имеет широкую область конгруэнтной растворимости в солевых системах.

Ключевые слова: вольфрам, кальций, шеелит, трехокись вольфрама, кальций-вольфрамовые бронзы, растворимость, хлоридные растворы, термодинамические расчеты **DOI:** 10.31857/S0016777023010070, **EDN:** LBAUFZ

введение

Шеелит СаWO₄ - важнейший рудный минерал, в состав которого входит элемент вольфрам, способный менять свою валентность при переходе из твердой фазы в раствор. Несмотря на большое количество работ, посвященных исследованию растворимости этого минерала (Khodakovskiv, Mishin, 1971; Forster, 1977; Wood, Samson 2000), вопрос о влиянии окислительно-восстановительных условий на растворимость шеелита и валентное состояние вольфрама в гидротермальных условиях ранее никогда не рассматривался. Имеющиеся в литературе экспериментальные ланные по растворимости шеелита в воде при низких температурах не отличаются большой точностью, что объясняется невысоким качеством исходного материала и его агрегатным состоянием. В исследованиях, проведенных при высоких температурах и давлениях (Рафальский и др., 1984), также отмечается низкая сходимость результатов по растворимости шеелита в воде и

водных растворах КСІ. В достаточно кислом, равновесном с шееелитом растворе, происходило образование WO₃, что приводило к значительному превышению концентрации кальция над вольфрамом (Рафальский и др., 1984). В работе (Hu et al., 2011) было установлено, что в синтетическом нанокристаллическом шеелите отношение Ca²⁺ к W⁶⁺ составляло 1.2 : 1, что, согласно авторам этой публикации, также могло привести к изменению соотношения ионов металлов в растворе при растворении этой твердой фазы. В связи с вышесказанным, исследование растворимости шеелита в различных растворах представляет интерес для построения моделей формирования гидротермальных рудоносных растворов.

МАТЕРИАЛЫ И МЕТОДЫ ИССЛЕДОВАНИЯ

В настоящей работе представлены результаты экспериментального исследования влияния фугитивности кислорода $f(O_2)$ и кислотности

Фиг. 1. Исходный (а) химический реактив CaWO₄ и после перекристаллизации (б) в 0.1 *m*HCl при 500°C, 100 МПа в опыте длительностью 20 суток.

(*m*HCl) на растворимость шеелита (CaWO₄) при 500 и 400°С и 100 МПа. В качестве исходного материала использовали шеелит (Sch), полученный перекристаллизацией химического реактива СаWO₄ марки (ч.) в 0.1 *m*HCl при 500°С, 100 МПа, в течение 20 дней и с последующей сушкой при 100°С (фиг. 1). Опыты проводили в запаянных электродуговой сваркой платиновых ампулах (7 × × 0.2 × 50 мм). В опытах при 400°С и 100 МПа в Pt-ампулу вводили 40 мг шеелита и 0.8 мл раствора HCl, а в опытах при 500°С и 100 МПа – 40 мг шеелита и 0.65 мл раствора HCl. Для контроля возможной потери веса во время проведения экспериментов все ампулы до и после опытов взвешивались на электронных весах с точностью до ±0.01 мг.

Эксперименты проводили на гидротермальной установке высокого давления в реакторах с внутренним диаметром 30 мм, изготовленных из сплава ЭИ-437Б. Нагрев осуществлялся с помощью двухсекционных печек, имеющих широкую (10 см) безградиентную ($\pm 3^{\circ}$ С) зону. Температура измерялась бронированными хромель-алюмелевыми термопарами, находящимися внутри реактора на уровне навески в ампуле, с точностью ±2°С. Давление в системе задавалось с помощью гидравлического насоса с мультипликатором по манометру сверхвысокого давления типа СВ-2500 с точностью ±2 МПа.

В реактор одновременно загружали 4 платиновые ампулы с исследуемым веществом и 0.01, 0.0316, 0.1 и 0.316 моляльными растворами HCl. Фугитивность кислорода в реакторах задавалась бу-

№ 1

ферными парами Co/CoO, Ni/NiO, Fe₃O₄/Fe₂O₃ и Cu₂O/CuO. Цилиндрический негерметичный Niконтейнер с буферной смесью помещался в реактор под Pt-ампулами. Длительность опытов составляла 14 суток. После опытов реакторы в течение 3-5 мин охлаждались водно-воздушной капельной смесью до комнатной температуры.

Продукты опытов переносили из ампул в градуированные конические полипропиленовые пробирки, вымывая содержимое ампул трижды дистиллированной водой. Доводили общий объем до 4.5 мл и отделяли раствор от твердых фаз центрифугированием при 6000 об./мин. Чистый разбавленный раствор отбирали для анализа. Контроль разбавления проводили на аналитических весах. Содержание кальция в этих растворах определяли методами ICP-AES и AAS, а вольфрама – ICP-MS.

Высушенные при 100°С твердые продукты опытов исследовались методом порошковой рентгеновской дифракции XRD и на электронных сканирующих микроскопах VEGA-TESCAN и Cam Scan MV2300.

РЕЗУЛЬТАТЫ ИССЛЕДОВАНИЙ

Раствор

Жидкая фаза после опытов представляла собой бесцветный раствор, не содержащий коллоидной взвеси. Результаты ICP и AAS анализов растворов после опытов представлены в табл. 1. Согласно полученным данным, солянокислый раствор, равновесный с шеелитом, был обогащен

РЕДЬКИН, КОТОВА

				-	Концентрация	н, моль/кг H ₂ C)
Nº	<i>T</i> , °C	Буфер	lg <i>f</i> (O ₂), Па	HCl _{ucx}	Ca _{aq} ICP-AES	Ca _{aq} AAS	W _{aq} ICP-MS
1	400	Co-CoO	-23.768	0.01	3.628E-03	2.822E-03	1.026E-04
2	400	Co-CoO		0.0316	1.062E-02	9.119E-03	1.022E-04
3	400	Co-CoO		0.1	4.480E-02	3.558E-02	1.018E-04
4	400	Co-CoO		0.316	1.331E-01	1.026E-01	2.443E-05
8	400	Ni–NiO	-22.423	0.01	3.454E-03	7.243E-03	5.577E-05
7	400	Ni–NiO		0.0316	1.157E-02	1.027E - 02	9.989E-05
6	400	Ni–NiO		0.1	5.313E-02	4.993E-02	7.621E-05
5	400	Ni–NiO		0.316	1.275E-01	1.081E - 01	1.999E-05
9	400	$Fe_3O_4 - Fe_2O_3$	-18.600	0.01	4.052E-03	3.623E-03	2.223E-04
10	400	Fe ₃ O ₄ -Fe ₂ O ₃		0.0316	1.049E-02	1.057E - 02	1.580E-04
11	400	Fe ₃ O ₄ -Fe ₂ O ₃		0.1	3.729E-02	3.816E-02	8.746E-05
12	400	Fe ₃ O ₄ -Fe ₂ O ₃		0.316	1.316E-01	1.562E-01	2.925E-05
25	400	Cu ₂ O–CuO	-6.401	0.01	1.667E-03	3.197E-03	4.988E-04
26	400	Cu ₂ O–CuO		0.0316	8.636E-03	9.930E-03	2.983E-04
27	400	Cu ₂ O–CuO		0.1	3.921E-02	3.661E-02	3.981E-04
28	400	Cu ₂ O–CuO		0.316	1.409E-01	1.255E-01	1.539E-04
13	500	Ni–NiO	-17.706	0.01	3.644E-03	3.341E-03	7.036E-04
14	500	Ni–NiO		0.0316	8.505E-03	9.146E-03	1.332E-03
15	500	Ni–NiO		0.1	2.599E-02	3.034E-02	1.096E-03
16	500	Ni-NiO		0.316	7.740E-02	8.690E-02	1.944E-03
17	500	Co-CoO	-19.089	0.01	3.883E-03	3.102E-03	1.231E-03
18	500	Co-CoO		0.0316	3.804E-03	1.032E-02	8.731E-04
19	500	Co-CoO		0.1	9.913E-03		8.941E-04
20	500	Co-CoO		0.316	1.008E-01	1.033E-01	1.927E-04
21	500	Cu ₂ O–CuO	-3.567	0.01	3.584E-03	2.754E-03	7.688E-04
22	500	Cu ₂ O–CuO		0.0316	8.650E-03	8.892E-03	1.062E-03
23	500	Cu ₂ O–CuO		0.1	3.005E-02	3.583E-02	6.820E-04

