УДК 597.562.575.17

О ПОПУЛЯЦИОННО-ГЕНЕТИЧЕСКОЙ ИЗМЕНЧИВОСТИ САЙКИ BOREOGADUS SAIDA АРКТИЧЕСКИХ МОРЕЙ РОССИИ

© 2019 г. Н. В. Гордеева^{1, 2, *}, А. В. Мишин²

¹Институт общей генетики РАН – ИОГЕН, Москва, Россия ²Институт океанологии РАН – ИО РАН, Москва, Россия *E-mail: ribka04@mail.ru Поступила в релакцию 12.03.2018 г.

После доработки 23.05.2018 г. Принята в печать 03.07.2018 г.

Приводятся данные о генетической изменчивости сайки *Boreogadus saida*, оценённой с помощью семи микросателлитных локусов в четырёх выборках, собранных в 2014 и 2017 гг. в морях Карском, Лаптевых и Восточно-Сибирском. Между выборками выявлены слабые, но в большинстве своём статистически достоверные различия. Оценки пространственной генетической дифференциации у сайки арктических морей России (в среднем 0.4% общей генетической изменчивости), сходные с таковыми на остальной части её панарктического ареала, оказываются наименьшими среди родственных видов тресковых рыб. В то же время у сайки отмечается существенная темпоральная изменчивость. Обсуждаются причины слабой пространственной дивергенции сайки и перспективы дальнейших популяционно-генетических исследований.

Ключевые слова: сайка *Boreogadus saida*, микросателлиты, генетическая изменчивость, популяция. **DOI:** 10.1134/S0042875219020073

Сайка Boreogadus saida — холодолюбивый вид тресковых рыб (Gadidae) с обширным панарктическим ареалом; встречается как в прибрежных водах, фьордовых заливах, шельфовых зонах, так и над континентальным склоном и в центральных районах Арктического бассейна, покрытых паковым льдом (рис. 1) (Москаленко, 1964; Парин и др., 2014; Mecklenburg, Steinke, 2015; David et al., 2016). Эта небольшая короткоцикловая рыба может образовывать скопления огромной численности плотностью до 307 экз/м³ (Welch et al., 1992: Crawford, Jorgenson, 1996; Benoit et al., 2008; Антонов и др., 2016; David et al., 2016). Сайку относят к криопелагическим видам, жизненный цикл которых тесно связан со льдом; он служит нерестовым биотопом и убежищем для личинок и молоди, а ассоциированная со льдом фауна беспозвоночных составляет основу питания последних (Craig et al., 1982; Lønne, Gulliksen, 1989; Graham, Hop, 1995; Боркин, 2013). Благодаря присутствию в крови особых гликопротеинов – антифризов – сайка способна переносить отрицательные значения температуры (Osuga, Feeney, 1978). Этот вид не является важным объектом промысла, но из-за численного доминирования и широкого распространения считается ключевым компонентом относительно простых пелагических экосистем шельфовых и центральных регионов Арктического бассейна (Нор, Gjøsæter, 2013; Антонов и др., 2016), обеспечивая передачу до 75% энергии между планктоном и хищниками более высокого ранга — морскими млекопитающими и птицами (Bradstreet et al., 1986; Welch et al., 1992; Hop, Gjøsæter, 2013).

Этот довольно специализированный вид в случае ослабления ледового режима может быть быстро замещён бореальными или субарктическими видами из Атлантики или Тихого океана. Потепление климата сопровождается отступлением полярного фронта и сокращением площади ледовых полей, вследствие этого границы распространения сайки смещаются дальше к северу (Mueter et al., 2016). Эта тенденция может угрожать благополучию вида, поскольку размножение сайки происходит преимущественно ближе к краям ареала, на арктическом шельфе (David et al., 2016). Снижение численности сайки происходит обычно на фоне возрастания более успешно конкурируюших за пишевые ресурсы видов – мойвы Mallotus villosus, песчанки Ammodytes hexapterus (Gaston et al., 2003; Hop, Gjøsæter, 2013; Falardeau et al., 2014; McNicholl et al., 2016), и хищников – более крупных представителей тресковых рыб – атлантической трески Gadus morhua и пикши Melanogrammus aeglefinus (Боркин, Журавлева, 1995; Renaud et al., 2012). Из-за чувствительности к температурному

Рис. 1. Географическое положение выборок сайки *Boreogadus saida*, исследованных в настоящей работе (\star) и в работах других авторов: (+) – Nelson, Bouchard, 2013; (+) – (Madsen et al., 2016; (\blacksquare) – ареал сайки, (\boxtimes) – положение основных мест нереста (по: Fevolden, Christiansen, 1997); (\rightarrow) – схема течений в арктическом регионе.

