УДК 597.05.574

ОБЗОР СОСТАВА И ПРОСТРАНСТВЕННОГО РАСПРЕДЕЛЕНИЯ СООБЩЕСТВ ГЛУБОКОВОДНЫХ ПЕЛАГИЧЕСКИХ РЫБ В ВОДАХ НАД ТРОПИЧЕСКОЙ ЧАСТЬЮ СРЕДИННО-АТЛАНТИЧЕСКОГО ХРЕБТА В ЗОНЕ РОССИЙСКОГО РАЗВЕДОЧНОГО РАЙОНА

© 2021 г. С. Г. Кобылянский^{1,} *, А. В. Мишин¹, Я. Ю. Большакова¹, А. Н. Котляр¹

¹Институт океанологии РАН – ИО РАН, Москва, Россия *E-mail: kobylianskysg@gmail.com Поступила в редакцию 20.07.2020 г. После доработки 07.08.2020 г. Принята к публикации 10.08.2020 г.

Рассматривается пространственное и вертикальное распределение личинок, молоди и взрослых мезо- и батипелагических рыб в тёмное время суток на трёх полигонах над тропической частью Срединно-Атлантического хребта, расположенных севернее и южнее разлома Зелёного мыса в зоне Российского разведочного района. Материал собран на четырёх стандартных горизонтах 250-0, 700-0, 1500-0 и 2500-0 м. В районе работ отмечены 127 видов молоди и взрослых рыб, относящихся к 29 семействам, а также 81 вид личинок из 32 семейств. Видовое обилие и численность глубоководных рыбных сообществ на разных полигонах статистически не различаются вне зависимости от горизонта траления. В тёмное время суток с увеличением глубины лова от поверхности вплоть до горизонта 1500 м постепенно увеличивается как видовое разнообразие, так и средняя численность рыб в улове (25.9 до 531.6 экз/100 м²), а максимумы численности были приближены к вершинам и склонам подводных поднятий и располагаются в диапазоне глубин 700-1500 м. Отмечено отсутствие ночного максимума численности глубоководных рыб на горизонте 250-0 м над тропической частью Срединно-Атлантического хребта. С увеличением нижней отметки горизонта лова относительно уменьшается число теплолюбивых видов светящихся анчоусов (Myctophidae) с тропическими и экваториальными типами ареалов, увеличивается число видов с бицентральными и центрально-периферическими ареалами, появляются более холодолюбивые субтропические и виды, чей ареал приурочен к континентальному склону и/или подводным поднятиям.

Ключевые слова: биоразнообразие, структура пелагических ихтиоценов, мезопелагиаль, батипелагиаль, Российский разведочный район, Срединно-Атлантический хребет. **DOI:** 10.31857/S004287522103005X

Глубоководные области Мирового океана, располагаясь вне фотической зоны, в диапазоне глубин между 200 м и более чем 10 км. занимают один из наиболее обширных биологических объёмов пространства (>1 млрд км³), в котором могут существовать живые организмы (Angel, 1993; Robison, 2009), и покрывают более 60% всей поверхности земного шара (Herring, 2002; Thistle, 2003; Tyler, 2003; Jobstvogt et al., 2013; Priede, 2017). Это один из наиболее значимых компонентов биосферы Земли, который потенциально является источником новых, ещё не освоенных биологических ресурсов. При этом необходимо иметь в виду, что их массовое извлечение и использование, несомненно, будет иметь серьёзные последствия как для биоразнообразия морских организмов, так и для способности океанов аккумулировать парниковые газы и тем самым стабилизировать глобальные климатические изменения (Parekh et al., 2006; Davison et al., 2013; John et al., 2016). По видовому разнообразию глубоководные экосистемы сопоставимы с сообществами дождевых тропических лесов и коралловых рифов (Grassle, Maciolek, 1992; van Dover, 2000); общее число видов животных, населяющих океанские глубины, по разным оценкам, колеблется от 500 тыс. до 100 млн (Grassle, Maciolek, 1992; Lambshead, 1993; Gianni, 2004).

В водах Мирового океана к настоящему времени отмечено свыше 17 тыс. видов рыб (Fricke et al., 2020). При этом изучение видового разнообразия многих таксономических групп морских рыб ещё далеко от завершения; ежегодно описывается значительное число новых видов, основная часть которых обитает на больших глубинах. В глубоководной пелагической ихтиофауне как по числен-

ности, так и по биомассе преобладают относительно мелкие вилы из семейств Gonostomatidae. Phosichthyidae, Sternoptychidae, Stomiidae, Myctophidae и др. (Sutton et al., 2010), длина которых редко превышает 100 мм. Большинство этих видов совершают вертикальные суточные миграции, поднимаясь в ночное время вслед за зоопланктоном в верхние слои для питания и опускаясь на глубину на рассвете (Marshall, 1951; Roe, Badcock, 1984). Такого рода миграции сопровожлаются концентрацией рыб на границе эпи- и мезопелагиали, что регистрируется эхолотами в виде звукорассеивающих слоёв (Sutton et al., 2013). Являясь в экосистемах морских сообществ консументами 2-го и 3-го порядков, глубоководные рыбы составляют значимую часть пишевых цепей (Beamish et al., 1999; Springer et al., 1999), а также играют важную роль в вертикальном переносе активного углерода в океане (Longhurst et al., 1990). Несмотря на свою экологическую значимость, глубоководные пелагические ихтиоцены до сих пор остаются одним из наименее исследованных компонентов экосистем открытого океана (Irigoien et al., 2014).

Срединно-Атлантический хребет (САХ), простираясь в мерилиональном направлении на более чем 18 тыс. км, представляет собой гигантскую подводную горную систему, начинающуюся на севере от хребта Гаккеля и заканчивающуюся в области тройного сочленения Буве на юге Атлантики. Исследования глубоководной ихтиофауны, приуроченной к САХ, носят весьма фрагментарный характер, несмотря на значительный научный интерес к этой геологической структуре, обусловленный обнаружением здесь уникальных хемосинтетических гидротермальных экосистем, а также разведкой под водой крупных залежей сульфидных полиметаллических руд, имеющих перспективы их промышленного освоения. Основные данные о составе. численности и экологии рыбных сообществ, населяющих толщу вод над САХ, а также его склоны и ложе рифтовой долины, ранее были получены в экспедициях научно-поисковых судов АтлантНИРО (Гущин, Кукуев, 1981; Кукуев, 1982, 1991; Кукуев и др., 2000; Кукуев, Трунов, 2009), а также в рамках выполнения проектов MAR-ECO и ECOMAR (Bergstad, Godø, 2003; Fock et al., 2004; Bergstad et al., 2008; Sutton et al., 2008; Vecchione et al., 2010; Cook et al., 2013; Priede et al., 2013) и приурочены в основном к северной его части (севернее 40° с.ш.). Также имеются некоторые сведения о глубоководной ихтиофауне экваториально-южноцентральной части САХ. полученные при выполнении программы SOUTH MAR-ECO (Kobyliansky et al., 2010). Ocновной целью всех этих проектов был сбор и анализ материалов, необходимых для лучшего понимания механизмов формирования биоразнообразия и моделей распределения фауны над САХ и в прилегающих водах.

Сведения о распределении и биологии рыб ранних стадий развития в Атлантическом океане касаются в основном обитателей прибрежных вод, где видовой состав личинок во многом отличается от такового открытых вод и подводных поднятий. Подводные поднятия Атлантического океана в системе гор САХ в этом отношении изучены довольно слабо. Специальных публикаций с описанием качественного и количественного состава личинок глубоководных рыб из толщи вод над САХ очень мало, и относятся они в основном к районам, расположенным к северу от 40° с.ш. (Fock, John, 2006). Имеется также несколько работ, посвящённых составу и пространственному распределению личинок рыб в пелагиали и над подводными горами восточной части Центральной Атлантики, непосредственно не относящимися к системе САХ (Nellen, 1973, 1974; Белянина, 1984; Гордина, 1991: Archipov et al., 2004: Nellen, Ruseler, 2004; Hanel et al., 2010; Большакова, Евсеенко, 2019а, 2019б). Данные о видовом составе личинок рыб в южной экваториально-центральной части САХ практически отсутствуют; некоторые сведения о их составе и особенностях зонального распределения были получены в результате обработки материалов, собранных в рамках программы SOUTH МАR-ЕСО (Большакова, Евсеенко, 2016а, 2016б). Кроме того, исследованы состав и динамика численности личинок рыб в районе архипелага Святого Петра и Павла, входящего в состав CAX (Macedo-Soares et al., 2012).

Таким образом, сведения о составе глубоководной ихтиофауны над тропической и экваториальной частями САХ не пополнялись со времён отчётов об экспедициях НИС "Челленджер" (Günther, 1878а, 1878b, 1887). Опубликованы лишь предварительные результаты обработки ихтиологических материалов, собранных в 37-м и 39-м рейсах НИС "Профессор Логачев" (Molodtsova et al., 2017; Галкин и др., 2019) в районе между 12°48' и 20°54' с.ш., выделенном Российской Федерации в качестве разведочного в рамках многолетнего контракта по обнаружению и опытно-промышленной эксплуатации запасов глубоководных полиметаллических сульфидных руд, заключённого между Международной организацией по морскому дну (МОМД) и Министерством природы РФ (Черкашёв и др., 2013). Исполнение данного контракта также предполагает изучение фоновых экологических характеристик и создание базы данных пелагических и донных сообществ в указанном регионе.

Изучение таксономического состава, динамики численности и вертикального распределения мезо- и батипелагических рыб как объектов, составляющих основу пелагических экосистем тол-

Рис. 1. Схема расположения станций РТАКСА в 39-м рейсе НИС "Профессор Логачев" 25.02–15.03.2018 г. в тропической части Срединно-Атлантического хребта.