Таблица 1. Результаты анализа закаленных растворов на содержание вольфрама (ICP-MS) и кальция (ICP-AES и AAS). Общее давление 100 МПа, длительность опытов 14 суток

кальцием и содержал относительно низкие концентрации вольфрама.

Анализы на определение кальция в растворах после опытов методами ICP-AES и AAS показали близкие результаты (табл. 1). Согласно полученным данным, концентрация кальция в закаленных растворах не зависит от окислительно-восстановительных условий ($f(O_2)$). Но она увеличивается с ростом концентрации HCl в исходном растворе, причем угол наклона $\lg mCa_{aq}/mHCl_{init}$, близок к 1.0 ± 0.1 при 400 и 500°С (табл. 2) Содержание кальция в исходных растворах 0.01, 0.0316, 0.1 и 0.316 *m*HCl было незначительно и составляло 3.0, 2.2, 1.9 и 16 × 10⁻⁵ моль/кг H₂O соответственно.

Концентрация вольфрама в растворах после опытов, наоборот, мало зависела от $mHCl_{init}$, но увеличилась при изменении температуры с 400 до 500°С в среднем на один порядок (в 10 раз). Установлено влияние окислительно-восстановительных условий ($f(O_2)$ на mW_{aq} , но оно было неоднозначным.

Твердые продукты опытов

Шеелит, используемый в опытах, изначально белого цвета, в ходе эксперимента претерпел изменения. Если в опытах, содержащих 0.01 *m*HCl, белый цвет сохранился или появилась бледная желтоватая окраска, то с увеличением концентрации HCl наблюдалось изменение окраски от светло-голубой в 0.0316 *m*HCl до темно-синей, почти черной, в 0.316 *m*HCl. Интенсивность темной окраски возрастала с уменьшением $f(O_2)$ от Cu_2O-CuO до Co-CoO буфера. В 0.1 *m*HCl pacтворах в продуктах опытов при 500°С имела место значительная перекристаллизация шеелита в крупные отдельные кристаллы размером более 100 мкм. Здесь же присутствовали новообразованные кристаллы черного цвета, имеющие форму полиэдра, подобную кристаллам шеелита. Количество черных кристаллов в опытах с 0.316 mHCl (при 500°C, буферы Ni-NiO и Co-СоО) намного превышало количество прозрачных кристаллов шеелита.

	400°C, 1	00 МПа	500°С, 100 МПа		
О ₂ буфер	а	b	а	b	
Co-CoO	-0.384 ± 0.058	1.059 ± 0.042	-0.503 ± 0.040	0.981 ± 0.027	
Ni–NiO	-0.347 ± 0.080	1.049 ± 0.064	-0.633 ± 0.033	0.923 ± 0.024	
Fe ₃ O ₄ -Fe ₂ O ₃	-0.347 ± 0.043	1.055 ± 0.031	—	—	
Cu ₂ O–CuO	-0.268 ± 0.076	1.179 ± 0.055	-0.476 ± 0.046	1.025 ± 0.034	
Среднее знач.	-0.332 ± 0.035	1.091 ± 0.026	-0.544 ± 0.027	0.974 ± 0.019	

Таблица 2. Коэффициенты линейной зависимости концентрации кальция от концентрации соляной кислоты в равновесии с шеелитом: lg $mCa_{aq} = a + b \text{ lg } mHCl_{init}$

При исследовании твердых продуктов опытов на сканирующем электронном микроскопе было установлено, что в растворах, содержащих 0.01 *m*HCl, наряду с шеелитом образовались игольчатые кристаллы WO₃, количество которых весьма незначительно. В 0.0316 *m*HCl растворе вместо тонких иголок образовались столбики и прямоугольные или ромбоэдрические двойниковые сростки кристаллов темно-синего цвета (цвет наблюдался в оптическом микроскопе), содержащие также только W и O (WO_{3-x}). Черные кристаллы, образовавшиеся в растворах, содержащих 0.1 и 0.316 mHCl, при шлифовании и полировке показали зональное строение: внутри они сложены шеелитом, а снаружи на глубину до 40 мкм покрыты оболочкой кальций-вольфрамовых бронз (СТВ) (фиг. 2). Составы СТВ фаз представлены в таблице 3. СТВ представляют собой тонковолокнистые текстуры и являются конечным продуктом замещения Sch в кислой среде. Сумма оксидов СаО и WO₃ в воль-

Фиг. 2. Шлифованные продукты опыта (№ 16) по растворимости шеелита при 500°С, 100 МПа, Ni–NiO буфере в 0.316 *m*HCl растворе.

ГЕОЛОГИЯ РУДНЫХ МЕСТОРОЖДЕНИЙ том 65 № 1

фрамовых бронзах ниже, чем в шеелите. Это указывает на наличие воды в структуре СТВ. Вынос кальция из Sch осуществлялся по каналам в структуре СТВ, а также по межзерновому пространству, которое образуется на границе Sch-СТВ. Обращает на себя внимание тот факт, что происходит очень существенная перекристаллизация кристаллов исходной шихты. Наряду с мелкими кристаллами Sch были обнаружены относительно крупные (до 150 мкм) кристаллы Sch и продукты его замещения.

Рентгенограммы твердых продуктов опытов (фиг. 3) указывают на то, что шеелит в 0.01 *m*HCl остается практически чистым, в 0.0316 *m*HCl появляются линии, характерные для WO₃, а в растворах 0.1 и 0.316 *m*HCl наблюдается значительный рост рефлексов, близких к $\langle 002 \rangle$ (или $\langle 001 \rangle$), $\langle 020 \rangle \langle 200 \rangle$ и изменение их интенсивностей.