режиму этот вид может служить индикатором состояния арктических ихтиоценов, а также перестроек пищевых цепей в арктических и субарктических экосистемах в условиях глобальных климатических сдвигов (Нор, Gjøsæter, 2013; Mueter et al., 2016). Для долгосрочного широкомасштабного мониторинга помимо сведений о биологии, распределении, питании, росте и размножении необходимы подробные исследования внутривидовой структуры, границ и генетических характеристик её компонентов. Генетическая изменчивость и популяционная структура сайки исследована недостаточно подробно, особенно на российской части ареала (Nelson, Bouchard, 2013; Mecklenburg, Steinke, 2015). Судя по накопленным к настоящему времени данным, внутри своего обширного ареала сайка демонстрирует невысокую генетическую изменчивость. Первые работы с использованием биохимического полиморфизма в малоизменчивых кодирующих белки генах (Fevolden, Christiansen, 1997) и RAPD-маркеров (Fevolden et al., 1999) не обнаружили у сайки Северной Атлантики различий популяционного уровня. Таким же безуспешным оказался анализ коротких фрагментов мтДНК, хотя и помог выявить в выборках из гренландских вод две филогенетические линии (Pálsson et al., 2009). В недавней работе с помощью ДНК-баркодинга, основанного на изменчивости фрагмента cox1 мтДНК, показано отсутствие различий на более крупной географической шкале (Mecklenburg, Steinke, 2015). Исследование изменчивости высокополиморфных ядерных микросателлитных локусов свидетельствует о небольшой, но достоверной региональной подразделённости на значительной части ареала (рис. 1) (Nelson, Bouchard, 2013). Выявлены также значимые различия между сайкой из фьордовых заливов Северо-Восточной Гренландии и Шпицбергена в сравнении с выборками с шельфа Гренландского моря (Madsen et al., 2016), которые могли возникнуть в результате изоляции популяций после реколонизации отдельных фьордов в течение последнего ледникового минимума.

Цель настоящего исследования — с помощью информативных микросателлитных маркеров проанализировать генетическую изменчивость и дифференциацию выборок сайки, собранных в 2014 и 2017 гг. в трёх арктических морях России, расширив тем самым географию популяционно-генетических исследований этого вида.

МАТЕРИАЛ И МЕТОДИКА

Материал для исследования сайки собран в 129-м рейсе НИС "Профессор Штокман" (2014 г.) и 69-м рейсе НИС "Академик Мстислав Келдыш" (2017 г.). Положение станций и число отловленных рыб приведены на рис. 1 и в табл. 1. Всего обследовано 288 экз., объединённых в четыре выборки — из Карского моря (2014 и 2017 гг.), моря Лаптевых и Восточно-Сибирского моря.

Тотальную ДНК выделяли из фрагментов кожи и белых мышц с помощью коммерческого набора Diatom Prep100 (ООО "Лаборатория Изоген", Россия). Анализировали изменчивость семи микросателлитных локусов, один из которых содержит динуклеотидный повтор, два - тринуклеотидные, остальные тетранукдеотидные (табл. 2). При выборе локусов руководствовались наибольшими оценками полиморфизма и соответствием распределения генотипов равновесному соотношению Харди-Вайнберга, приведёнными в работе Нельсона с соавторами (Nelson et al., 2013). Полимеразную цепную реакцию (ПЦР) проводили по следующей схеме: предварительное плавление ДНК при 94°С в течение 4 мин, далее 7 циклов: плавление -94° С, 1 мин, отжиг праймеров -30 с, синтез ДНК – 72°С, 30 с; 25 циклов: плавление – 94°С, 30 с, отжиг праймеров – 20 с, синтез ДНК – 72°С, 15 с; окончательная достройка цепей – 72°С, 7 мин.

Полученную матрицу мультилокусных генотипов тестировали на наличие нуль-аллелей и ошибок считывания в программе MICRO-CHECKER version 2.2.3 (van Oosterhout et al.,

Mone	Станния	Координаты		Пата пора		n oro
Mope	Станция	с.ш.	в.д.	Дата лова	Орудие лова	п, экз.
Карское	64	72°31.98′	64°57.30′	28.09.2014	Сеть Бонго	8
	65	72°31.98′	64°12.36′	28.09.2014	То же	12
	78	72°57.48′	67°04.50'	30.09.2014	»	24
	80	73°05.40′	66°48.96′	30.09.2014	»	4
	5649	75°25.8′	64°20.12′	26.09.2017	PTAKCA	101
Лаптевых	5590	77°10.71′	114°41.33′	30.08.2017	Сеть Бонго	32
	5592	75°49.82′	130°26.16′	02.09.2017	То же	32
	5624	76°50.0′	126°40.0′	15.09.2017	»	32
Восточно-Сибирское	5604	74°04.54′	158°21.15′	06.09.2017	»	1
	5605	74°52.35′	160°09.29'	06.09.2017	»	3
	5606	75°38.86′	161°59.80'	07.09.2017	»	2
	5612	74°23.26′	168°08.72′	08.09.2017	PTAKCA	5
	5613	73°20.01′	166°47.90'	08.09.2017	Сеть Бонго	18
	5615	72°20.83′	165°26.34'	08.09.2017	То же	8
	5617	71°21.61′	164°19.21′	09.09.2017	»	1
	5619	70°26.66′	165°05.54′	09.09.2017	»	5

Таблица 1. Координаты станций и объём выборок (*n*) сайки *Boreogadus saida*, использованных для анализа генетической изменчивости

Таблица 2. Характеристики микросателлитных локусов, использованных для анализа генетической изменчивости сайки *Boreogadus saida* из трёх арктических морей России

Локус	Мотив	<i>T</i> , °C	H_0/H_E	A	F _{ST}	Источник информации
Bsa6	CA	53	0.641/0.672	16	0.004	Nelson et al., 2013
Bsa14	GATA	55	0.605/0.603	10	0.001	Тот же
Bsa60	TGAA	55	0.716/0.724	8	0.012*	»
Bsa101	GATA	55	0.756/0.770	9	0.002	»
GmoC18	ACA	56	0.875/0.906	17	0	Stenvik et al., 2006
GmoC102	TCA	55	0.857/0.874	15	0.009*	Delghandi et al., 2008
Tch14	GAA	55	0.930/0.936	26	0.001	O'Reilly et al., 2000

Примечание. T – температура отжига праймеров, A – число аллелей, H_o/H_E – наблюдаемая/ожидаемая гетерозиготность, F_{ST} – оценка дифференциации выборок; * уровень значимости оценок F_{ST} – p < 0.01.