щи вод над тропической частью САХ, дают возможность выделить виды-индикаторы, изменение общих экологических показателей которых (численности, биомассы и т.д.) в будущем позволит дать экспертную оценку воздействия человека на морскую биоту в результате промышленной эксплуатации месторождений полиметаллических руд САХ. Наличие достоверной информации о составе и структуре глубоководных ихтиоценов позволит своевременно выделить отдельные территории, нуждающиеся в применении к ним природоохранных мер по сохранению и консервации, а также выработать подходы к минимизации и восполнению ущерба биологическому разнообразию.

Цель настоящей работы — представить обзор таксономического состава, численности, вертикального и пространственного распределения личинок, молоди и взрослых мезо- и батипелагических рыб, собранных в толще воды на трёх полигонах над тропической частью САХ, которые расположены в зоне Российского разведочного района, а также рассмотреть возможное влияние подводных хребтов на распределение и биоразнообразие мезо- и батипелагической ихтиофауны.

МАТЕРИАЛ И МЕТОДИКА

Материал для данной работы собран в 39-м рейсе НИС "Профессор Логачев" 25.02-15.03.2018 г. на трёх полигонах станций (E, F и G) над тропической частью САХ, расположенных с севера на юг и ограниченных координатами 13°47′-15°53′ с.ш. и 44°53′-46°40′ з.д. в южной части Российского разведочного района (рис. 1). Для сбора личинок, молоди и взрослых рыб использовали незамыкаюшийся разноглубинный пелагический трал Айзекса-Кидда в модификации Самышева-Асеева (РТАКСА), оснащённый двойным мешком длиной 25 м; наружный мешок был изготовлен из узловой капроновой дели из нити диаметром 1 мм с ячеёй 50 мм; внутренний — из узловой дели с ячеёй 5 мм и кутовой вставкой из капронового сита № 15. Площадь устья трала 6 м². Всего было выполнено 29 станций, на которых отобрано 29 проб; ловы проводили в тёмное время суток на четырёх стандартных горизонтах (250-0, 700-0, 1500-0, 2500-0 м), охватывающих эпи-, верхнюю и нижнюю мезо- и батипелагиаль (табл. 1).

Траления проводили над склонами и ложем рифтовой долины САХ, над глубинами 1869—4138 м. Тотальные ловы выполняли при скорости судна 2 узла без длительной экспозиции трала на ка-

Таблица 1.	Характеристики	1 станций PTA	АКСА, выполне	знных в 39-1	м рейсе НИ(С "Професс	ор Логачев"	в феврале-мај	рте 2018 г.	
;					Koopm	инаты		ţ	ţ	Объём
Номер станции	Обозначение станции	Дата	Время лова	нач	ало	KOł	Нец	Глубина места, м	Горизонт лова, м	профильтрованной
-				с.ш.	З.Д.	с.ш.	3.д.		~	воды, м ⁵
39L177rt	177F	25-26.02	22.32-00.56	14°35′30″	44°59′37″	14°39′36″	45°00′49″	3744	1500-0	52970
39L178rt	178F	26.02	01.45 - 02.51	14°40′28″	45°00′59″	14°43'01"	45°01'23"	3931	700-0	28986
39L179rt	179F	26.02	03.58-04.34	14°41'35"	44°59′14″	14°41′22″	44°58'11"	3598	250-0	11617
39L182rt	182F	27.02	02.55-05.45	14°37′57″	44°56′17″	14°43′30″	44°56′46″	3080	1500 - 0	62571
39L183rt	183F	27.02	07.13-08.34	14°44′04″	44°55'21″	14°46′48″	44°55'21"	2786	200-0	30709
39L184rt	184F	27.02	08.51-09.24	14°47′21″	44°55'22"	14°48′28″	44°55'24"	2452	250-0	12510
39L188rt	188G	28.02-01.03	23.51 - 02.40	13°47′45″	44°58′34″	13°52′44″	45°00′49″	3532	1500 - 0	61145
39L189rt	189G	01.03	03.08-04.35	13°52′51″	45°00′36″	13°50′35″	44°58'10"	2956	700-0	36661
39L190rt	190G	01.03	05.12-05.58	13°49′39″	44°57′15″	13°48′13″	44°55'57"	2860	250-0	20355
39L192rt	192G	02.03	01.55 - 06.31	13°46′50″	44°58'06"	13°55'07″	45°01'51"	3410	2500-0	101732
39L196rt	196F	03 - 04.03	22.08-01.44	14°35′12″	44°57′23″	14°41′30″	45°00′46″	3312	2500-0	80372
39L200rt	200F	04 - 05.03	21.50-00.09	14°41′41″	44°53'03″	14°46′10″	44°53'51"	2081	1500 - 0	51374
39L201rt	201F	05.03	00.32 - 01.48	14°46′54″	44°53′59″	14°49′16″	44°54'28"	2732	700-0	27147
39L202rt	202F	05.03	02.13-02.50	14°50'06"	44°54'36″	14°51′18″	44°'4'50″	3016	250-0	13643
39L205rt	205F	05.03	23.17-23.53	14°42′20″	44°53'07″	14°42′32″	44°54'19″	1869	250 - 0	13166
39L206rt	206F	06.03	00.10 - 04.31	14°42′37″	44°54'57"	$14^{\circ}44'00''$	45°03′37″	2396	2500-0	95624
39L207n	207F	06.03	05.27-07.49	14°44′51″	45°04'25"	14°48′04″	45°00'57"	3888	1500 - 0	52438
39L213rt	213F	07.03	21.51 - 23.00	14°42′17″	44°56'28"	14"23"	44°58'53"	3031	700-0	26377
39L214rt	214F	07-08.03	23.29-00.08	14°42′22″	44°59′59″	14°42′23″	45°01'10"	3989	250 - 0	12808
39L215rt	215F	08.03	00.30 - 03.09	14°42′56″	45°01'45″	14°47′52″	45°03′20″	4060	1500 - 0	58121
39L216rt	216F	08.03	03.36-07.42	14°47′46″	45°03'22"	14°39′22″	45°05'17"	3948	2500-0	96809
39L226rt	226E	11.03	22.59-23.39	15°47′15″	46°40'04"	15°48′35″	46°40'04"	3913	250 - 0	14896
39L227rt	227E	12.03	00.07 - 01.22	15°49′30″	46°40'04"	15°51'59"	46°40'03"	4138	700-0	27930
39L228rt	228E	12.03	01.50 - 04.24	15°52'55"	46°40'01"	15°58′28″	46°40'01"	3692	1500 - 0	62369
39L230rt	230E	12-13.03	22.59-01.36	16°04′17″	46°39′44″	16°11'28″	46°39′47″	3810	2500-0	81274
39L233rt	233E	14 - 15.03	21.15 - 01.27	16°03'57"	46°41'03"	16°12′32″	46°41'03"	3599	2500-0	96614
39L234rt	234E	15.03	01.52-04.25	16°13′12″	46°42′02″	16°18′30″	46°42′00″	3127	1500 - 0	59615
39L235rt	235E	15.03	05.05 - 06.11	16°18'47"	46°41'28″	16°17′18″	46°39′29″	3531	700-0	27159
39L236rt	236E	15.03	06.49-07.23	16°16′34″	46°38′42″	16°15′39″	46°37′39″	3683	250-0	15224
Примечание.	РТАКСА – разнс	лтубинный пел	агический трал∤	Айзекса-Кид	цда в модифик	қации Самып	пева-Асеева.			

290

КОБЫЛЯНСКИЙ и др.

ВОПРОСЫ ИХТИОЛОГИИ том 61 № 3 2021

ком-либо из проходимых горизонтов. Глубину прохождения трала определяли с помощью системы угломерно-дальномерной подводной навигации Kongsberg HiPAP 101/APOS с маяками-ответчиками Kongsberg cNODE Transponder Mini 17-ST. Ретранслятор закрепляли на тросе в 100 м от трала. При расчёте максимальной глубины нахождения трала делали соответствующую поправку. Для удобства незначительные отклонения в величине горизонтов лова при каждом тралении округляли в сторону четырёх стандартных значений (250-0, 700-0, 1500-0 и 2500-0 м). Расстояние, пройденное судном между точками начала и конца траления, рассматривали как расстояние по ортодромии (Wikipedia, 2020) и рассчитывали в интернет-калькуляторе (Planetcalc, 2020). Расстояние, пройденное тралом на каждой станции, вычисляли с использованием опубликованных ранее уравнений (Wenneck et al., 2008). Объём профильтрованной воды определяли умножением площади устья трала на расстояние между начальной и конечной точками траления. При этом были приняты следующие допущения: 1) трал двигался по наклонной траектории с постоянной скоростью, 2) траловый трос был равномерно натянут вдоль прямой линии, 3) площадь устья трала в течение траления оставалась постоянной, 4) поток воды через устье в течение траления был постоянным. Численность пойманных рыб в каждом трале рассчитывали исходя из объёма профильтрованной воды. Мы не учитывали биомассу пойманных рыб, поскольку при отборе проб незамыкающимся орудием лова неизбежна её недооценка, связанная с эффектом уклонения от орудия лова отдельных наиболее крупных и/или подвижных экземпляров пелагических рыб (Gjøsaeter, Kawaguchi, 1980). Оказывая небольшое влияние на общую численность рыб в улове, этот эффект в значительной мере может занижать суммарную биомассу пробы.

Собранная ихтиологическая коллекция из РТАКСА включает 3351 экз. молоди и взрослых рыб и 346 экз. личинок. Первоначально пробы фиксировали 2—4%-ным формалином, нейтрализованным морской водой, затем их переводили в 75%-ный этанол.