Влияние кислородных буферов

Во всех опытах длительностью 2 недели, согласно рентгенофазовому анализу, присутствовали буферные пары Co + CoO, Ni + NiO, Fe₃O₄ + Fe_2O_3 , $Cu_2O + CuO$, что указывает на то, что в реакторе и проницаемых для водорода платиновых ампулах поддерживалась постоянная фугитивность кислорода (водорода). В продуктах опытов с использованием буфера кобальт-кобальт (II) оксид произошло накопление СоО, а интенсивность линий Со значительно уменьшилась по сравнению с исходной смесью. В никель-бунзенитовом буфере наблюдался незначительный рост интенсивности линий NiO при уменьшении характеристических линий Ni. Куприт-теноритовый буфер изначально содержал практически чистый CuO, а после опытов при 400 и 500°С частично восстановился до Cu₂O. В опытах с железо-оксидным буфером при 400°С был использован чистый магнетит (Mgt), который, согласно замыслу, должен был окислиться до гематита (Hem). Однако на рентгенограмме твердых продуктов опытов не были обнаружены линии гематита. Вместе с тем, детальный анализ показал, что кроме линий магнетита на рентгенограмме имеются линии маггемита (Mgh) ү-Fe₂O₃, и, таким образом, равновесная

Таблица 3. Содержание кальция (среднее, молей) в нестехиометрических вольфраматах кальция (кальций-вольфрамовых бронзах – СТВ), Са_xWO₃, образовавшихся в опытах по растворению шеелита в растворах HCl при 500°C, 100 МПа при различных окислительно-восстановительных условиях

№ эксп.	15	16	19	20	23	24
$\lg f(O_2)$	Ni–NiO	Ni–NiO	Co-CoO	Co-CoO	CuO-Cu ₂ O	CuO–Cu ₂ O
mHCl	0.1	0.316	0.1	0.316	0.1	0.316
Выборка	11	8	14	12	11	15
Ca	0.075 ± 0.010	0.078 ± 0.007	0.064 ± 0.016	0.072 ± 0.010	0.124 ± 0.019	0.059 ± 0.026

 $f(O_2)$ задавалась буфером магнетит-маггемит (Mgt-Mgh).

$$xCaWO_4 + (1-x)WO_3 = Ca_xWO_3 + 0.5xO_2.$$
 (2)

ОБСУЖДЕНИЕ РЕЗУЛЬТАТОВ

Очевидно, что шеелит в растворах HCl в изученном интервале концентраций от 0.01 до 0.316 моль \cdot кг⁻¹ H₂O растворялся инконгруэнтно. В относительно разбавленных растворах, содержащих от 0.01 до 0.0316 *m*HCl, в продуктах опытов, наряду с шеелитом, обнаруживаются незначительные количества оксидов вольфрама WO₃ и (или) WO_{3-x}. Реакцию растворения Sch с образованием оксидов вольфрама можно представить в виде:

$$CaWO_4 + 2H^+ = WO_{3-x} + Ca^{2+} + 0.5xO_2 + H_2O.(1)$$

В растворах, содержащих от 0.1 до 0.316 *m*HCl, наблюдается образование кальций-вольфрамовых бронз (СТВ) Ca_xWO_3 , средний состав которых соответствует формуле $Ca_{0.07}WO_3$. Образование СТВ идет согласно реакции: WO_3 , образовавшийся по реакции (1), взаимодействуя с Sch, приводит к формированию СТВ. То, что в опытах идет расход WO_3 , видно на снимках образцов. В продуктах опытов, проведенных в растворах, содержащих 0.316 *m* HCl, оксиды вольфрама практически отсутствуют.

Результаты анализа растворов позволяют оценить количество WO₃, образовавшегося при растворении шеелита по реакции (1). Так как на всех этапах проведения опытов проводился весовой контроль реагентов, используя закон действия масс, нетрудно рассчитать выход WO₃. Расчеты показали, что раствор 0.01 *m*HCl, взаимодействуя с Sch, приводит к образованию (1.6 ± 0.8) моль % WO₃ при 400 и 500°С. Окислительно-восстановительные условия мало влияют на выход WO₃ (или WO_{3-x}) в этом растворе. Чувствительности рентгенофазового метода анализа недостаточно для идентификации WO₃, поэтому на рентгенограммах обнаруживаются линии, присущие только Sch.

Увеличение концентрации HCl, как это и следовало ожидать из данных табл. 1, способствует

Фиг. 3. Типичная рентгенограмма продуктов опытов (№ 13–16). Условные обозначения: Sch_r – перекристаллизованный шеелит (=PDF 85-0443), WO₃, mon – трехокись вольфрама (PDF 71-2141).

выходу WO₃ (или WO_{3 – x}). Согласно расчетам, в растворе, содержащем 0.0316 *m*HCl, выход продукта составляет 4.8 ± 1.1 моль %, в растворе 0.1 *m*HCl – 19.6 ± 6.0, а в 0.316 *m*HCl – 58.1 ± 15.6. Повышение температуры уменьшает выход WO₃, что связано с ростом растворимости этой фазы.

Согласно данным (Cazzanelli et al., 1999), в WO₃ фазе имеют место следующие структурные переходы: моноклинная или *є*- фаза от 5 до 278 К: триклинная или δ -фаза от 278 до 290–300 К: моноклинная или у-фаза от 290-300 К до 600 К; орторомбическая β-WO₃ от 600 до 1010 K; тетрагональная *α*-WO₃ от 1010 К до температуры плавлепромышленный. Исследуя ния 1746 Κ. химически чистый WO₃, Черкашина с соавторами (Черкашина и др., 2019) пришли к выводу, что триклинная фаза устойчива в интервале температур от 83 до 673 К, рентгенограмма которой имеет большое сходство с моноклинной WO₃ фазой. Уточненные данные по структурным переходам даются в работе (Han et al., 2020). В интересующем нас температурном интервале от 673 К до 773 К, согласно (Salje, 1977; Woodward and Sleight, 1997; Voght et al., 1999; Han et al., 2020; Rao, 2013), должна быть устойчива орторомбическая WO₃, отно-

сящаяся к структурной группе *Pmnb* (D_{2h}^{16}). Орторомбическая структура, согласно EPS-спектрам (Ghosh et al., 2017), имеет, кроме W(VI) (35.8 эВ \in W4 $f_{7/2}$, 37.9 эВ \in W4 $f_{5/2}$ для частиц W⁶⁺), также заметное количество W(V), на что указывают пики при 34.5 и 37.2 эВ, относящиеся к W4 $f_{7/2}$ W4 $f_{5/2}$ колебаниям W⁵⁺. Исследования оксидов WO_{2.97} и WO_{2.89} (Mews et al., 2016) указывают на наличие W⁵⁺ только во второй фазе, тогда как в WO_{2.97} фазе, согласно EPS-спектрам, присутствует преимущественно W⁶⁺.