2004). Показатели генетического разнообразия в выборках (наблюдаемой (H_0) и ожидаемой (H_E) гетерозиготности (генного разнообразия)), среднего числа аллелей на локус (A), числа аллелей (\hat{A}) и числа приватных (уникальных) аллелей на локус (Apr), скорректированных по минимальному размеру выборки, а также коэффициент инбридинга (F_{IS}) получали с помощью программ FSTAT 2.9.3.2 (Goudet, 2001) и HP-гаге (Kalinowski, 2005). Различия между выборками по показателям генетического разнообразия оценивали с помощью непараметрического анализа вариансы Фридмана (Friedman ANOVA) в программе Statistica 8.0 (StatSoft Inc., США). Проверку соответствия генотипических частот в выборках равновесному соотношению Харди-Вайнберга, а также проверку неравновесия по сцеплению между всеми парами локусов проводили в программе GENEPOP 4 (Raymond, Rousset, 1995); уровень значимости скорректирован для множественных тестов. Значимость различий между выборками в аллельных и генотипических частотах по каждому локусу оценивали также в GENEPOP с помощью комбинированного теста Фишера, имеющего наибольшую статистическую мощность при анализе данных об изменчивости микросателлитных маркеров (Ryman et al., 2006). Для определения статистической мощности теста Фишера с имеющимся набором микросателлитных локусов и с данной численностью выборок были проведены симуляции в программе

Выборка Â	Â	Anr	F _{IS}	Среднее <i>H_O/H_E</i>	H_O/H_E						
	21	1.101			Bsa6	Bsa 14	Bsa60	Bsa 101	GmoC18	GmoC102	Tch14
Карское море:											
2014 г.	10.2	0.6	0.0036	0.766/0.753	0.770/0.755	0.483/0.476	0.694/0.683	0.768/0.754	0.880/0.866	0.854/0.841	0.913/0.899
2017 г.	10.7	0.8	0.0121	0.785/0.781	0.670/0.666	0.603/0.600	0.761/0.756	0.771/0.767	0.906/0.900	0.854/0.848	0.933/0.927
Море Лап- тевых	10.8	0.4	0.0154	0.782/0.778	0.649/0.645	0.620/0.617	0.732/0.728	0.758/0.754	0.904/0.898	0.876/0.871	0.937/0.932
Восточно- Сибир- ское море	10.5	0.4	0.0282	0.786/0.776	0.712/0.702	0.592/0.584	0.670/0.663	0.795/0.784	0.908/0.894	0.896/0.883	0.933/0.920

Таблица 3. Показатели генетического разнообразия в выборках сайки Boreogadus saida

Примечание. \hat{A} и *Apr* – число аллелей и число приватных (уникальных) аллелей на локус, скорректированное по минимальному размеру выборки; F_{IS} – коэффициент инбридинга; ост. обозначения см. в табл. 2.

РОWSIM 4.0 (Ryman, Palm, 2006). Для каждой симуляции определяли долю значимых (p < 0.05) тестов при разных F_{ST} (0.001, 0.005 и 0.010) на основе 1000 повторов. Значимость парных и глобальной оценок дифференциации F_{ST} (Weir, Cockerham, 1984) между выборками тестировали методом "складного ножа" в FSTAT с помощью 500 пермутаций. Степень генетических различий между выборками представлена графически с помощью результатов многомерного факторного анализа матрицы индивидуальных мультилокусных генотипов в программе GENETIX (Belkhir et al., 2004). Уровень генетической миграции оценивали с помощью метода приватных аллелей (Barton, Slatkin, 1986) в GENEPOP.

РЕЗУЛЬТАТЫ

Проверка матрицы полученных генотипов в программе MICROCHECKER не обнаружила признаков присутствия нуль-аллелей или ошибок считывания ни в одном из локусов. Проверка неравновесия по сцеплению между локусами обнаружила отклонение только в четырёх парных тестах из 84, что ниже статистически значимого 5%-ного порога достоверности. Тесты на соответствие распределения генотипов в выборках равновесному соотношению Харди-Вайнберга не выявили достоверных различий после коррекции уровня значимости для множественных тестов (28 тестов; $\alpha'_{0.05} = 0.002$). Статистически значимые различия между выборками по показателям генетической изменчивости по каждому локусу и их средним значениям (табл. 3) не обнаружены (результаты Friedman ANOVA (n = 7, df = 3) для \hat{A} : $\chi^2 = 1.45$, p = 0.692; *Apr*: $\chi^2 = 3.0$, p = 0.391; H_0 : $\chi^2 = 3.22$, p = 0.359; H_E : $\chi^2 = 4.57$, p = 0.207), хотя число уникальных аллелей в Карском море несколько выше, чем в двух других морях.

В результате симуляционного анализа мощности комбинированного теста Фишера для детекции генетических различий в программе POW-SIM были получены оценки 0.310 ($F_{ST} = 0.001$), 0.998 ($F_{ST} = 0.005$) и 1.000 ($F_{ST} = 0.010$). Таким образом, объём обследованных выборок и число примененных локусов можно считать достаточными для того, чтобы выявить даже самую слабую генетическую структуру. Уровень значимости α , которым оценивается вероятность обнаружить значимую генетическую дифференциацию в случае, когда реальная оценка $F_{ST} = 0$, соответствовал 5% во всех симуляциях.