Статистический анализ проводили с помощью пакета программ PRIMER ver. 6 (Clarke; Warwick, 2005). Обработка данных базировалась на матрице видового сходства проб, рассчитанной на основе индекса Брея—Кёртиса; в качестве исходных данных использовали численность отдельных видов рыб в пробе, пересчитанную под 100 м² водной поверхности. За основу была взята общая численность рыб в столбе воды, поскольку при сравнении результатов косых ловов на различных по вертикальной протяжённости горизонтах было необходимо, помимо объёма профильтрованной воды, учесть и высоту столба воды, пройденную тралом за время лова. Стандартизацию и трансформацию данных не применяли.

При проведении статистического анализа результатов в первую очередь была выполнена серия перестановочных тестов ANOSIM (с числом повторов 999) для проверки нулевой гипотезы об отсутствии различий между заранее выделенными по двум факторам (горизонту траления и принадлежности к одному из трёх полигонов) группами проб. В случае невозможности отвергнуть нулевую гипотезу дальнейшее рассмотрение влияния фактора не проводили. Также была выполнена кластеризация методом попарного внутригруппового невзвешенного среднего (UPGMA) (Romesburg, 1990) и ординация методом неметрического многомерного шкалирования (MDS) (Kruskal, Wish, 1978). Для оценки надёжности результатов кластеризации проводили перестановочный тест SIMPROF (число повторов 999, p == 0.05). Выбор характерных и дифференцирующих видов внутри достоверно выделяемых групп проводили с помощью процедуры SIMPER.

Для оценки видового разнообразия использовали следующие индексы: видового богатства Маргалефа – $d = (S - 1)/\ln n$, где S – число видов в пробе, n – число особей всех видов в пробе; Шеннона – $H' = -\sum_{i=1}^{n} p_i \log_2 p_i$, где p_i – доля *i*-того вида в пробе; выравненность по Пиелоу – $J' = H'/\log_2 S$, где H – индекс Шеннона, S – число видов.

РЕЗУЛЬТАТЫ

Ловы РТАКСА на разных горизонтах

В диапазоне глубин 250-0 м (табл. 2) уловы РТАКСА были относительно бедными; всего было поймано 114 экз. молоди и взрослых эпи- и мезопелагических рыб, относящихся к 32 видам из 10 семейств. Наибольшим числом таксонов были представлены пять семейств: Myctophidae (15 видов, или ~46% общего числа пойманных), Phosichthyidae (5 видов, 15%), Gonostomatidae и Stomiidae (по 3 вида, или по 9%), Sternoptychidae (2 вида, 6%). У всех прочих пяти семейств пелагических рыб (Derichthyidae, Serrivomeridae, Exocoetidae, Bregmacerotidae и Coryphaenidae) было отмечено по одному виду (суммарно они составляли 15% общего числа пойманных). Видовой состав личинок пелагических рыб эпи- и верхней мезопелагиали в уловах также был очень обеднён. На горизонте 250-0 м пойман 41 экз. личинок из 15 семейств. относящихся к 24 видам (табл. 2). Наиболее многочисленны в уловах были лептоцефалы глубоководных угрей семейств Nemichthyidae и Derichthyidae, а также личинки разных видов гоностомовых рыб (Gonostomatidae), светящихся анчоусов (Мусtophidae) и гемпилид (Gempylidae), суммарно составляющие 66% всех пойманных экземпляров.

Рис. 2. Соотношение доминирующих по численности таксонов пелагических рыб в уловах РТАКСА на разных горизонтах в тропической части Срединно-Атлантического хребта в феврале—марте 2018 г.: 1 - Cyclothone pallida, 2 - Cyclothone sp., 3 - C. pseudopallida, 4 - C. alba, 5 - C. acclinidens, 6 - C. obscura, 7 - Hygophum taaningi, 8 - Notolychnus valdiviae, 9 - Lampanyctus nobilis, 10 - Sigmops elongatum, 11 - Benthosema suborbotale, 12 - Lepidophanes guentheri, 13 - прочие.

Личинки прочих семейств глубоководных рыб присутствовали в уловах единично.

Молодь и/или взрослые особи в уловах наряду с личинками отмечены.лишь у пяти видов из четырёх семейств (или ~10% суммарного числа пойманных на горизонте таксонов): Argyropelecus aculeatus, Vinciguerria poweriae, Idiacanthus fasciola, Diaphus sp. и Lampanyctus nobilis.

Величины улова глубоководных рыб на горизонте 250—0 м в тёмное время суток показывали относительно низкие значения; на полигоне F они варьировали от 14.7 (ст. 202F) до 54.7 экз/100 м² (214F), в среднем составляя 34.9 экз/100 м². На полигоне E величина улова на двух станциях (226E и 236E) составляла 21.8 и 24.6 экз/100 м², а на полигоне G – 20.9 экз/100 м² (190G). Средняя численность молоди и взрослых рыб, пойманных на всех станциях на горизонте 250—0 м была равна 25.9 экз/100 м².

Наиболее многочисленными в уловах на горизонтах 250-0 м были виды семейств Myctophidae (Benthosema suborbitale, Diaphus sp., Hygophum taaningi, Lampanyctus cuprarius, L. nobilis, Notolichnus valdiviae и Lepidophanes guentheri) и Gonostomstidae (*Sigmops elongatum*), в сумме составлявшие 64% общего числа пойманных экземпляров (рис. 2).

На горизонте 700-0 м (табл. 3) в уловах РТАК-СА содержалось 683 экз. молоди и половозрелых особей глубоководных мезопелагических рыб, относящихся к 54 видам из 14 семейств. Среди молоди и взрослых рыб. пойманных на всех полигонах, наибольшим видовым разнообразием отличались семейства Myctophidae (22 вида, или ~40% общего числа видов), Sternoptychidae (8 видов, 14%), Gonostomatidae (8 видов, 14%), Stomiidae (5 видов, 9%) Phosichthyidae (2 вида, 4%) и Melamphaidae (2 вида, 4%). Все прочие восемь семейств (Scopelarchidae, Giganturidae, Stylephoridae, Rondeletiidae, Serrivomeridae, Bregmacerotidae, Diretmidae и Ceratiidae) были представлены одним видом рыб, суммарно составляя 15% общего числа пойманных на горизонте.

Уловы личинок глубоководных рыб на горизонте 700-0 м на разных полигонах также были относительно бедны; на всех станциях было поймано лишь 68 экз. из 14 семейств, относящихся к 31 виду (табл. 3). Наибольшее видовое разнообразие составляли личинки семейств Myctophidae (11 видов, ~32%) и Sternoptychidae (6 видов, ~18%). Личинки всех прочих 12 семейств были

Такаан				Номер с	станции			
Таксон	190G	179F	184F	202F	205F	214F	226E	236E
Gonostomatidae								
Bonapartia pedaliota	—	_	_	—	-	-/3	—	—
Cyclothone sp.	—	_	_	—	_	-/1	—	—
Diplophos taenia	_	_	_	_	_	_	_	1/-
Gonostoma atlanticum	—	_	_	—	_	_	-/1	—
Sigmops elongatum	—	_	_	4/—	2/-	_	1/-	3/-
Sternoptychidae								
Argyropelecus aculeatus	1/-	_	_	_	-/1	_	_	_
Valenciennellus tripunctulatus	—	2/-	_	3/-	_	_	—	1/-
Phosichthyidae								
Pollichthys mauli	1/-	_	_	_	_	_	1/-	_
Vinciguerria attenuata	_	_	_	_	1/-	_	_	_
V. nimbaria	_	_	_	_	_	2/-	_	_
V. poweriae	2/—	_	_	_	_	-/1	_	_
<i>Vinciguerria</i> sp.	1/-	_	_	_	_	_	_	_
Stomiidae								
Astronesthes micropogon	_	_	_	_	_	_	_	1/-
Chauliodus danae	—	_	_	—	_	1/-	—	1/-
Idiacanthus fasciola	-/1	1/-	_	_	-/1	3/-	_	1/-
Myctophidae								
Benthosema suborbitale	—	5/—	_	—	1/-	2/-	—	—
Bolinichthys photothorax	_	_	_	_	_	1/-	_	2/—
Ceratoscopelus warmingii	-/1	-/1	_	_	_	_	_	_
Diaphus brachicephalus	1/-	_	_	_	_	_	1/-	_
D. garmani	1/-	_	_	—	_	_	—	—
D. mollis	2/—	_	_	_	_	_	1/-	_
Diaphus sp.	—	2/-	_	—	_	1/-	1/-	1/1
D. splendidus	1/-	_	_	—	_	1/-	—	—
Hygophum reinhardti	—	1/-	_	—	—	—	—	—
H. taaningi	—	5/—	_	—	_	2/-	—	—
Lampanyctus cuprarius	—	_	_	—	1/-	—	6/-	—
L. nobilis	—	_	_	—	1/-	5/1	1/-	—
L. tenuiformis	1/-	_	_	—	—	—	—	—
Lepidophanes guentheri	—	1/-	_	1/-	1/-	4/—	1/-	—
Notolychnus valdiviae	4/—	1/-	_	—	4/—	2/-	—	2/—
Symbolophorus rufinus	—	-/2	_	—	-	_	—	—
Myctophidae gen. sp.	—	2/-	_	—	1/1	3/-	—	—
Scopelarchidae								
Scopelarchus guentheri	-/1	—	—	—	_	—	—	—
Rosenblattichthys hubbsi	—	-/1	—	—	—	—	—	—
Evermannelidae								
Evermannella melanoderma	-/1	—	—	—	_	—	—	—
Notosudidae gen. sp.	_	_	—	—	-/1	_	—	—

Таблица 2. Число личинок, молоди и взрослых рыб в ночных уловах РТАКСА над тропической частью Срединно-Атлантического хребта на горизонте 250–0 м в феврале-марте 2018 г.