Рентгенофазовый анализ не позволяет точно идентифицировать структурный тип стехиометрических новообразованных оксидов WO3 и WO3-x (WO_{2.9}, или W₂₀O₅₈, и WO_{2.72} или W₁₈O₄₉), устойчивых при параметрах опытов (Wriedt, 1989). В системе W-О термодинамически стабильными являются 3 фазы разного цвета: WO₃ (желтый), WO_{2.9} (темно-синий) и WO₂ (темно-коричневый). Метастабильный оксид WO_{2.72} красно-фиолетового цвета в продуктах опытов не обнаружен. Окислительно-восстановительные условия, даже при Co-CoO буфере, были не достаточны для восстановления WO₃ и WO_{2.9} до WO₂. Морфология полученных в опытах оксидов вольфрама связана, прежде всего, с физико-химическими условиями их образования (температурой, давлением, кислотностью раствора, концентрацией кальция, фугитивностью кислорода). Мы не исключаем, что в кристаллах WO₃, образовавшихся при 673 и 773 К 100 МПа в опытах длительностью 14 суток, при охлаждении могли произойти структурные переходы: орторомбическая (β -WO₃ *Pmnb*) \rightarrow моноклинная (γ -WO₃ P2,/n). Возможно также, что при дегидратации гидроксида W(VI), образующегося на начальной стадии растворения шеелита, осаждался метастабильный гексагональный оксид *h*-WO3, который в режиме опыта переходил в моноклинный γ -WO₃ (Lassner, Schubert, 1999). Однако, принимая во внимание относительно крупный размер кристаллов, их окраску, можно прийти к выводу, что в опытах с 0.01 *m*HCl и Cu₂O-CuO буфером в равновесии с раствором был моноклинный γ -WO₃. Форма кристаллов – длинные иголки (10–100 мкм) желтого цвета.

Что касается темно-синих кристаллов оксидов вольфрама (TBO) (Lunk et al., 1993), имеющих форму параллелепипедов (близкую к прямоугольникам), то правомерно отнести эти кристаллы к стабильной при 400 и 500°С орторомбической аллотропной модификации WO_{2.9} (W₂₀O₅₈). Параллелепипедная форма кристаллов могла образоваться в результате реакции дегидратации гидроксидов вольфрама (эльпасалита) – промежуточного продукта инконгруэнтного растворения шеелита (Lassner, Schubert, 1999).

Темно-синие образования на поверхности шеелита – это результат его последовательного замещения метастабильной гексагональной гидроокисью или трехокисью вольфрама (h-WO₃), с последующей трансформацией с восстановлением $(W^{6+} \rightarrow W^{5+})$ в гексагональную вольфрамовую бронзу HTB (Lassner, Schubert, 1999). В структуре НТВ имеются гексагональные и триангулярные каналы вдоль оси С, через которые могут входить катионы металлов и других частиц с положительным зарядом. Согласно (Lunk et al., 1993), предельный состав НТВ, в котором все каналы за-полнены катионами А, соответствует формуле А_{0 33}WO₃. Принимая во внимание данные анализа на электронном микроскопе, можно утверждать, что состав НТВ может изменяться от безводного катион-дефицитного Ca_{0.07}WO₃ до предельно-насыщенного (H₃O)_{0.19}Ca_{0.07}WO₃.

Таким образом, анализ твердых продуктов по-казал, что:

 в растворах, содержащих 0.01–0.0316 mHCl, при 400–500°С, 100 МПа устойчивы оксиды вольфрама WO₃

• в растворах, содержащих 0.1-0.316 mHCl, при 400-500°C, 100 МПа устойчивы гексагональные кальций-вольфрамовые бронзы, в которых мольное отношение в среднем составляет Ca/W = = 0.07.

Формирование WO₃ при инконгруэнтном растворении шеелита в кислых растворах ранее отмечалось в работах (Рафальский и др., 1984; Forster, 1977). Согласно данным (Forster, 1977), растворимость шеелита в воде при давлении 100 МПа зависит от температуры и в интервале $265-555^{\circ}$ С составляет (4–23) × 10⁻⁶ моль кг⁻¹. В растворах сильных электролитов (NaCl, KCl) растворимость шеелита увеличивается с ростом концентрации хлоридов (ионной силы раствора) и кислотности раствора.

Введение хлорида кальция в исследуемый раствор, напротив, снижает растворимость Sch. Coгласно (Рафальский и др., 1984), в 1 *m*NaCl pac-творе, равновесном с шеелитом, имеющем pH = 3, добавление 0.001 *m*CaCl₂ снижает *m*W с 5 × $\times 10^{-5}$ моль кг⁻¹ до 3 $\times 10^{-6}$ моль кг⁻¹. Результаты термодинамических расчетов растворимости шеелита в растворах HCl (область pH от 2 до 6), выполненные в цитируемой работе, дают значения *m*W на 2–2.5 порядка ниже, чем представленные в табл. 1 для 400-500°С, 100 МПа для всех использованных кислородных буферов. Очевидно, что в области инконгруэнтной растворимости содержание вольфрама в растворе будет контролироваться оксидом вольфрама или СТВ, а содержание кальция будет определяться равновесием реакции (1). В области концентраций HCl от 0.1 до 0.316 моль кг⁻¹ стабильными фазами являются шеелит и кальций-вольфрамовые бронзы. Если предположить, что состав СТВ соответствует формуле $Ca_{0.07}WO_3$ и (или $(H_3O)_{0.19}Ca_{0.07}WO_3$), то полученных данных достаточно для уточнения термодинамических свойств СТВ.

ТЕРМОДИНАМИЧЕСКИЕ РАСЧЕТЫ

Как отмечалось выше, полученные данные указывают на то, что шеелит при $400-500^{\circ}$ С, 100 МПа в растворах 0.01–0.316 *m*HCl растворяется инконгруэнтно. В зависимости от *m*HCl и *f*(O₂) в ходе опытов образуются WO₃, WO_{2.9} и кальцийсодержащие HTB. Эти наблюдения положены в основу термодинамических расчетов.

Очевидно, что при согласовании термодинамических свойств компонентов водного раствора и равновесных с ним твердых фаз необходимо выбрать что-то за основу. Нами в расчетах были использованы следующие частицы водного раствоpa: H₂O, H⁺, OH⁻, Cl⁻, HCl⁰, Ca²⁺, CaCl⁺, CaCl⁰₂, $CaOH^+$, WO_4^{2-} , HWO_4^- , $H_2WO_4^0$ (табл. 4) В настоящее время считается, что наилучшие термодинамические данные (константы равновесия) для частиц W(VI) представлены в работе (Wood, Samson, 2000). Для частиц W(V) нами (Redkin, Cygan, 2020) предложены комплексы W₅O₁₆ (при 400°C), WO_3^- и $H_2W_2O_7^-$ (при 500°С). Для удовлетворительного соответствия расчетов результатам экспериментов необходимо корректировать термодинамические свойства (свободные энергии Гиббса, энтропию) твердых фаз, которые, как правило, имеют значительную погрешность, или вводить новые частицы водного раствора. В любом случае необходим анализ существующих данных и их критический отбор. На результаты расчетов также оказывает влияние выбор модели для описания коэффициентов активности частиц водного раствора. Известно, что повышение температуры расширяет пределы концентраций солей при использовании уравнений Дебая-Гюккеля, хотя против этого мнения существуют многочисленные возражения.