Достоверность различий в аллельных частотах после коррекции уровня значимости для множественных тестов (42 парных теста; $\alpha'_{0.05} = 0.0012$) сохранилась только по локусу *GmoC102* между выборками Карского моря 2014 и 2017 гг. и между последней выборкой и выборкой из Восточно-Сибирского моря. Комбинированные тесты Фишера показали, тем не менее, достоверные различия аллельных частот между всеми выборками, за исключением пары выборок из моря Лаптевых и Восточно-Сибирского моря. Генотипические частоты не различались значимо между выборками из моря Лаптевых и Восточно-Сибирского моря и выборкой из последнего и Карского моря 2014 г.

Парные оценки дифференциации F_{ST} между выборками сильно варьировали (табл. 4). Средняя оценка пространственной дифференциации F_{ST} (между выборками из трёх морей) оказалась небольшой — всего 0.004, но также статистически достоверной. Наибольшую разрешающую способность для дифференциации популяций показали только два маркера из нашего набора — *Bsa60* и *GmoC102* (табл. 2).

Небольшие различия между популяциями подтверждаются результатами многомерного анализа матрицы мультилокусных генотипов, которые приведены на рис. 2. Очевидно значительное перекры-

ГОРДЕЕВА, МИШИН

Выборка	Карское море 2017 г.	Море Лаптевых	Восточно-Сибирское море
Карское море 2014 г.	0.0109	0.0036	0
Карское море 2017 г.		0.0019	0.0099
Море Лаптевых			0.0022

Таблица 4. Межвыборочные оценки генетической дифференциации у сайки Boreogadus saida

Примечание. Полужирным шрифтом выделены статистически значимые оценки (*p* < 0.05).

вание пулов индивидуальных генотипов из обследованных выборок. Согласно оценкам, полученным с помощью метода приватных аллелей, в выборках 2017 г. величина генетической миграции после коррекции по размеру выборки составила не менее 12.3 особей, а доля мигрантов равна 0.34. Если исключить сильно отличающуюся выборку 2014 г., корреляция между генетическими ($F_{ST}/(1 - F_{ST})$) и географическими расстояниями сайки из трёх арктических морей в тесте Мантела оказывается очень высокой, хотя и недостоверной из-за малого числа наблюдений (r = 0.883, p = 0.311).

ОБСУЖДЕНИЕ

Генетические различия по микросателлитным маркерам между выборками сайки из трёх арктических морей России оказались очень небольшими, хотя и статистически значимыми. Полученная величина пространственной генетической дифференциации (в терминах $F_{ST} = 0.004$) соответствует оценкам, наблюдаемым на сравнимой географической шкале в работе Нельсона и Бу-

шар (Nelson, Bouchard, 2013): например, между выборками из моря Бофорта и восточного побережья Гренландии ($F_{ST} = 0.0039$). В этой работе, охватывающей значительную часть ареала (рис. 1), глобальная оценка F_{ST} равняется 0.01, а межвыборочные оценки варьируют на внутри- и межрегиональном уровнях в пределах от 0 до 0.0127; бо́льшая их часть статистически недостоверна (т.е. не отличается значимо от нуля). В атлантическом секторе (у северо-восточного побережья Гренландии и у Шпицбергена) вычисленные по микросателлитным маркерам оценки *F*_{ST} варьируют в горазло большем лиапазоне - 0.008-0.032 (Madsen et al., 2016), а между группами выборок с шельфа и из фьордов равняется 0.016. Так же, как и в работе Нельсона и Бушар (Nelson, Bouchard, 2013), в нашем исследовании проявляется тенденция к возрастанию генетических различий с географическими расстояниями между выборками (так называемый эффект изоляции расстоянием).

Низкие оценки пространственной дифференциации ожидаемы у видов с потенциально высокой интенсивностью генетического обмена, например, у морских рыб, которые обитают в среде,

Рис. 2. Результаты анализа главных компонент изменчивости матрицы мультилокусных генотипов по семи микросателлитным локусам сайки *Boreogadus saida*. Выборки: (■) – Карское море 2014 г., (□) – Карское море 2017 г., (●) – море Лаптевых, (△) – Восточно-Сибирское море; каждый символ соответствует индивидуальному генотипу.

где отсутствуют физические барьеры для миграции либо на ранних стадиях развития, либо на протяжении всего жизненного цикла (Ward et al., 1994). Но и среди экологически и эволюционно близких видов подсемейства Gadinae сайка, по всей видимости, отличается наименьшими оценками генетической дифференциации. Например, у атлантической трески средняя межвыборочная $F_{ST} = 0.03$, а наибольшее её значение (0.11) наблюдается между подвидами (географическими расами) (O'Leary et al., 2007). Сходные с полученными нами оценки отмечаются на локальной шкале, например: между выборками у побережья Норвегии $F_{ST} = 0.0023$ (Knutsen et al., 2003), Ньюфаундленда – 0.0039–0.0053 (Ruzzante et al., 2001) и Исландии – 0.0030 (Pampoulie et al., 2006). У тихоокеанской трески G. macrocephalus на её ареале в Северной Пацифике и сопредельных морях усреднённая F_{ST} составляет 0.028 (Canino et al., 2010). Только у минтая Theragra chalcogramma (в цитируемой работе — Gadus chalcogrammus) значения F_{ST} приближаются к таковым у сайки и оказываются < 0.008 (O'Reilly et al., 2004).