КОБЫЛЯНСКИЙ и др.

Таблица 2. Окончание

Таксон				Номер с	станции			
Таксон	190G	179F	184F	202F	205F	214F	226E	236E
Paralepididae								
Lestidiops sp.	—	—	—	—	-/1	—	_	_
Sudis atrox	—	—	—	—	-	-/1	-	—
Derichthyidae								
Derichthys serpentinus	—	_	_	—	_	-/1	_	-/1
Nessorhamphus danae	_	_	_	_	_	_	_	1/-
Nemichthyidae								
Nemichthys scolopaceus	-/3	_	_	—	-/1	_	—/2	_
Serrivomeridae								
Serrivomer beanii	1/-	_	_	_	_	_	_	_
Exocoetidae								
Cheilopogon furcatus	1/-	_	_	_	_	_	_	_
Bregmacerotidae								
Bregmaceros atlanticus	_	1/-	_	_	_	1/-	_	_
Radiicephalidae								
Radiicephalus elongatus	_	_	_	—	-/1	_	_	_
Howellidae gen. sp.	_	_	_	_	-/1	_	_	_
Coryphaenidae								
Coryphaena equiselis (juv.)	_	1/-	_	—	_	_	_	_
Gempylidae								
Lepidocybium flavobrunneum	-/3	_	_	_	_	_	_	_
Nealotus tripes	-/2	—	—	—	-/1	—	-/1	—
Bothidae								
Bothus ocellatus	-/1	—	_	_	—	_	_	-/1

Примечание. Здесь и в табл. 3—5: до черты — число молоди или взрослых рыб, после черты — число личинок; "—" — отсутствие рыб на станции.

представлены в нижней мезопелагиали единичными экземплярами одного—двух видов рыб. Наряду с личинками мезопелагических рыб на горизонте 700—0 м также были пойманы представители донных и придонно-пелагических видов ранних стадий развития, взрослые особи которых принадлежат глубоководным фаунистическим комплексам континентального склона и подводных поднятий. К ним относятся пять видов: *Maurolicus* sp. (Sternoptychidae), *Diretmichthys parini* (Diretmidae), *Epigonus* sp. (Epigonidae), *Scombrolabrax heterolepis* (Scombrolabracidae) и *Bothus ocellatus* (Bothidae).

Видовой состав личинок рыб в уловах на горизонте 700-0 м отличался от состава молоди и взрослых особей несколько в меньшей степени. У 12 видов из пяти семейств (~17% суммарного числа пойманных таксонов) – Cyclothone sp., Argyropelecus aculeatus, A. sladeni, Valenciennellus tripunctulatus, Ceratoscopelus warmingii, Diphus sp., Hygophum taaningi, Lampanyctus nobilis, L. sp., Lepidophanes guentheri, Scopelarchus guentheri и Diretmichthys pari*ni* — в уловах присутствовали как личинки, так и молодь или взрослые особи.

Личинки 11 видов мезопелагических рыб с горизонта 700–0 м были также отмечены и в ловах РТАКСА на горизонте 250–0 м.

Уловы молоди и взрослых глубоководных рыб на горизонте 700–0 м на всех полигонах были заметно выше, нежели на 250–0 м. На полигоне F они изменялись от 172.5 (ст. 213F) до 296.5 (201F), в среднем – 243.8 экз/100 м². На полигоне E величина улова на двух станциях составляла 146.9 (235E) и 210.5 (227E) экз/100 м², а на полигоне G – 284.5 экз/100 м² (190G). Средняя численность рыб, пойманных на всех станциях на горизонте 700–0 м, составляла 231.0 экз/100 м².

Самыми многочисленными в уловах были молодь и взрослые особи рода *Cyclothone* (*C. acclinidens, C. alba, C. pallida, C. pseudopallida, C.* sp.) (Gonostomstidae), которые в сумме составляли 74% общего числа пойманных экземпляров (рис. 2).

ВОПРОСЫ ИХТИОЛОГИИ том 61 № 3 2021

			He	эмер станц	ии		
Таксон	189G	178F	183F	201F	213F	227E	235E
Gonostomatidae							
Bonapartia pedaliota	_	_	_	_	_	-/1	_
Cyclothone acclinidens	8/—	5/—	1/—	29/-	11/-	_	2/—
C. alba	14/—	11/-	9/—	6/—	3/-	11/-	9/—
C. pallida	60/-	41/-	27/-	46/-	23/-	10/-	11/—
C. pseudopallida	18/—	10/-	9/—	4/—	4/—	16/—	8/—
<i>Cyclothone</i> sp.	30/-	20/1	9/—	7/—	-	23/-	10/-
Gonostoma atlanticum	_	1/-	1/—	_	_	_	_
Sigmops elongatum	_	2/-	3/-	1/—	1/-	_	_
Sternoptychidae							
Argyropelecus aculeatus	_	-/1	1/—	_	1/-	_	_
A. affinis	_	_	_	_	1/-	_	_
A. hemigimnus	_	_	_	_	_	_	1/—
A. olfersi	_	_	_	1/—	_	_	_
A. sladeni	2/-	_	1/-	_	—	_	1/1
Maurolicus sp.	_	_	_	-/1	_	_	_
Sternoptyx diaphana	2/-	_	_	_	_	_	1/—
S. pseudoobscura	2/-	_	_	_	_	_	_
<i>Sternoptyx</i> spp.	_	_	-/1	_	_	_	_
Valenciennellus tripunctulatus	3/-	1/-	_	1/-	2/-	1/-	-/1
Sternoptychidae gen. spp.	_	_	-/1	_	_	_	_
Phosichthyidae			-				
Pollichthys mauli	_	_	_	_	_	1/-	_
Vinciguerria poweriae	_	-	_	1/-	1/-	_	_
Stomiidae				-			
Aristostomias xenostoma	1/-	_	_	_	_	_	_
Malacosteus niger	_	_	_	1/-	_	_	_
Photostomias atrox	_	_	_	_	_	_	1/—
P. goodyeari	_	2/-	_	_	_	_	_
Idiacanthus fasciola	_	_	4/—	_	2/-	_	1/—
Myctophidae			-				-
Benthosema suborbitale	1/-	7/—	_	_	_	1/-	_
Bolinichthys photothorax	_	1/-	4/—	_	_		3/-
B. supralateralis	2/-	_	_	_	_	_	_
Ceratoscopelus warmingii	_	_	-/2	-/3	-/1	2/1	-/1
Diaphus brachicephalus	1/-	_	_	_	_	_	—
D. perspicillatus	_	_	_	_	_	_	1/—
Diaphus sp.	_	1/3	-/1	_	-	_	_
Diaphus sp. 1	_	_	_	_	_	_	-/1
D. splendidus	_	2/-	2/-	1/-	_	_	_
D. termophilus	_	_	_	_	_	2/-	_
Hygophum hygomii	-/1	-/1	_	_	_	_	_
H. macrohir	1/-	_	_	_	_	_	—
H. taaningi	1/1	_	3/-	3/-	2/-	_	—
<i>Hygophum</i> sp.	_	_	_	_	_	_	-/1
Lampadena urophaos atlantica	_	1/-	_	_	_	_	_
Lampanyctus alatus	1/-	_	_	_	1/-	_	—
L. cuprarius	_	-	1/-	_	_	1/-	—
L. lineatus	_	_	1/-	_	_	_	_
L. nobilis	-/1	3/1	7/—	2/-	2/-	4/—	1/-

Таблица 3. Число личинок, молоди и взрослых рыб в ночных уловах РТАКСА над тропической частью Срединно-Атлантического хребта на горизонте 700–0 м в феврале–марте 2018 г.

КОБЫЛЯНСКИЙ и др.

Таблица 3. Окончание

 			He	эмер станц	ии		
Таксон	189G	178F	183F	201F	213F	227E	235E
Lampanyctus sp.	_	_	-	_	1/-	_	-/2
Lepidophanes guentheri	1/—	_	2/2	1/—	_	3/—	_
Myctophum nitidulum	_	_	_	_	_	1/-	_
M. obtusirostre	-/1	_	_	_	_	_	_
Myctophum sp. (juv.)	_	_	_	_	1/-	_	_
Notolychnus valdiviae	_	7/—	7/—	6/-	_	2/-	6/—
Myctophidae gen. sp.	1/3	2/1	1/-	3/-	2/1	3/1	_
Scopelarchidae							
Scopelarchus guentheri	-/1	_	_	1/-	_	_	—
Rosenblattichthys hubbsi	_	-/1	_	_	_	_	_
Paralepididae		,					
Paralepis brevirostris	-/1	_	_	_	_	_	_
<i>Sudis atrox</i>	_	-/1	_	_	-/1	_	_
Giganturidae		,			,		
Gigantura indica	_	1/-	_	_	_	1/-	_
Stylephoridae		,				,	
Stylephorus chordatus	_	_	1/-	_	_	_	_
Rondeletiidae			,				
Rondeletia bicolor	_	_	_	1/-	_	_	_
Nemichthyidae				,			
Nemichthys scolopaceus	-/1	-/1	_	_	-/1	_	—
Serrivomeridae	,	,			,		
Serrivomer beanii	_	1/-	1/-	_	_	_	—
Melamphaidae			-				
Melamphaes hubbsi	_	_	_	_	2/-	_	_
Scopelogadus mizolepis	_	_	_	_	_	1/-	_
Bregmacerotidae						-	
Bregmaceros atlanticus	_	1/-	_	_	_	_	_
Diretmidae							
Diretmichthys parini	-/1	_	—	-/1	4/—	_	_
Epigonidae							
<i>Epigonus</i> sp.	—	-/1	—	_	—	_	—
Howellidae gen. sp.	—	-/1	—	—	_	—	—
Scombrolabracidae							
Scombrolabrax heterolepis	—	-	_	—	-/2	-/2	—
Gempylidae							
Diplospinus multistriatus	-/3	-	—	_	_	_	_
Nealotus tripes	—	-	—	_	_	_	-/1
Bramidae							
Taratichthys longipinnis	_	-/1	—	_	—	_	—
Molidae							
Ranzania laevis	-/2	-	-/1	_	—	_	-/1
Ceratiidae							
Ceratias uranoscopus	_	-	—	_	1/-	_	—
Bothidae							
Bothus ocellatus	—/1	—	-/1	—	—	—	—