Расчеты проводились по программе Гиббс (Шваров, 2007). Индивидуальные коэффициенты активности частиц рассчитывались по расширенному уравнению Дебая—Хюккеля во втором приближении (Akinfiev et al., 2020). Размерный параметр (эффективный радиус иона) для всех заряженных частиц принят равным 4.5 Å (Рафальский, 1973). В расчетах были использованы моляльные концентрации частиц Са и W. Для этого результат моделирования содержания элементов в молях делился на мольную долю воды (активность воды) в растворе.

При выборе термодинамических свойств твердых фаз (оксидов вольфрама, шеелита) был проведен количественный и качественный анализ. В результате исследований установлено, что существующие термодинамические данные по окислительно-восстановительным равновесиям в вольфрам-оксидных системах в интервале температур 300-600°С имеют значительную несогласованность. Поэтому за основу были приняты величины свободных энергий WO₃(s) (Han et al., 2020), WO₂(s) (Наумов и др., 1971), а G_T° для WO_{2.9} были рассчитаны из констант равновесия реакции

$$20WO_3(s) = 20WO_{29}(s) + O_2(g)$$

из данных (Chase_JANAF, 1998). Оксид вольфрама WO_{2.72} был исключен из рассмотрения ввиду того, что в системе W–O он устойчив при температуре выше 585°C при P = 100 Па и выше 640°C при 100 МПа. Величины $\Delta H_{298.15}^{\circ}$, (и $\Delta G_{298.15}^{\circ}$), представленные (Charlu, Kleppa, 1973; Chase_-JANAF, 1998), имеют значительное (7 кдж моль⁻¹) отрицательное отклонение от линейной зависимости состава для крайних фаз WO₂ и WO₃.

Энтальпия образования шеелита заимствована из данных (Poling et al., 2008), а энтропия и уравнение теплоемкости из работы (Жидикова, Ходаковский, 1984). Расчеты с использованием данных работ (Wood, Samson, 2000) для Sch и (Chase_JANAF, 1998) для WO₃ и WO_{2.9} приводят к результатам, значительно отличающимся от наших экспериментальных данных при 400 и 500°С. Свободная энергия СТВ рассчитана по результатам экспериментов при Со-СоО буфере. Было отмечено, что фазы Ca_{0.07}WO₃ и или (H₃O)_{0.19}Ca_{0.07}WO₃ имеют равные значения ΔG_T° и одинаковую растворимость в растворах HCl, несмотря на то, что кажущееся содержание W(V) у них существенно различается – 14 и 33 моль % соответственно. Значения свободных энергий образования твердых фаз, использованные в расчетах, представлены в табл. 5.

Так как в расчетах принимают участие только частицы W(VI), то $f(O_2)$ оказывает слабое влияние на содержание кальция и вольфрама в растворе, равновесном с шеелитом. На фиг. 4 представлены

	Таблица 4. С	тандартные п	арциальны	е моляльные	свойства час	тиц при 298	8.15 K, 1 6ap	и НКF пар	аметры, исп	ользованны	е в расчетах
ГЕОЛОГИ	Частица	$\Delta_f G^\circ_{298} ~^a$	$S_{298}^{\circ}{}^{b}$	$a_1 \times 10^{\ d}$	$a_2 \times 10^{-2 a}$	a ^{3 e}	$a_4 \times 10^{-4f}$	$c_1{}^b$	$c_2 \times 10^{-4f}$	$\omega \times 10^{-5 a}$	Ссылка
я руднь	H ₂ WO ₄ (aq)	-227742#	49.050#	8.1527	13.1578	1.2439	-3.7375	5.4299	-4.4806	-0.4028	# + Wood & Samson, 2000
ых мест	$HWO_4^{-}(aq)$	217130	52.869#	-18.5862	7.1668	-0.7349	-2.4827	-15.4537	15.7442	0.0347	# + Wood & Samson, 2000
орожде	$WO_4^{2-}(aq)$	-216210#	2.128#	-3.8533	10.4708	4.4891	-3.2119	-10.0882	68.8178	4.0372	# + Wood & Samson, 2000
ний	CaCl ₂ (aq)	-194000	6.000	6.2187	7.4058	2.8322	-3.0851	23.9610	3.2720	-0.0380	Sverjensky et al., 1997
том 65	CaCl ⁺	-163100	4.500	2.7148	-1.1497	6.1949	-2.7314	20.8839	0.5241	0.4862	Sverjensky et al., 1997
№ 1	CaOH ⁺ (aq)	-171490	-5.346	-2.2875	-13.3704	11.0053	-2.2263	14.5527	0.1431	-0.0820	Akinfiev & Zotov, 1999
2023	Ca ²⁺	-132120	-13.500	-0.1947	-7.2520	5.2966	-2.4792	9.0000	-2.5220	1.2366	Johnson et al., 1992
	HCl(aq)	-30410	3.200	1.2555	-4.7177	7.6043	-2.5840	16.7134	2.8727	-0.7000	Sverjensky et al., 1991
	CI-	-31 379	13.56	4.0320	4.8010	5.5630	-2.8470	-4.4000	-5.7140	1.4560	Johnson et al., 1992
	O ₂ (aq)	3954	26.040	5.7889	6.3536	3.2528	-3.0417	35.3530	8.3726	-0.3943	Johnson et al., 1992
	$H_2(aq)$	4236	13.800	5.1427	4.7758	3.8729	-2.9764	27.6251	5.0930	-0.2090	Johnson et al., 1992
	Примечание. частиц НWO4 и используютс	 # Оценены авт (aq), H ₂ WO ₄ (ас зя автоматичесі	орами статы (рассчитан ки.	1; № ^а кал молн њі по значени	ь ⁻¹ ; ^b кал моль ям K _p (Wood &	$^{-1}$ K ^{-1} .; c cm ³ Samson, 200	моль ⁻¹ ; ^d кал)). *Термоди	т моль ⁻¹ бар ⁻ намические с		оль ⁻¹ бар ⁻¹ ; ^f .H ⁺ и ОН ⁻ ув	L кал K ⁻¹ моль ⁻¹ ; НКF параметры язаны в программе UNITHERM

HKF ŭ T 208 15 K Ć .

результаты термодинамического моделирования инконгруэнтной растворимости шеелита с образованием WO₃, WO_{2.9} и Ca_{0.07}WO₃ (или (H₃O)_{0.19}Ca_{0.07}WO₃) при 400 и 500°C, 100 МПа. Расчеты показали, что в условиях Си₂О-СиО буфера ($f(O_2) = 3.98 \times 10^{-7}$ Па) при 400°С область конгруэнтной растворимости шеелита находится при концентрации HCl ниже $4.34 \times 10^{-3} m$. При 500°С и фугитивности Cu₂O-CuO буфера ($f(O_2)$ = $= 2.71 \times 10^{-4}$ Па) область конгруэнтной растворимости шеелита находится при концентрации HCl ниже 4.08×10^{-3} *m*. Растворимость Sch в H₂O, согласно расчетам, составляет 2.78×10^{-6} и $2.93 \times$ × 10^{-6} моль кг⁻¹ H₂O. Рост концентрации HCl приводит к осаждению WO₃ из раствора. Полное замещение Sch новообразованной фазой WO₃ проходит в растворах, содержащих mHCl > 0.42при 400°С и 0.56 при 500°С.