Причины пространственной генетической гомогенности морских видов уже неоднократно обсуждались: среди них интенсивная миграция в отсутствие физических барьеров, недавнее расселение по ареалу в послеледниковье и небольшой возраст популяций, их большая численность и отсутствие в демографической истории "бутылочных горлышек" (Ward et al., 1994; Pogson et al., 2001; Pálsson et al., 2009). В первую очередь, слабая пространственная дивергенция предполагает генетический обмен между удалёнными друг от друга популяциями, который у сайки может достигаться за счёт пассивного рассеяния по всему обширному панарктическому ареалу благодаря некоторым особенностям экологии и жизненного цикла. Ранние этапы развития в сравнении с другими тресковыми у сайки, выметывающей икру под лёд, более растянуты (Craig et al., 1982; Bradstreet et al., 1986; Graham, Hop, 1995), и всё это время икра и личинки перемещаются вместе с дрейфующими льдами: например, в море Бофорта дрейф вдоль Аляски в сторону Чукотского моря может занять около 4-5 мес. (Мельников, Чернова. 2013). В дальнейшем молодые особи могут продолжить свой путь и, следуя генеральной циркуляции льда (рис. 1), пересечь центральную часть Арктического бассейна и уже к наступлению половой зрелости, т.е. через 3-4 года, пополнить нерестовую часть популяций Северной Атлантики у Гренландии и Шпицбергена (Мельников, Чернова, 2013; David et al., 2016). Таким образом, трансарктическая миграция может занять всего лишь одно поколение. Миграции к местам размножения на шельфы также происходят вместе со льдами антициклонического кругово-

ВОПРОСЫ ИХТИОЛОГИИ том 59 № 2 2019

рота Бофорта, полный оборот в котором занимает от 4 до 10 лет (Мельников, Чернова, 2013).

Однако слабая межпопуляционная дифференциация по селективно нейтральным молекулярным маркерам необязательно имеет причиной интенсивный обмен генами, а может быть связана с недавним обособлением популяций, особенно если они имеют большую эффективную численность, которая замедляет достижение равновесия дрейф-миграция и максимальных оценок F_{ST} (Crow, Aoki, 1984). Учитывая, что современный ареал сайки полностью освободился от ледниковой толщи относительно поздно, а численность её популяций очень велика, не удивительно, что по нейтральным микросателлитам оценки F_{ST} у неё оказываются ближе к 0, чем у остальных тресковых видов, а значимые оценки регистрируются только на самой крупной географической шкале. Исходя из этого, к интерпретации наблюдаемой пространственной генетической гомогенности по нейтральным маркерам следует отнестись внимательно, в особенности если на ареале наблюдается экологическая и морфологическая неоднородность, противоречащая гипотезе о высоком уровне межпопуляционного обмена (Carvalho, Pitcher, 1995). Лучшим решением для уточнения масштаба миграции будет поиск популяционногенетического маркера, непосредственно связанного с адаптивными морфофизиологическими характеристиками и, следовательно, испытывающего сильное давление отбора (Andre et al., 2010; Гордеева, 2012). У тресковых рыб таким эффективно идентифицирующим популяции маркером, по которому показан положительный (разнообразящий) отбор, является последовательность гена пантофизина (*PanI*); индексы F_{ST} по этому локусу намного превышают оценки по нейтральным маркерам (Canino, Bentzen, 2004; Pogson, Mesa, 2004; Canino et al., 2005). Изменчивость PanI в популяциях атлантической трески связана с занимаемыми биотопами – фьордовыми и океаническими (Pogson, Fevolden, 2003; Pampoulie et al., 2011), а у минтая – со среднегодовой температурой воды (Canino et al., 2005).

Нельзя исключать, что морфоэкологическая дифференциация, которая наряду с родственными видами тресковых рыб свойственна и сайке, хотя, возможно, в меньшей степени, служит основой для репродуктивной изоляции популяций, не обнаруженной пока в популяционно-генетических исследованиях. Например, в российском секторе арктической акватории выделяют две формы сайки, различающиеся по времени созревания, форме тела и окраске личинок и взрослых рыб — прибрежную и океаническую; последняя совершает продолжительные миграции, связана в своём распространении со льдами и доходит до самых высоких широт (Москаленко, 1964). На остальной части ареала также отмечались различия в темпах роста (Falk-Petersen et al., 1986) и внешней морфологии (Световидов, 1948). В арктических морях период вылупления личинок сайки проявляет связь с температурой и солёностью приповерхностного подлёдного слоя воды: в районах, подверженных сильному влиянию речного стока (сибирские моря, Гудзон, море Бофорта), высокая температура поверхностного слоя воды ускоряет эмбриональное развитие и способствует раннему вылуплению личинок — уже в январе, тогда как в отсутствие речного стока первые генерации личинок появляются только с прогревом верхнего слоя воды в мае—июле (Bouchard, Fortier, 2011).

Требует дополнительного рассмотрения причина значительных различий между выборками, взятыми всего лишь в 270 км друг от друга, но в разные годы в Карском море (в материковом прибрежье в 2014 г. и возле Новой Земли в 2017 г.), которые оказались на порядок выше, чем между выборками, взятыми в ходе одной экспедиции из разных морей. Интересно, что в предыдущих работах также были сделаны подобные наблюдения. В частности, различия в частотах гаплотипов *суt b* мтДНК между выборками, взятыми в море Бофорта на примыкающих друг к другу полигонах в 2008 и 2011 гг., значимо отличалась от нуля $(F_{ST} = 0.023)$, в отличие от различий между выборками из моря Бофорта, Чукотского моря и зал. Св. Лаврентия (Talbot et al., 2014). Также стоит отметить, что наибольшие различия обнаруживаются между выборками, взятыми в разные годы, в уже упоминавшихся работах (Nelson, Bouchard, 2013; Madsen et al., 2016). Сходным образом намного большая компонента временной изменчивости относительно пространственной (0.55 против 0.09%) показана у минтая (O'Reilly et al., 2004). Как предполагают авторы, значительные межгодовые различия в частотах аллелей обусловлены случайными факторами (дрейфом генов) из-за очень низкой генетически эффективной численности по отношению к цензовой (различия оцениваются в тысячи—сотни тысяч раз), что, вероятнее всего, связано с большой вариансой репродуктивного успеха. Такие же генетикодемографические процессы могут иметь место в популяциях сайки, для которой отмечаются резкие, порой критические колебания численности (Ajiad et al., 2011).