На горизонте 1500—0 м (табл. 4) всего на всех исследованных полигонах было поймано 1673 экз. молоди и взрослых глубоководных пелагических рыб из 20 семейств, относящихся к 93 видам. Наибольшее видовое разнообразие наблюдалось в составе семейств Мусtophidae (28 видов, или ~30% числа пойманных на горизонте), Stomiidae (17 видов, 18%), Gonostomatidae и Sternoptychidae (по 8 видов, 9%), Phosichthyidae (4 вида, 4%). В составе оставшихся 16 семейств рыб отмечено по одному—два вида, которые в сумме составляли около 30% числа пойманных таксонов.

Личинки глубоководных рыб в верхней батипелагиали были представлены 138 экз. 50 видов из 26 семейств (табл. 4). Их них по меньшей мере 29 видов ранее не встречались в наших сборах на вышележащих горизонтах (250-0 и 700-0 м). Указанная цифра, как кажется, несколько занижена, поскольку часть личинок удалось определить лишь до уровня семейств. В пробах также были отмечены личинки 16 видов рыб, которые уже встречались в верхней и нижней мезопелагиали (табл. 2, 3) и, видимо, должны рассматриваться как прилов, полученный при прохождении незамыкающимся тралом вышележащих горизонтов. Наибольшее виловое разнообразие отмечено в семействах Myctophidae (12 видов, 24%), Gonostomatidae (4 вида, 8%), Paralepididae (4 вида, 8%), Gempylidae (4 вида, 8%) и Stomiidae (3 вида, 6%), в сумме представившее >50% всех видов личинок рыб на горизонте 1500-0 м. Остальное 21 семейство рыб, личинки которых были отмечены в сборах, имело в своём составе по одному-два вида (табл. 4). В сборах с горизонта 1500-0 м также было обнаружено незначительное число личинок трёх видов донных и придонно-пелагических рыб, приуроченных к прибрежным водам, континентальному склону и подводным поднятиям: Anarchias similis (Muraenidae), Diretmus argenteus (Diretmidae) и Scombrolabrax heterolepis (Scombrolabracidae). Видовой состав личинок в уловах на горизонте 1500-0 м заметно отличался от состава молоди и взрослых рыб. Лишь у 14 видов глубоководных рыб из восьми семейств (~12% общего числа пойманных таксонов) были пойманы как личинки, так и молодь или взрослые экземпляры.

Величина уловов молоди и взрослых рыб на горизонте 1500–0 м почти на порядок превышала таковую на горизонте 250–0 м, тогда как по сравнению с уловами на горизонте 700–0 м отличалась не столь значительно. На полигоне F уловы варьировали от 437.7 (ст. 207F) до 673.6 (215F), в среднем составляя 588.2 экз/100 м². На полигоне E величина улова на двух станциях составляла 406.5 (228E) и 406.1 экз/100 м² (234E), а на G – 500.4 экз/100 м² (188G). Средняя численность рыб, пойманных на всех полигонах на горизонте 1500–0 м составляла 531.6 экз/100 м². Наиболь-

шей суммарной численности на всех полигонах достигали виды рода *Cyclothone* (Gonostomatidae) (*C. acclinidens, C. alba, C. microdon, C. obscura, C. pallida, C. psudopallida* и *C. sp.*), составившие ~75% числа пойманных экземпляров молоди и взрослых глубоководных рыб (рис. 2). При этом общая численность всех отмеченных в уловах представителей наиболее массового в видовом отношении семейства Мусtophidae не превышала 15% всего числа пойманных рыб.

На горизонте 2500-0 м (табл. 5) на полигонах F, G и E всего было поймано 881 экз. глубоководных пелагических рыб; здесь были отмечены молодь и взрослые экземпляры мезо- и батипелагических рыб, относящиеся к 65 видам из 18 семейств. Наибольшее видовое разнообразие составляли рыбы семейств Myctophidae (22 вида, или ~33% числа пойманных на горизонте), Gonostomatidae (10 видов, 15%), Sternoptychidae (8 видов, 12%), Stomiidae (5 видов, 8%), Phosichthyidae (4 вида, 6%), Melamphaidae (3 вида, 5%), Giganturidae (2 вида, 3%) и Platytroctidae (2 вида, 3%). Все прочие 10 семейств пелагических рыб, отмеченные в уловах на горизонте 2500-0 м, были представлены одним видом рыб. Суммарно их доля составляла 15% общего числа пойманных на горизонте видов.

Личинки глубоководных рыб нижней батипелагиали были отобраны из тралений РТАКСА, проведённых над ложем рифтовой долины САХ на горизонте 2500-0 м. Всего было отмечено 99 экз. личинок рыб, относящихся к 34 видам из 23 семейств (табл. 5). Наибольшим видовым обилием в сборах обладали личинки семейств Мусtophidae (8 видов), Paralepididae (3), Molidae (2) и Sternoptichidae (2), в сумме составляющие ~45% всего видового состава на трёх полигонах. Личинки каждого из прочих 19 семейств пелагических рыб были представлены в сборах только одним видом. Видовой состав личинок в уловах на горизонте 2500-0 м, как и на вышележащих горизонтах, заметно отличался от состава молоди и взрослых рыб. Лишь у 10 видов глубоководных рыб из шести семейств (~ 11% суммарного числа пойманных таксонов) были пойманы как личинки, так и молодь или взрослые экземпляры.

Величина уловов молоди и взрослых мезопелагических рыб на горизонте 2500-0 м на всех полигонах была несколько ниже, чем на горизонте 1500-0 м. На полигоне F уловы варьировали от 379.6 (ст. 216F) до 447.1 (206F), в среднем составляя 422.8 экз/100 м²; на полигоне E величина улова составляла на двух станциях 381.4 (230E) и 344.2 экз/100 м² (233E), а на полигоне G – 403.0 экз/100 м² (192G). В целом средняя численность рыб, пойманных на всех полигонах на горизонте 2500-0 м, составляла 399.5 экз/100 м², что в

Такаон				Номер о	станции			
Таксон	188G	177F	182F	200F	207F	215F	228E	234E
Platytroctidae								
Holtbyrnia sp. (juv.)	_	1/-	_	_	_	_	_	_
Bathylagidae		,						
Dolicholagus longirostris	_	_	1/-	_	_	_	_	_
Melanolagus bericoides	_	-/1	_	_	1/-	_	_	_
Gonostomatidae		,			,			
Cvclothone acclinidens	13/-	15/-	1/-	16/-	12/-	10/-	11/-	8/-
C. alba	18/-	35/-	21/-	12/-	5/—	28/-	15/-	15/-
C. microdon	_	1/-	_	_	2/-	_	4/—	2/-
C. obscura	2/-	3/-	1/-	6/-	1/—	6/—	3/-	_
C. pallida	100/-	67/—	130/-	96/—	62/-	100/-	52/-	40/-
C. pseudopallida	_	-/2	_	9/—	2/-	9/—	5/—	5/—
<i>Cyclothone</i> sp.	30/-	46/-	56/-	4/—	24/—	34/-	53/-	38/-
Diplophos taenia	_	_	_	_	-/1	_	_	_
Gonostoma atlanticum	_	_	1/-	_	2/-	_	_	1/-
Sigmops elongatum	2/-	2/-	1/-	4/—	1/—	_	_	1/-
Gonostomatidae gen. sp.	_	_	_	_	_	-/1	-/1	_
Sternoptychidae						,	,	
Argyropelecus aculeatus	_	_	_	1/-	-/1	_	_	_
A. affinis	2/-	_	1/-	1/-	_	—	_	_
A. hemigimnus	_	_	_	_	_	1/-	_	_
A. olfersi	_	1/-	_	_	_	1/-	1/-	_
Argyropelecus sp.	—	1/-	—	_	_	1/-	_	_
Sternoptyx diaphana	1/-	1/-	4/—	_	6/-	4/—	4/—	1/-
S. pseudoobscura	2/-	—	—	_	_	—	_	—
<i>Sternoptyx</i> sp.	-/1	—	-/2	-	_	-/1	-	-
Sternoptychidae gen. sp.	-/1	—	—	-/3	—	—	—	-
Valenciennellus tripunctulatus	—	5/-	_	1/-	1/-	1/-	3/-	4/—
Phosichthyidae								
Ichthyococcus ovatus	—	—	-/1	-	—	2/—	-	—
Pollichthys mauli	-	—	—	-	—	—	-	1/-
Vinciguerria attenuata	—	1/-	-	—	—	2/-	_	—
V. nimbaria	—	1/—	-/2	1/—	—	2/-	—	—
Stomiidae								
Astronesthes atlanticus	—	_	_	_	_	1/-	_	_
A. macropogon	—	_	1 /	_	_	—	1/-	1/-
A. sp. gl. niger (Juv.)	_	_	1/-	_	_	—	2/	_
A. similus Bathophilus longininnis	_	_	1/-	_	_	_	2/—	_
B navneei			1/-					1/_
B. nigerrimus	_	_	_	_	_	_	1/_	-
Bathophilus ? sp	_	_	_	_	_	-/1	_	_
Chauliodus danae	_	_	_	1/-	_	_	_	_
C. sloani	1/-	_	_	_	_	_	_	_
Eustomias acinosus		_	_	_	_	_	_	1/-
Eustomias sp.	_	_	1/2	_	_	_	_	_
Heterophotus ophistoma	_	_	_	_	1/-	_	_	_
Malacosteus niger	1/-	—	—	—		_	_	_
Malacosteus sp.	_	_	-/1	—	_	_	—	_
Melanostomias melanopogon	-	_	—	-	_	1/-	—	_
Photostomias goodyeari	-	—	—	—	—	—	—	1/-
Idiacanthus fasciola	1/-	2/1	4/—	4/	1/-	8/—	1/-	2/-

Таблица 4. Число личинок, молоди и взрослых рыб в ночных уловах РТАКСА над тропической частью Срединно-Атлантического хребта на горизонте 1500–0 м в феврале–марте 2018 г.