В окислительно-восстановительных условиях, соответствующих $Fe_3O_4 - Fe_2O_3$ ($f(O_2)$ = $= 2.51 \times 10^{-19}$ Па при 400°С), Ni–NiO (f(O₂) = = 3.78 × 10⁻²³ Па при 400°С и 1.97 × 10⁻¹⁸ Па при 500°С) и Со-СоО $(f(O_2) = 1.71 \times 10^{-24}$ Па при 400°С и 8.16×10^{-20} Па при 500°С) буферам, шеелит растворяется с образованием СТВ. Область конгруэнтной растворимости шеелита, так же, как и с Си₂О-СиО буфером, достаточно узкая и ограничена mHCl < 2 × 10⁻³. В растворах, содержащих mHCl > >0.36, при заданном соотношении шеелит/раствор = 0.18 моль Sch/1000 г H₂O, при 400°C устойчивой фазой является WO₃. Согласно расчетам, воздействие растворов, содержащих mHCl > 0.56, на 0.22 моль Sch при 500°C и fO2(Ni-NiO) приводит к образованию WO₃, тогда как при Co-CoO буфере устойчив оксид WO_{2 9}.

На фиг. 5 представлены результаты моделирования растворимости Sch в растворах 0.001— 1.0 *m*KCl на линиях гидролизного равновесия микроклина (Mc) с кварцем (Qtz) и мусковитом (Ms):

1.5Mc + HCl = 3Qtz + 0.5Ms + KCl

при 400 и 500°С, P = 100 МПа. В расчетах использованы термодинамические данные (Redkin, Суgan, 2020), взаимосогласованные с экспериментами (Hemley, 1959; Редькин, 1983). Согласно расчетам, растворение Sch при 400 и 500°С в растворах КСl происходит конгруэнтно и фугитивность кислорода (Со/СоО, Ni/NiO и Cu₂O/CuO буферы) не оказывает влияния на результаты расчетов. Отмечается удовлетворительное соответствие с экспериментальными данными Фостера (Foster, 1977) при 400 и 500°С, P = 100 МПа. Согласно расчетам, основной вклад в растворимость

шеелита вносит частица HWO₄. Рост растворимости шеелита связан, главным образом, с ростом ионной силы раствора (Брызгалин, 1976).

Таблица 5. Свободные энергии образования вольфрам содержащих твердых фаз при P = 100 МПа, принятые в настоящих расчетах

<i>T</i> , °C		g_T° , кДж	к моль ⁻¹	
	CaWO ₄	Ca _{0.07} WO ₃	WO ₃	WO _{2.9}
400	-1592.600	-849.257	-802.178	_
500	-1599.000	-859.671	-820.620	-798.310

Принимая во внимание, что в природных гидротермальных растворах концентрация солей натрия выше, чем калия, нами выполнены расчеты по растворимости шеелита в растворах NaCl-KCl–HCl. Т.к. состав рудоносных растворов нам не известен, но известно, что они производят квари-мусковитовое изменение вмешающих пород, то можно ввести граничные условия. Поле ассоциации Qtz + Ms, согласно (Meier, Hemley, 1967), при 500 и 400°С, 100 МПа и mCl = const ограничено следующими нонвариантными точками: Otz-Ab (альбит)-Mc-Ms, Otz-Ab-Prg (парагонит)-Ms и Otz-And (андалузит)-Prg-Ms (при 500°С) или Qtz-Pf (пирофиллит)-Prg-Ms (при 400°С). Термодинамические данные для всех Al-Si фаз, использованные в работе (Redkin, Cygan, 2020), представлены в табл. 6. Очевидно, что если концентрация хлоридов в системе меняется, то нонвариантные точки превращаются в гидролизные равновесия, определяющие отношения *m*KCl/*m*HCl и *m*NaCl/*m*HCl. Таким образом, растворимость Sch на линиях реакций гидролиза алюмосиликатов будет соответствовать предельным значениям.

На фиг. 6 представлены результаты расчета растворимости Sch в растворах (Na, K)Cl в системе, где кислотность растворов и окислительновосстановительные условия контролируется алюмо-силикатными буферами и металл-оксидными буферами. Расчеты выполнены при 400 и 500°С. давлении 100 МПа. Было показано, что шеелит растворяется конгруэнтно в растворах, контролируемых буферами Qtz-Ab-Mc-Ms, Qtz-Ab-Prg-Ms, и Qtz-And-Prg-Ms при 500°C, Qtz-Ab-Mc-Ms и Qtz-Ab-Prg-Ms при 400°С. Окислительно-восстановительные условия не влияют на концентрацию вольфрама в растворе ввиду того, что в рассматриваемых условиях (500°С, 100 МПа, mKCl, fO₂) устойчива единственная твердая фаза, содержащая W(VI): Sch. Содержание вольфрама растет с общей концентрацией хлоридов и с кислотностью Al-Si буфера (фиг. 6).

Согласно расчетам, в условиях буфера Qtz-Pf-Prg-Ms при 400°С, 100 МПа в растворах, содержащих $mCl_{init} = m(NaCl + KCl)_{init} > 0.094$, наряду с Sch устойчив триоксид вольфрама — WO₃. Для гидротермальных месторождений вольфрама не характерно одновременное присутствие Sch и

Фиг. 4. Влияние *m*HCl на содержание *m*W и Ca в растворе, равновесном с шеелитом при 400 и 500°C, P = 100 МПа и фугитивности кислорода, заданной различными металл-оксидными буферами, по экспериментальным (символы) и расчетным (линии) данным.

 WO_3 . Газово-жидкие включения в минералах на месторождениях вольфрама свидетельствуют о высокой солености высокотемпературных гидротермальных растворов (Wood, Vlassopoulos, 1989). Очевидно, что рудоносные растворы существовали не сами по себе, а были в состоянии, близком к равновесию с вмещающими алюмосиликатными породами, роль которых подобна рассматриваемым буферам. Т.к. из рассмотрения должны быть исключены растворы, в которых образуется WO_3 , то из этого следует, что кислотность (mH^+) вольфрамово-рудных растворов была ниже, чем

Фиг. 5. Влияние *m*KCl на содержание *m*W и Ca в растворе, равновесном с шеелитом в условиях, контролируемых кварц-микроклин-мусковитовым буфером, при 400 и 500°C, 100 МПа и футитивности кислорода, заданной никель-бунзенитовым (NNO) буфером по экспериментальным ((Foster, 1977) символы: квадратные – 400°C, круглые – 500°C,) и расчетным (линии) данным.

ГЕОЛОГИЯ РУДНЫХ МЕСТОРОЖДЕНИЙ том 65 № 1

задается буфером Qtz-Pf-Prg-Ms при 400°С в 0.1 m(Na,K)Cl растворе. В качестве показателя кислотности Al–Si буферной ассоциации может рассматриваться равновесное отношение mNa⁺/mH⁺ (или mK⁺/mH⁺). Если предположить, что главным механизмом осаждения шеелита из раствора было охлаждение последнего, то можно показать, что растворы, насыщенные шеелитом и равновесные с Qtz-Ab-Mc-Ms и Qtz-Ab-Prg-Ms минеральными ассоциациями при 500°С, 100 МПа, при изменении температуры до 400°С способны отложить 90–92% Sch.