Таким образом, у сайки арктических морей России найдены очень низкие, хотя и по большей части достоверно отличающиеся от нуля, оценки пространственной генетической дифференциации по нейтральным микросателлитным маркерам. Значительная генетическая гомогенность может быть обусловлена интенсивной миграцией, однако масштаб реального генетического обмена нужно уточнить с помощью сравнения изменчивости селективно-нейтральных маркеров и локусов под сильным положительным отбором. Также в задачи будущих исследований входит определение величины временной изменчивости относительно пространственной с помощью серий повторно взятых выборок.

Экспедиционные работы и лабораторный анализ проведены в рамках проекта Российского научного фонда № 14-50-00095 и темы государственного задания № 0149-2014-0050; первичная обработка материала и видовая идентификация на средства гранта РФФИ № 16-04-00380.

СПИСОК ЛИТЕРАТУРЫ

Антонов Н.П., Кузнецов В.В., Кузнецова Е.Н. и др. 2016. Сайка Boreogadus saida (Gadiformes, Gadidae) как ключевой вид и потенциальный объект рыбного промысла в Карском море // Вопр. рыболовства. Т. 17. № 2. С. 203–212.

Боркин И.В. 2013. Особенности питания личинок сайки Boreogadus saida, Lepechin, 1774) в связи с их распределением на востоке Баренцева моря // Вестн. КамчатГТУ. №. 25. С. 35–41.

Боркин И.В., Журавлева Н.Г. 1995 Ихтиопланктон прибрежных вод // Среда обитания и экосистемы Новой Земли (архипелаг и шельф). Апатиты: Изд-во КНЦ РАН. С. 100–121.

Гордеева Н.В. 2012. Высокие оценки дифференциации популяций горбуши Oncorhynchus gorbuscha по локусу главного комплекса гистосовместимости МНС І-А1 поддерживают гипотезу "локальных стад" // Вопр. ихтиологии. Т. 52. № 1. С. 72–81.

Мельников И.А., Чернова Н.В. 2013. Характеристика подлёдных скоплений сайки *Boreogadus saida* (Gadidae) в центральном арктическом бассейне // Там же. Т. 53. № 1. С. 22–30.

Москаленко Б.К. 1964. О биологии полярной трески (сайки) (*Boreogadus saida*, Lepechin, 1774) // Там же. Т. 4. Вып. 3. С. 433–443.

Световидов А.Н. 1948. Фауна СССР. Рыбы. Трескообразные. Т. IX. Вып. 4. М.; Л.: Изд-во АН СССР, 185 с.

Парин Н.В., Евсеенко С.А., Васильева Е.Д. 2014. Рыбы морей России: аннотированный каталог. М.: Т-во науч. изд. КМК, 733 с.

Ajiad A., Oganin I.A., Gjøsæter H. 2011. Polar cod // The Barents Sea: ecosystem, resources, management: half a century of Russian-Norwegian Cooperation. Trondheim, Norway: Tapir Acad. Press. P. 315–329.

Andre C., Larsson L.C., Laikre L. et al. 2010. Detecting population structure in a high gene-flow species, Atlantic herring (*Clupea harengus*): direct, simultaneous evaluation of neutral vs putatively selected loci // Heredity. V. 106. № 2. P. 270–280. doi 10.1038/hdy.2010.71

Barton N.H., Slatkin M. 1986. A quasi-equilibrium theory of the distribution of rare alleles in a subdivided populations // Ibid. V. 56. P. 409–415.

Belkhir K., Borsa P., Chikhi L. et al. 2004. GENETIX, logiciel sous WindowsTM pour la génétique des populations. France, Montpellier: Univ. Montpellier II. (http://www.univ-montp2.fr/~genetix/genetix.htm)

Benoit D., Simard Y., Fortier L. 2008. Hydroacoustic detection of large winter aggregations of Arctic cod (*Boreogadus saida*) at depth in ice-covered Franklin Bay (Beaufort Sea) // J. Geophys. Res. V. 113. C06S90. doi 10.1029/2007JC004276

Bouchard C., Fortier L. 2011. Circum-arctic comparison of the hatching season of polar cod *Boreogadus saida*: a test of the freshwater winter refuge hypothesis // Progr. Oceangr. V. 90. № 1. P. 105–116. doi 10.1016/j.pocean.2011.02.008

Bradstreet M.S.W., Finley K.J., Sekerak A.D. et al. 1986. Aspects of the feeding biology of Arctic cod (*Boreogudus saida*) and its importance in Arctic marine food chains // Can. Tech. Rept. Fish. Aquat. Sci. № 1491. 193 p.

Canino M.F., Bentzen P. 2004. Evidence for positive selection at the pantophysin (*PanI*) locus in walleye pollock, *Theragra chalcogramma //* Mol. Biol. Evol. V. 21. P. 1391–1400.