Таблица 4. Продолжение

T				Номер с	танции			
Таксон	188G	177F	182F	200F	207F	215F	228E	234E
Myctophidae								
Benthosema suborbitale	1/-	2/-	2/-	1/-	_	_	_	_
Bolinichthys photothorax	_	3/-	2/-	_	1/-	2/-	1/-	2/—
B. supralateralis	_	_		_	1/-	_	_	_
Centrobranchus nigroocellatus	_	_	-/1	_	_	_	_	_
Ceratoscopelus warmingii	1/4	-/3	1/2	-/5	-/3	—/4	2/1	4/—
Dianhus brachicenhalus	_	_	_	_	1/1	_		
D. mollis	_	1/-	1/-	_	_	_	_	_
D. problematicus	_	1/-	_	_	_	_	_	2/—
Diaphus sp.	1/1	2/-	1/1	1/-	_	1/-	1/-	1/-
D. sp. (cf. diadematus)	_	_	_	_	_	_	_	4/—
D. splendidus	_	2/-	1/-	_	_	1/-	_	1/-
D. taaningi	_	_		_	1/-	_	_	_
Diogenichthys atlanticus	1/-	1/-	_	_	_	_	_	_
Hygophum macrochir	_	_	_	_	-/1	_	_	_
Hygophum sp.	_	-/1	_	-/2	_	_	_	_
H. taaningi	8/—	2/-	4/—	3/-	_	5/-	4/—	3/-
Lampadena sp. (juv.)	1/-	_	_	1/-	_	1/-	_	_
L. urophaos atlantica	_	_	_	_	2/-	_	_	_
Lampanyctus cuprarius	_	_	_	2/-	1/-	_	_	_
<i>L. lineatus</i>	_	1/-	_	_	_	_	_	_
L. nobilis	6/2	15/1	3/1	10/1	2/-	16/1	2/-	4/1
L. photonotus	3/-	_	_	1/-	_	_	_	_
L. sp. (cf. lepidolychnus)	1/-	_	_	_	_	_	_	_
Lampanyctus sp.	_	_	6/-	_	_	5/—	-/1	_
Lepidophanes guentheri	1/—	6/-	2/-	_	4/—	2/-	_	—
Loweina sp. (cf. interrupta)	_	_	_	_	1/-	_	_	_
Myctophum asperum	—	_	_	_	_	_	_	1/-
M. nitidulum	_	_	_	_	_	_	-/1	_
M. obtusirostre	_	_	-/1	_	_	_	_	_
Myctophum sp. (juv.)	—	1/-	_	_	—	—	_	—
Notolychnus valdiviae	—	7/—	10/-	1/-	4/—	7/—	-	5/—
Taaningichthys minimus	—	-	1/—	-	-	_	-	—
T. paurolychnus	1/-	-	_	-	1/-	_	-	—
Myctophidae gen. sp.	1/2	1/11	-/2	6/1	8/3	8/3	1/-	6/-
Scopelarchidae								
Scopelarchus analis	—	-/1	—	_	—	_	_	—
S. guentheri	—	-	_	—	—	—	-/1	-/1
Notosudidae								
Scopelosaurus smithii	-/1	-	—	-	-	_	-	—
Omosudidae								
Omosudis lowii	1/—	-	—	1/-	-	—	—	—
Paralepididae								
Lestidiops affinis	—	-/1	—	-/1	-	-/2	—	—
Macroparalepis brevis						-/1		
Magnisudis atlantica	—	-/1	—		-/1	_	_	—
Sudis atrox	—	—	—	-/1	—	—	—	—
Giganturidae		1 /						
Gigantura chuni	-	1/-	-	_ 1 /	—	—	— 1 /	
G. indica	1/—	1/—	-/1	1/-	—	—	1/-	1/-
Stylephoridae			. .					
Stylephorus chordatus	—	—	2/-	—	—	1/—	-	—

КОБЫЛЯНСКИЙ и др.

Таблица 4. Окончание

 				Номер с	станции			
Таксон	188G	177F	182F	200F	207F	215F	228E	234E
Cetomimidae								
Cetomimus sp.1	1/-	_	_	_	_	_	_	_
Eurypharyngidae								
Eurypharynx pelecanoides	—	—	_	-	1/-	—	_	-
Muraenidae								
Anarchias similis	-/1	_	-	-	-/1	_	—	-/1
Serrivomeridae								
Serrivomer beanii	—	—	2/-	1/ —	-	—	1/-	1/-
Nemichthyidae								
Avocettina infans	1/-	-	-	_	—	—	—	_
Nemichthys scolopaceus	—	-/1	-/3	—	—	—	—	—
Cyemidae								
Cyema atrum	-	_	_	-	_	_	—	-/1
Derichthyidae					/1			
Derichthys serpentinus	—	_	—	_	-/1	_	_	_
Bregmacerotidae	1/	/1		1 /	1 /1			1/
Diretmidee	1/-	-/1		1/-	1/1	_	_	1/-
Diretmus argenteus	/1							
Melamphaidae	-/1	_	_	_	_	_	_	_
Poromitra sp	_	_	_	_	_	1/	_	_
Sconelohervy rohustus	_		2/_	_		1/-		1/_
Gempylidae			2/					1/
Dinlosninus multistriatus	-/1	_	_	_	_	_	_	_
Lepidocvhium flavohrunneum	-/1	_	_	_	_	_	_	_
Nealotus tripes	_	-/2	-/1	_	_	_	_	_
Gempylidae gen. sp.	_	-/1	_	_	_	_	_	_
Howellidae		,						
<i>Howella</i> sp. (juv.)	_	_	_	_	2/-	_	_	2/-
Howellidae gen. sp.	-/1	_	_	_	_	_	_	_
Nomeidae								
Cubiceps pauciradiatus	-/1	_	_	_	_	_	_	_
Scombridae								
Thunnus albacares	-	-/2	-/2	-	-	—	_	-
Scombrolabracidae								
Scombrolabrax heterolepis	_	_	—	—	—	-/1	—	—
Molidae								
Ranzania laevis	—	—	—	-/1	-/1	_	—	-
Linophrynidae								
Haplophryne mollis	—	—	_	_	—	-/3	—	-
Gigantactidae				1 /				
Gigantactis sp. (male)	—	_	_	1/-	—	_	—	_
Uneirodidae				/1				
Microlophichthys microlophus	_	_	—	-/1	_	—		_
Corotiidae	_	_	_	_	_	—	1/-	_
Cruntonsaras soussii					1 /			
Cryptopsurus couesti Bothidae	_	_	_	_	1/-	_		_
Bothus ocellatus	_/4	_	_/1	_	_/1	_	_	_/3
Donna Occitation	77	1	/ 1		/ 1		1	15

			Номер с	танции		
Таксон	192G	196F	206F	216F	230E	233E
Platytroctidae						
Holtbyrnia sp. (juv.)	—	_	—	_	—	1/—
Platytroctidae gen. sp. (juv.)	—	_	—	_	—	1/—
Gonostomatidae						
Cyclothone acclinidens	12/—	11/-	10/-	3/-	12/—	10/—
C. alba	6/—	12/—	16/—	5/—	12/—	21/-
C. microdon	—	_	_	_	—	1/—
C. obscura	19/—	6/-	6/—	4/—	6/—	10/—
C. pallida	56/—	56/-	49/—	52/-	39/-	36/-
C. pseudopallida	8/—	11/-	5/-	_	12/-	9/-
Cyclothone sp.	15/—	16/—	26/-	45/1	20/-	13/—
Gonostoma atlanticum	2/—	1/-	—	_	—	1/—
Margretia obtusirostra	—	_	_	_	_	1/-
Sigmops elongatum	—	_	2/-	_	—	—
Sternoptychidae						
Argyropelecus aculeatus	—	_	—	_	1/—	—
A. affinis	1/—	_	—	_	—	—
A. sladeni	—	-	—	-/1	2/—	—
Argyropelecus sp. (juv.)	—	_	1/-	_	—	—
Sternoptyx diaphana	2/—	1/—	_	_	_	—
S. pseudoobscura	1/—	_	—	3/-	—	—
<i>Sternoptyx</i> sp. (juv.)	-/1	—/2	1/-	-	_	_
Valenciennellus tripunctulatus	2/—	_	1/-	2/—	1/—	3/—
Phosichthyidae						
Pollichthys mauli	—	-	—	—	—	1/—
Vinciguerria attenuata	—	—	—	2/-	1/-	—
V. nimbaria	-/2	—	1/-	1/—	—	—
V. poweriae	2/—	—	1/-	—	—	—
Stomiidae						
Astronesthes richardsoni ? (juv.)	—	_	1/-	—	—	—
Chauliodus danae	—	_	_	—	1/-	1/-
Eustomias longibarba	—	_	1/-	—	—	—
Eustomias sp.	—	-/1	—	_	—	-/1
Idiacanthus fasciola	3/-	5/1	2/—	2/—	1/—	—
Stomias sp.	—	_	_	1/1	_	_
Myctophidae						
Benthosema suborbitale	—	_	2/—	5/—	—	—
Benthosema sp.	—	-/1	—	_	—	—
Bolinichthys photothorax	—	1/-	3/-	1/-	1/-	2/—
B. supralateralis	1/—	—	—	—	—	—
Ceratoscopelus warmingii	-/2	1/7	1/1	-/1	-/1	2/2
Diaphus effulgens	_	—	_	—	1/-	_
D. holti	—	—	1/-	—	—	—

Таблица 5. Число личинок, молоди и взрослых рыб в ночных уловах РТАКСА над тропической частью Срединно-Атлантического хребта на горизонте 2500–0 м в феврале-марте 2018 г.