Сравнение данных по растворимости ферберита (Redkin, Cygan, 2020) и шеелита (фиг. 6) в буферных Al–Si системах могут быть использованы для оценки равновесия этих рудных фаз в хлоридной системе. Согласно термодинамическим расчетам, величина $mCa_{aq}/(mCa_{aq} + mFe_{aq})$ зависит от ионной силы раствора и составляет 0.41 ± 0.03 и 0.78 ± 0.08 при 500 и 400°C, 100 МПа для Qtz-Ab-Mc-Ms и Qtz-Ab-Prg-Ms. Эти величины имеют хорошее соответствие с экспериментальными данными (Коржинская, Зарайский, 1997) по обменному равновесию Ferb + CaCl₂ = Sch + FeCl₂, изученному в условиях Ni–NiO буфера.

выводы

Изучена растворимость шеелита в растворах HCl при 400 и 500°C, $P_{\rm ofm} = 100$ МПа. Установлено, что Sch в растворах HCl от 0.01 до 0.316 *m* растворяется инконгруэнтно с образованием WO₃, WO_{2.9} и кальций-вольфрамовых бронз, средний состав которых соответствует формуле Ca_{0.07}WO₃. Увеличение концентрации HCl способствует выходу WO₃ (или WO_{3-x}). Повышение температуры уменьшает выход WO₃, что связано с ростом растворимости этой фазы.

Фиг. 6. Влияние концентрации хлоридов (NaCl, KCl) на растворимость шеелита при 400 (a) и 500°С (б), 100 МПа, Cu₂O–CuO буферах и кислотности, регулируемой Al–Si ассоциациями Qtz+Ab+Mc+Ms, Qtz+Ab+Ms+Prg, Qtz+Pf+Ms+Prg (при 400°С) и Qtz+And+Ms+Prg (при 500°С). +WO₃ – шеелит растворяется инконгруэнтно с образованием трехокиси вольфрама.

Таблица 6. Стандартные термодинамические свойства Al-Si твердых фаз, принятые в настоящих расчетах.

Минерал	$\Delta_f G_{298}^{\circ}$	S°_{298}	V ₂₉₈	$C_p^\circ = + cT^{-2}$	$= a + bT \times 10^{-10}$ $\times 10^{5} + dT^{-0}$	$f^{-3} + fT^2$	Источник
индекс	Дж моль ⁻¹	Дж моль $^{-1}$ K $^{-1}$	Дж бар ⁻¹	а	b	С	
Ab	-3715775#	194.20#	10.007	583.94	-92.852	16.78*	Robie et al., 1978
And	$-2417980^{\#}$	93.220	$4.9900^{\#}$	164.42#	33.594#	-46.078 [#]	Robie et al., 1978
Mc	-3742330	214.2	10.872	759.55	-217.11	47.642*	Robie et al., 1978
Ms	-5600547 [#]	245.000#	14.0810	917.70	-81.11	28.34*	Robie et al., 1995
Pf	$-5240840^{\#}$	239.400#	12.8100	-87.4007	847.683	-45.1557*	Krupka et al., 1979
Prg	$-5546450^{\#}$	277.82	13.253	407.647	102.508	-110.625	Покровский, 1984
Qtz	-856240	41.340	2.2688	46.940	34.31	-11.30	Helgeson et al.,1978

Примечание. [#] авторы; * Ab: $d = -6.4242 \times 10^3$, $f = 2.2722 \times 10^{-5}$; Mc: $d = -9.5268 \times 10^3$, $f = 6.4333 \times 10^{-5}$; Ms: $d = -1.0348 \times 10^4$; Pf: $d = 4.31112 \times 10^3$, $f = -4.51557 \times 10^{-4}$;

На основе анализа полученных экспериментальных данных рассчитаны свободные энергии образования оксидов вольфрама WO₃, WO_{2.9}, шеелита и кальций-вольфрамовой бронзы. Используя взаимосогласованные термодинамические данные, рассчитана растворимость Sch в растворах HCl, (Na,K)Cl с участием алюмо-силикатных буферов. Показано, что шеелит имеет широкую область конгруэнтной растворимости в солевых системах.

БЛАГОДАРНОСТИ

Авторы благодарны А.Н. Некрасову (ИЭМ РАН) за помощь в проведении микрозондовых анализов, Н.А. Дрожжиной (ИЭМ РАН) за рентгеновские анализы твердых продуктов опытов, к.х.н В.К. Карандашеву (ИПТМ РАН) за ICP-анализы растворов после опытов. Мы признательны рецензенту д.х.н. Н.Н. Акинфиеву за ценные замечания и полезные рекомендации.

ФИНАНСИРОВАНИЕ

Работа проведена при финансовой поддержке гранта РФФИ 20-05-00307а и ФНИ государственных Академий Наук FMUF-2022-0003.

СПИСОК ЛИТЕРАТУРЫ

Брызгалин О.В. О растворимости вольфрамовой кислоты в водно-солевых растворах при высоких температурах // Геохимия. 1976. № 6. С. 864–870.

Жидикова А.П., Ходаковский И.Л. Термодинамические свойства ферберита, гюбнерита, шеелита и повелита. Физико-химические модели петрогенеза и рудообразования. Новосибирск: Наука, 1984. 156 с.

Коржинская В.С., Зарайский Г.П. Экспериментальное исследование равновесия шеелит-ферберит в хлоридном флюиде при $T = 300-600^{\circ}$ С, P = 1 кбар // Докл. АН. Сер. Геохимия. 1997. Т. 353. № 5. С. 663–666.

Наумов Г.Б., Рыженко Б.Н., Ходаковский И.Л. Справочник термодинамических величин (для геологов). М.: Атомиздат, 1971. 384 с. Покровский В.А. Исследование минеральных реакций в модельных гидротермальных системах: автореф. дисс. ... канд. геол.-минералог. наук. М: МГУ, 1984.

Редькин А.Ф. Экспериментальное и термодинамическое изучение реакций, контролирующих условия образования околорудных березитов: автореф. дисс. ... канд. хим. наук. М: ГЕОХИ АН СССР, 1983. 27 с.

Рафальский Р.П., Брызгалин О.В., Федоров П.Л. Перенос вольфрама и отложение шеелита в гиротермальных условиях // Геохимия. 1984. № 5. С. 611–624.

Рафальский Р.П. Гидротермальные равновесия и процессы минералообразования. М.: Атомиздат, 1973. 288 с.

Черкашина Н.И., Павленко В.И., Ястребинский Р.Н. Фазовые переходы и изменение электрофизических свойств WO₃ в температурном диапазоне 83–673 К // Известия ВУЗов. Физика. 2019. Т. 62. № 5 (737). С. 126–131.

Шваров Ю.В. О термодинамических моделях реальных растворов // Геохимия. 2007. № 6. С. 670–679.