Canino M.F., O'Reilly R.T., Hauser L., Bentzen P. 2005. Genetic differentiation in walleye pollock (*Theragra chalco-gramma*) in response to selection at the pantophysin (*PanI*) locus // Can. J. Fish. Aquat. Sci. V. 62. P. 2519–2529.

Canino M.F., Spies I.B., Cunningham K.M. et al. 2010. Multiple ice-age refugia in Pacific cod, *Gadus macrocephalus //* Mol. Ecol. V. 19. P. 4339–4351. doi 10.1111/j.1365-294X.2010.04815.x

Carvalho G.R., Pitcher T.J. (eds.). 1995. Molecular genetics in fisheries. London: Chapman & Hall, 142 p. doi 10.1007/978-94-011-1218-5

Craig P.C., Griffiths W.B., Haldorson L., McElderry H. 1982. Ecological studies of Arctic cod (*Boreogadus saida*) in Beaufort Sea coastal waters // Can. J. Fish. Aquat. Sci. V. 39. P. 395–406.

Crawford R.E., Jorgenson J.K. 1996. Quantitative studies of Arctic cod (*Boreogadus saida*) schools: important energy stores in the Arctic food web // Arctic. V. 49. \mathbb{N} 2. P. 181–193.

Crow J.F., Aoki K. 1984. Group selection for a polygenic behavioral trait: estimating the degree of population subdivision // Proc. Nat. Acad. Sci. USA. V. 81. P. 6073–6077.

David C., Lange B., Krumpen T. et al. 2016. Under-ice distribution of polar cod *Boreogadus saida* in the central Arctic Ocean and their association with sea-ice habitat properties // Polar Biol. V. 39. № 6. P. 981–994. doi 10.1007/s00300-015-1774-0

Delghandi M., Stenvik J., Nilsen F. et al. 2008. Identification and characterisation of nine new gene-associated microsatellite markers for Atlantic cod (*Gadus morhua* L.) // Conserv. Genet. V. 9. P. 747–749.

Falardeau M., Robert D., Fortier L. 2014. Could the planktonic stages of polar cod and Pacific sand lance compete for food in the warming Beaufort Sea? // ICES J. Mar. Sci. V. 71. P. 1956–1965.

Falk-Petersen I.B., Frivoll V., Gulliksen B., Haug T. 1986. Occurrence and size/age relations of polar cod, *Boreogadus saida* (Lepechin), in Spitzbergen coastal waters // Sarsia. V. 71. P. 235–245.

Fevolden S.E., Christiansen J.S. 1997. Allozymic and scnD-NA homogeneity in polar cod (*Boreogadus saisa*) (Gadiformes: Gadidae) // Cybium. V. 21. № 4. P. 411–414.

Fevolden S.E., Martinez I., Christiansen J.S. 1999. RAPD and scnDNA analyses of polar cod, *Boreogadus saida* (Pisces, Gadidae), in the North Atlantic // Sarsia. V. 84. P. 99–103.

Gaston A.J., Woo K., Hipfner J.M. 2003. Trends in forage fish populations in Northern Hudson Bay since 1981, as determined from the diet of nestling thick-billed murres *Uria lomvia* // Arctic. V. 56. P. 227–233.

Goudet J. 2001. FSTAT, a program to estimate and test gene diversities and fixation indices. Version 2.9.3. (http://www.unilch/izea/softwares/fstat.html)

Graham M., Hop H. 1995. Aspects of reproduction and larval biology of Arctic cod (*Boreogadus saida*) // Arctic. V. 48. N° 2. P. 130–135.

Hop H., Gjøsæter H. 2013. Polar cod (*Boreogadus saida*) and capelin (*Mallotus villosus*) as key species in marine food webs of the Arctic and the Barents Sea // Mar. Biol. Res. V. 9. P. 878–894.

Kalinowski S.T. 2005. HP-Rare 1.0: a computer program for performing rarefraction on measures of allelic richness // Mol. Ecol. V. 5. P. 187–189.

Knutsen H., Jorde P.E., Andre C., Stenseth N.C. 2003. Finescaled geographical population structuring in a highly mobile marine species: the Atlantic cod // Ibid. V. 12. P. 385– 394.

Lønne O.J., Gulliksen B. 1989. Size, age and diet of polar cod, *Boreogadus saida* (Lepechin 1774), in ice covered waters // Polar Biol. V. 9. P. 187–191.

Madsen M.L., Nelson R.J., Fevolden S.-E. et al. 2016. Population genetic analysis of Euro-Arctic polar cod *Boreogadus saida* suggests fjord and oceanic structuring // Ibid. V. 39. № 6. P. 969–980. doi 10.1007/s00300-015-1812-y

McNicholl D.G., Walkusz W., Davoren G.K. et al. 2016. Dietary characteristics of co-occurring polar cod (*Boreogadus saida*) and capelin (*Mallotus villosus*) in the Canadian Arctic, Darnley Bay // Ibid. V. 39 (6). P. 1099–1108. doi 10.1007/s00300-015-1834-5

Mecklenburg C., Steinke D. 2015. Ichthyofaunal baselines in the Pacific Arctic region and RUSALCA study area // Oceanography. V. 28. P. 158–189.

Mueter F.J., Nahrgang J., Nelson R.J., Berge J. 2016. The ecology of gadid fishes in the circumpolar Arctic with a special emphasis on the polar cod (*Boreogadus saida*) // Polar Biol. V. 39. № 6. P. 961–967. doi 10.1007/s00300-016-1965-3

Nelson R.J., Bouchard C. 2013. Arctic cod (*Boreogadus saida*) population structure and connectivity as examined with molecular genetics // Final Rept. NPRB Project 1125. 39 p.