Таблица 5. Продолжение

			Номер с	танции		
Таксон	192G	196F	206F	216F	230E	233E
D. lucidus	_	1/-	_	_	_	_
D. mollis	_	_	_	1/-	_	_
Diaphus sp.	_	_	1/-	_	_	_
D. splendidus	1/—	1/-	1/-	-	_	_
Hygophum taaningi	4/—	3/-	2/-	6/-	1/-	5/—
Lampadena urophaos	_	_	1/-	_	_	_
Lampanyctus alatus	2/—	_	_	_	_	_
L. cuprarius	_	2/-	1/-	_	_	8/—
L. nobilis	9/2	3/1	9/3	4/4	11/-	_
L. pusillus	1/—	_	_	_	_	_
Lampanyctus sp.	_	_	_	_	_	-/1
Lepidophanes guentheri	_	_	1/-	2/1	_	2/—
Lobianchia gemellarii	_	_	_	_	1/-	1/-
Loweina rara	_	_	_	1/-	_	_
Myctophidae gen. sp.	2/—	4/3	7/—	3/-	-/3	1/2
Myctophum obtusirostre	_	_	_	_	_	-/1
M. selenops	_	_	_	_	_	-/1
Myctophum sp. (juv.)	_	_	3/-	1/-	_	_
Notolychnus valdiviae	7/—	3/-	9/—	2/—	1/-	1/-
Neoscopelidae						
Scopelengys tristis	_	_	1/-	_	_	_
Scopelarchidae						
Scopelarchus guentheri	_	_	-/1	_	-/1	-/1
Notosudidae gen. sp.	_	_	-/1	_	_	_
Omosudidae						
Omosudis lowii	1/—	_	_	_	_	_
Paralepididae						
Arctozenus risso	-/1	_	_	_	_	_
Lestidiops affinis	-/1	_	_	-/1	_	_
Paralepis brevirostris	1/—	_	_	_	_	_
Sudis atrox	_	_	_	_	_	-/1
Giganturidae						
Gigantura chuni	1/1	_	_	_	_	_
G. indica	2/—	_	_	_	_	_
Chlopsidae						
Chlopsis sp.	_	_	_	-/1	_	_
Muraenidae						
Anarchias similis	_	-	_	-/3	-	_
Eurypharyngidae						
Eurypharynx pelecanoides	_	-	_	_	-	-/1
Nemichthyidae						
Nemichthys scolopaceus	-/1	-/1	-/2	—	-/2	-/1

Таблица 5. Окончание

Tawaay			Номер с	танции		
Таксон	192G	196F	206F	216F	230E	233E
Serrivomeridae						
Serrivomer beanii	_	_	3/-	_	_	_
Bregmacerotidae						
Bregmaceros atlanticus	—	1/-	1/-	_	_	_
Diretmidae						
Diretmichthys parini	—	-/6	-/1	_	_	_
Rondeletiidae						
Rondeletia bicolor	—	2/-	—	_	_	—
Melamphaidae						
Melamphaes sp.	—	1/-	—	_	—	—
Scopeloberyx robustus	—	_	_	1/—	_	_
Scopelogadus mizolepis	—	—	—	_	—	1/—
Gempylidae						
Diplospinus multistriatus	—	—	1/-	_	—	—
Nealotus tripes	—	—	—	-/2	-/1	—
Epigonidae						
<i>Epigonus</i> sp.	—	—	—	-/1	—	—
Howellidae						
Howella sp.	1/—	—	_	—	_	—
Scombridae						
Auxis ? rochei	—	—	_	—	-/1	—
Scombrolabracidae						
Scombrolabrax heterolepis	—	-/2	-/1	—	_	—
Molidae						
Masturus lanceolatus	—	_	_	_	—	-/1
Ranzania laevis	—	_	-/3	_	—	_
Linophrynidae						
Haplophryne mollis	-/1	—	—	—	—	—
Oneirodidae						
Oneirodes sp. 1 (female)	1/—	_	—	_	_	—
Gigantactidae						
Gigantactis sp. (male)	1/-	—	—	—	—	—
Bothidae						
Bothus ocellatus	-/1	-/3	-/1	-/3	—	-/1

1.3 раза меньше средней численности рыб, пойманных на горизонте 1500-0 м.

Наибольшей суммарной численности на всех полигонах в уловах на горизонте 2500-0 м достигали виды рода *Cyclothone* (Gonostomatidae) (*C. acclinidens, C. alba, C. obscura, C. pallida, C. pseudopallida* и *C.* sp.), составившие ~ 50% общего числа пойманных экземпляров глубоководных рыб, а также виды семейства Myctophidae, суммарно дающие на данном горизонте 17% улова (рис. 2).

Статистический анализ ловов по полигонам и горизонтам

По результатам теста ANOSIM установлено, что единственным фактором, оказывающим статистически значимое влияние на видовой состав и численность глубоководной пелагической ихтиофауны над изученным участком САХ, является горизонт лова (R = 0.53, p = 0.1%). При группировке проб по полигонам нулевая гипотеза об от-

Рис. 3. Результаты кластерного анализа уловов эпи-, мезо- и батипелагических рыб на станциях, выполненных в тропической части Срединно-Атлантического хребта в феврале—марте 2018 г. Горизонты лова, м: (\bullet) – 250–0, (\heartsuit) – 700–0, (*) – 1500–0, (+) – 2500–0; А, В, С – значимые (p = 0.05) группы проб, установленные с помощью теста SIMPROF.

сутствии различий между группами не может быть отклонена (R = 0.09, p = 16.7%), т.е. нельзя достоверно утверждать, что положение станции относительно структур САХ в пределах района работ оказывает влияние на численность и видовой состав рыб глубоководных ихтиоценов.

Рис. 4. MDS-диаграмма с результатами ординации станций на основе видового состава и численности глубоководных рыб, пойманных в тропической части Срединно-Атлантического хребта в феврале-марте 2018 г.: овалами выделены основные группы эпи- и мезо/батипелагиали, выделяемые на уровне сходства 10%; 2D-стресс – 0.1; ост. обозначения см. на рис. 3.

В результате кластерного анализа, включающего в себя перестановочный тест SIMPROF, были выявлены три основные группы проб (А, В и С) на уровне сходства 6.6% ($\pi = 8.5$, p = 0.001), и 40.7% ($\pi = 1.5$, p = 0.017); на более высоком уровне статистически значимой структуры данных не наблюдали (рис. 3). Группа А включает в себя все пробы с горизонта 250–0 м, в группу В вошли три станции с горизонта 700–0 м, основу группы С составляют станции с нижней границей горизонтов 1500 и 2500 м, в неё также входят несколько проб с горизонта 700–0 м.

Пробы группы А, охватывающие эпи- и верхнюю мезопелагиаль, помимо низкой численности особей и малого числа видов характеризуются ещё и низким уровнем сходства видового состава; максимальное сходство составляет всего 38% и отмечается между станциями 179F и 214F. Наиболее многочисленными в данной группе были четыре вида: светящиеся анчоусы (Myctophidae) Notolychnus valdiviae, Benthosema suborbitale, Lepidophanes guentheri и представитель семейства Gonostomatidae Sigmops elongatum (табл. 6). Графически группа может быть проиллюстрирована сильно разреженным, но хорошо обособленным облаком точек (рис. 4).

Группа проб В, видимо, соответствует нижней границе мезопелагиали; для неё характерно довольно высокое сходство видового состава (~60%), а также наблюдается увеличение числа видов в основном за счёт семейств Gonostomatidae, Myctophidae, Sternoptychidae (табл. 6). Наиболее массовыми являлись три вида циклотон *Суclothone pallida*, *C. alba* и *C. pseudopallida* со средней численностью ~30 экз/100 м² без явного домини-

	D		Группа	
Семеиство	ВИД	Α	В	C
Gonostomatidae	Cyclothone pallida		38.3	162.0
	C. pseudopallida		27.1	15.9
	C. alba		23.8	37.3
	C. acclinidens		2.5	29.3
	C. obscura			10.9
	C. microdon			1.4
	Sigmops elongatum	2.5	2.3	2.6
	Gonostoma atlanticum		0.8	1.3
Myctophidae	Notolychnus valdiviae	3.1	12.1	10.1
	Benthosema suborbitale	2.4	0.8	3.0
	Lepidophanes guentheri	2.2	4.0	3.3
	Hygophum taaningi	2.1	2.3	8.2
	Lampanyctus nobilis	2.0	9.5	14.8
	L. cuprarius	1.7	1.6	2.1
	Diaphus termophilus		1.7	
	D. splendidus	0.6	1.5	1.6
	Bolinichthys photothorax	1.2	5.6	2.8
Sternoptychidae	Argyropelecus sladeni		1.6	0.6
	Sternoptyx diaphana		0.9	3.7
	Valenciennellus tripunctulatus	1.6	0.8	4.4
Bregmacerotidae	Bregmaceros atlanticus	0.8		1.1
Stomiidae	Idiacanthus fasciola	1.4	3.9	5.7

Таблица 6.	Средняя	численность н	наиболее в	массовых	видов	глубокоі	водных ј	рыб в	группах	проб,	выделен	ных на
основе клас	стерного а	анализа, экз/10	00 м ²			-		-				

рования кого-то одного вида; по-прежнему относительно многочисленным был *Notolychnus valdiviae*. Остальные пробы с горизонта 700–0 м отнесены в группу С из-за заметно более высокой численности *C. pallida*. На MDS-диаграмме группа В стоит из трёх несколько обособленных от группы С точек (рис. 4).