Akinfiev N.N., Korzhinskaya V.S., Kotova N.P., Redkin A.F., Zotov A.V. Niobium and tantalum in hydrothermal fluids: Thermodynamic description of hydroxide and hydroxofluoride complexes // Geochim. Cosmochim. Acta. 2020. V. 280. P. 102–115.

Akinfiev N., Zotov A. Thermodynamic description of equilibria in mixed fluids (H₂O-non-polar gas) over a wide range of temperature ($25-700^{\circ}$ C) and pressure (1-5000 bars) // Geochim. Cosmochim. Acta. 1999. V. 63 (13/14). P. 2025–2041.

Cazzanelli E., Vinegoni C., Mariotto G., Kuzmin A. and Purans J. Low-temperature polymorphism in tungsten trioxide powders and its dependence on mechanical treatments // J. Solid State Chem. 1999. V. 143. P. 24–32.

Charlu T.V., Kleppa O.J. High-temperature combustion calorimetry 1. Enthalpies of formation of tungsten oxides // J. Chem. Thermodyn. 1973. V. 5. P. 325–330.

Chase Jr. M.W. NIST-JANAF thermochemical tables // Journal of physical and chemical reference data, Monograph;, no. 9. American Chemical Society; *Woodbury N.Y.* American Institute of Physics for the National Institute of Standards and Technology. 1998. 1961 p.

Foster R.P. Solubility of scheelite in hydrothermal chloride solutions // Chem. Geol. 1977. V. 20(1). P. 7–43.

Johnson J.W., Oelkers E.H., Helgeson H.C. SUPCRT92: A software package for calculating the standard molal thermodynamic properties of minerals, gases, aqueous species, and reactions from 1 to 5000 bar and 0 to 1000°C // Computers & Geosciences. 1992. V. 18 (7). 899–947.

Ghosh K., Roy A., Tripathi S., Ghule S., Singh A.K., Ravishankar N. Insights into nucleation, growth and phase selection of WO₃: morphology control and electrochromic properties // J. Mater. Chem. 2017. V. 5. P. 7307–7316.

Han B., Khoroshilov A.V., Tyurin A.V., Baranchikov A.E., Razumov M.I., Ivanova O.S., Gavrichev K.S., Ivanov V.K. WO₃ thermodynamic properties at 80–1256 K revisited // J. Therm. Anal. Calorim. 2020. V. 142. P. 1533–1543.

Helgeson H.C., Delany J.M., Nesbitt H.W., Bird D.K. Summary and critique of the thermodynamic properties of rockforming minerals // Amer. J. Sci. 1978. V. 278-A. 229 p.

Hemley J.J. Some mineralogical equilibria in the system K_2O -Al₂O₃-SiO₂-H₂O // Amer. J. Sci. 1959. V. 257. P. 241–270.

Hu W., Tong W., Li L., Zheng J., Li G. Cation non-stoichiometry in multi-component oxide nanoparticles by solution chemistry: a case study on CaWO₄ for tailored structural properties // Phys. Chem. 2011. V. 13. P. 11634–11643.

Khodokovskiy I.L., Mishin I.V. Solubility products of calcium molybdate and calcium tungstate; ratio of powellite to scheelite mineralization under hydrothermal conditions // Int. Geol. Rev. 1971. V. 13. №. 5. P. 760–768.

Krupka K.M., Robie R.A., Hemingway B.S. High-temperature heat capacities of corundum, periclase, anorthite, $CaAl_2Si_2O_8$ glass, muscovite, pyrophyllite, $KAlSi_3O_8$ glass, grossular, and $NaAlSi_3O_8$ glass // Am. Min. 1979. V. 64 (1–2). P. 86–101.

Lassner E., Schubert W.-D. Tungsten: properties, chemistry, technology of the element, alloys, and chemical compounds. Kluwer Academic / Plenum Publishers New York, 1999. 447 p.

Lunk H.-J., Ziemer B., Salmen M., Heidemann D. What is behind 'tungsten blue oxides? // Proceedings of the 13 International Plansee Seminar, Eds. H. Bildstein and R. Eck, Metallwerk Plansee, Reutte. 1993. V. 1. P. 38–56

Mews M., Korte L., Rech B. Oxygen Vacancies in Tungsten Oxide and Their Influence on Tungsten Oxide/Silicon Heterojunction Solar Cells // Sol. Energy Mater. Sol. Cells. 2016. V. 158. P. 77–83.

Meyer C., Hemley J.J. Wall rock alteration. In: Geochemistry of Hydrothermal Ore Deposits (ed. H.L. Barnes). New York: Holt, Rinehart, and Winston, 1967. P. 166–235.

Poling B.E., Thomson G.H., Friend D.G., Rowley R.L., Wilding W. Section 2. Physical and Chemical Data. Perry's Chemical Engineers' Handbook. 8-th Edition. (Don W. Green and Robert P.E. Perry eds.). McGraw-Hill Companies, Inc. New York, NY, 2008. 2728 p. https://doi.org/10.1036/0071511245

Rao M.C. Structure and properties of WO_3 thin films for electrochromic device application // J. Non oxide Glasses. 2013. V. 5 (1). P. 1–8.

Redkin A.F., Cygan G.L. Experimental determination of ferberite solubility in the KCl-HCl-H₂O system at 400– 500° C, and 20–100 MPa // In Advances in Experimental and Genetic Mineralogy (Eds.: Yu. Litvin., O. Safonov). Springer. New York. 2020. Chapter 7. P. 137–162.

Robie R.A., Hemingway B.S., Fisher J.R. Thermodynamic properties of minerals and related substances at 298.15 K and 1 bar (10⁵ Pascals) pressure and at higher temperatures // U.S. Geological Survey Bulletin 1452. Washington. 1978. 456 p.

Robie R.A., Hemingway B.S. Thermodynamic properties of minerals and related substances at 298.15 K and 1 bar (10⁵ Pascals) pressure and at higher temperatures // U.S. Geological Survey Bulletin 2131. Washington. 1995. 461 p.

Salje E. The orthorhombic phase of WO₃ // Acta Cryst. B33. 1977. P. 574–577.

Sverjensky D.A., Hemley J.J., and D'Angelo W.M. Thermodynamic assessment of hydrothermal alkali feldspar-micaaluminosilicate equilibria // Geochim. Cosmochim. Acta. 1991. V. 55. P. 989–1004.

Vogt T., Woodward P. M. and Hunter B. A. The high-temperature phases of WO_3 // J. Solid State Chem. 1999. V. 144. P. 209–215.

Wood S. A. and Samson I. M. The hydrothermal geochemistry of tungsten in granitoid environments: I. Relative solubilities of ferberite and scheelite as a function of T, P, pH, and m_{NaCl} // Economic Geology. 2000. V. 95(1), P. 143–182.

Wood S.A. and Vlassopoulos D. Experimental determination of the hydrothermal solubility and speciation of tungsten at 500°C and 1 kbar // Geochim. Cosmochim. Acta. 1989. V. 53. P. 303–312

Wriedt H.A. The O-W (Oxygen-Tungsten) system // Bull. Alloy Phase Diagr. 1989. V. 10(4). P. 368–384.

№ 1