Nelson R.J., Bouchard C., Madsen M. et al. 2013. Microsatellite loci for genetic analysis of the Arctic gadids Boreogadus saida and Arctogadus glacialis // Conserv. Genet. Resour. V. 5. P. 445–448. doi 10.1007/s12686-012-9824-1

O'Leary D.B., Coughlan J., Dillane E. et al. 2007. Microsatellite variation in cod *Gadus morhua* throughout its geographic range // J. Fish. Biol. V. 70. P. 310–335.

O'Reilly P.T., Canino M.F., Bailey K.M., Bentzen P. 2000. Isolation of twenty low stutter di- and tetranucleotide microsatellites for population analyses of walleye pollock and other gadoids // Ibid. V. 56. P. 1074–1086.

O'Reilly P.T., Canino M.F., Bailey K.M., Bentzen P. 2004. Inverse relationship between F_{ST} and microsatellite polymorphism in the marine fish, walleye pollock (*Theragra chalcogramma*): implications for resolving weak population structure // Mol. Ecol. V 13. P. 1799–1814. doi 10.1111/ j.1365-294X.2004.02214.x

Osuga D.T., Fenney R.E. 1978. Antifreeze glycoproteins from Arctic fish // J. Biol. Chem. № 253. P. 5338–5343.

Pálsson S., Källman T., Paulsen J., Árnason E. 2009. An assessment of mitochondrial variation in Arctic gadoids // Polar Biol. V. 32. P. 471–479. doi 10.1007/s00300-008-0542-9

Pampoulie C., Ruzzante D.E., Chosson V. et al. 2006. The genetic structure of Atlantic cod (*Gadus morhua*) around Iceland: insight from microsatellites, the *Pan* I locus, and tagging experiments // Can. J. Fish. Aquat. Sci. V. 63. P. 2660–2674. doi 10.1139/f06-150

Pampoulie C., Daníelsdottír A.K., Storr-Paulsen M. et al. 2011. Neutral and nonneutral genetic markers revealed the presence of inshore and 513 offshore stocks components of Atlantic cod in Greenland waters // Trans. Amer. Fish. Soc. V. 140. № 2. P. 307–319. org/10.1080/00028487.2011.567850

Pogson G.H., Fevolden S.-E. 2003. Natural selection and the genetic differentiation of coastal and Arctic populations of the Atlantic cod in northern Norway: a test involving nucleotide sequence variation at the pantophysin (*Pan I*) locus // Mol. Ecol. V. 12. P. 63–74.

Pogson G.H., Mesa K.A. 2004. Positive Darwinian selection at the pantophysin *PanI* locus in marine gadid fishes // Mol. Biol. Evol. V. 21. P. 65–75.

Pogson G.H., Taggart C.T., Mesa K.A., Boutilier R.G. 2001. Isolation by distance in the Atlantic cod, Gadus morhua, at large and small geographic scales // Evolution. V. 55. \mathbb{N} 1. P. 131–146.

Raymond M., Rousset F. 1995. GENEPOP (Version 3.3): population genetics software for exact tests and ecumenicism // Heredity. V. 86. P. 248–249.

Renaud P.E., Berge J., Varpe Ø. et al. 2012. Is the poleward expansion by Atlantic cod and haddock threatening native polar cod, *Boreogadus saida?* // Polar Biol. V. 35. P. 401–412.

Ruzzante D.E., Taggart C.T., Doyle R.W., Cook D. 2001. Stability in the historical pattern of genetic structure of Newfoundland cod (*Gadus morhua*) despite the catastrophic decline in population size from 1964 to 1994 // Conserv. Genet. V. 2. P. 257–269.

Ryman N., Palm S. 2006. POWSIM: a computer program for assessing statistical power when testing for genetic differentiation // Mol. Ecol. Notes. V. 6. N_{\odot} 3. P. 600–602. org/10.1111/j.1471-8286.2006.01378.x

Ryman N., Palm S., Andre C. et al. 2006. Power for detecting genetic divergence: differences between statistical methods and marker loci // Mol. Ecol. V. 15. № 8. P. 2031–2045. org/10.1111/j.1365-294X.2006.02839.x

Stenvik J., Wesmajervi M.S., Fjalestad K.T. et al. 2006. Development of 25 gene-associated microsatellite markers of Atlantic cod (*Gadus morhua* L.) // Mol. Ecol. Notes. V. 6. P. 1105–1107. org/10.1111/j.1471-8286.2006.01450.x

Talbot S.L., Sage G.K., Sonsthagen S.A., Fowler M.C. 2014. Arctic cod pilot genomics study: preliminary results from analyses of mitochondrial DNA // OCS Study BOEM 2014–050. 19 p.

Van Oosterhout C., Hutchinson W.F., Wills D.P.M., Shipley P. 2004. MICROCHECKER: software for identifying and correcting genotyping errors in microsatellite data // Mol. Ecol. Notes. V. 4. P. 535–538.

Ward R.D., Woodwark M., Skibinski D.O.F. 1994. A comparison of genetic diversity levels in marine, freshwater, and anadromous fishes // J. Fish Biol. V. 44. P. 213–232.

Weir B.S., Cockerham C.C. 1984. Estimating F-Statistics for the analysis of population structure // Evolution. V. 38. P. 1358–1370.

Welch H.E., Bergmann M.A., Siferd T.D. et al. 1992. Energy flow through the marine ecosystem of the Lancaster Sound Region, Arctic Canada // Arctic. V. 45. P. 343–357.