В группу С отнесены ловы, захватывающие верхнюю и нижнюю батипелагиаль, а также часть из нижней мезопелагиали. Для основной части этих проб характерно высокое сходство (>60%) видового состава, что на MDS-диаграмме отражается в виде близкого взаимного расположении точек (рис. 4). Основу численности в группе С также составляли циколотоны с доминированием одного вида - *C. pallida* (162 экз/100 м²), на втором месте *C. alba* (37 экз/100 м²), затем следуют *C*. acclinidens и C. pseudopallida (29 и 16 экз/100 M^2) (табл. 6). Также относительно многочисленны Lampanyctus nobilis, Hygophum taaningi, Notolychnus valdiviae, Cyclothone obscura, Valenciennellus tripunctulatus и Idiacanthus fasciola. Notolychnus valdiviae, скорее всего, может рассматриваться как прилов из вышележащих горизонтов, тогда как Cyclothone

ВОПРОСЫ ИХТИОЛОГИИ том 61 № 3 2021

obscura и *C. acclinidens*, видимо, обитают на глубинах ниже 700 м.

ОБСУЖДЕНИЕ

Ни на одном из рассматриваемых горизонтов в пределах изученных полигонов G, F и E статистический анализ численности и биоразнообразия глубоководной пелагической ихтиофауны не показал достоверных различий. При этом необходимо отметить, что эти полигоны были разделены между собой разломом Зелёного мыса (РЗМ), пересекающим тропическую часть САХ в широтном направлении, и располагались над участками подводного хребта, обладающими чрезвычайно сложной топографией. Поскольку исследования проводили на довольно ограниченной (в масштабах открытого океана) акватории размером 2.0° × 2.5° с относительно однородной гидрофизической структурой вод южнее и севернее РЗМ, то отсутствие значимых различий между тремя полигонами вполне понятно, хотя предварительно и предполагалось влияние топографии рельефа на распределение пелагической ихтиофауны. Необходимо также отметить и отсутствие отчётливых градиентов в распределении видового состава глубоководной ихтиофауны с севера на юг по полигонам, что также, по нашему мнению, объясняется относительно малыми расстояниями межу ними. Таким образом, все изученные полигоны можно рассматривать как относящиеся к единому в фаунистическом отношении региону, а данные о структуре глубоководных ихтиоценов, полученные на одних и тех же горизонтах лова, но на разных полигонах, могут быть интегрированы.

Эффективность методов отбора проб глубоководных пелагических рыб, которая позволяла бы дать адекватные оценки их численности и биомассы, является предметом дискуссий и во многом зависит как от величины и способов развёртывания трала, так и от размеров ячеи используемого в нём сетного полотна (Heino et al., 2011; Williams et al., 2015; Olivar et al., 2017). Разноглубинный пелагический трал РТАКСА (с площадью устья 6 м²), применённый в настоящем исследовании, и конструкция его тралового мешка, на наш взгляд, оказались адекватны задачам отбора видового разнообразия основных групп глубоководных пелагических рыб, обитающих в олиготрофных водах центральных круговоротов и состоящих главным образом из ювенильных, карликовых и неотенических особей. Однако нам представляется очевидной его малая эффективность в случаях поимки крупных и подвижных экземпляров глубоководных рыб, которая может быть соотнесена как с более высокой степенью их чистого избегания трала, так и с площадью устья трала при захвате улова (Kaartvedt et al., 2012; Olivar et al., 2017). Помимо проблем с эффективностью используемых орудий лова, ещё одним возможным источником недооценки фактической численности и биомассы глубоководных пелагических рыб может быть наличие пространственной неоднородности (пятнистости) в распределении пелагических сообществ даже в рамках относительно небольших по объёму пространств (Angel, Pugh, 2000). Поэтому оценки численности пелагических рыб на разных горизонтах, представленные в нашей работе, не являются абсолютными и, на наш взгляд, не в полной мере могут быть использованы для сравнения с аналогичными данными, полученными в других районах океана при помощи иных орудий лова. Тем не менее они пригодны для сравнения состава и относительной численности глубоководных рыб на разных станциях и на разных горизонтах толщи вод.

Результаты обработки наших материалов, основанных на 29 ночных тралениях на разных горизонтах, не совсем согласуются с уже имеющимися представлениями о вертикальной структуре глубоководных пелагических ихтиоценов над северной частью CAX (Bergstad et Godø, 2003; Sutton et al., 2008; Cook et al., 2013; Priede et al., 2013), а также в открытых водах Северной, тропической и экваториальной Атлантики (Angel, 1993; Olivar et al., 2017), заключающимися в наличии суточных максимумов численности и биомассы глубоководных рыб, совершающих вертикальные миграции. По данным вышеперечисленных авторов, этот максимум располагается ночью в пределах горизонта 0-200 м, тогда как днём перемещается на глубины 200-700 м. Так, например, в районе разлома Чарли-Гиббса в северной части САХ в тёмное время суток на горизонте 200-0 м средняя численность мезопелагических рыб в пересчёте на 10 тыс. м³ была наибольшей, немного не лостигая 80 экз. (Cook et al., 2013). При этом, согласно нашим данным, пересчитанным в сопоставимые величины, на горизонте 250-0 м в районе 13°-15° с.ш. ночью средняя численность пелагических рыб составляла лишь ~10 экз., что почти в восемь раз меньше.

Согласно нашим данным, полученным в тёмное время суток, в водах над тропической частью САХ с увеличением глубины лова постепенно увеличивается и средняя численность рыб в улове (с 25.9 до 531.6 экз/100 м²), а также их видовое разнообразие (рис. 5). Рост численности рыб в уловах наблюдался вплоть до глубины 1500 м. Дальнейшее же увеличение глубины траления не приводило к увеличению числа экземпляров в улове, что говорит о прохождении тралом основных скоплений глубоководных рыб в пелагиали. При этом средняя численность рыб на горизонте 2500-0 м была несколько ниже, чем на 1500-0 м, что, видимо, объясняется случайными погрешностями ловов и/или наличием пятнистости в распределении глубоководной ихтиофауны. При очень малой численности рыб на глубинах ниже 1500 м её значения, пересчитанные на 100 м², для горизонта 2500-0 м должны были бы быть равны или немного превышать уловы на горизонте 1500-0 м. Исходя из того что средняя численность рыб на горизонте 1500-0 м примерно в два раза превышала таковую на 700-0 м (531.6 против 284.5 экз/100 м²) при довольно низкой её численности на горизонте 250-0 м, можно сделать вывод о том, что максимальные скопления рыб располагались в тёмное время суток в интервале глубин между 700 и 1500 м. Смешение мезо- и батипелагических фаунистических комплексов между собой в диапазоне глубин 700-1500 м, видимо, являлось причиной наблюдаемых максимумов численности и видового разнообразия.

По мере увеличения глубины нижней границы горизонта лова увеличивалось и среднее число видов, находящихся в одной пробе (с примерно 9 на горизонте 250–0 м до 27 – на 1500–0 м и только ~20 – на 2500–0 м), что несколько ниже ожидаемого (рис. 5). Данное несоответствие может быть обусловлено как случайной погрешностью, вы-

Рис. 5. Средняя численность (□) и число видов (-•-) на разных горизонтах лова в тропической части Срединно-Атлантического хребта в феврале-марте 2018 г.; (I) – стандартное отклонение.

званной неравномерным распределением ихтиофауны в толще воды, так и неучтёнными особенностями методики сбора материала на больших глубинах. Изменение индекса Маргалефа также хорошо иллюстрирует увеличение видового богатства с глубиной до отметки 1500 м. При этом выравненность уменьшается за счёт заметного доминирования в пробах нескольких массовых видов рода Cyclothone (Gonostomatidae), начиная с горизонта 700-0 м (рис. 6). Отсутствие ночного максимума численности глубоководных рыб на горизонте 250–0 м над тропической частью САХ в тёмное время суток, на наш взгляд, в значительной мере можно объяснить структурой видового состава обитающих здесь мезопелагических рыб и светящихся анчоусов (Myctophidae) как наиболее многочисленной группы пелагических рыб. В других районах Северной и тропической Атлантики некоторые массовые виды светящихся анчоусов составляют основу пелагических сообществ, совершающих суточные вертикальные миграции; перемещаясь ночью в приповерхностные воды, они обеспечивают здесь наблюдаемые максимумы численности и биомассы мезопелагических рыб (Craddock et al., 2002). Все исследованные нами полигоны были приурочены к периферическим олиготрофным водам Северного центрального круговорота Атлантики, где набор вертикально мигрирующих пелагических видов глубоководных рыб был сильно ограничен, и ни один из них не достигал значительных концентраций. Основная масса рыб на этих полигонах ночью была сосредоточена на горизонтах нижней мезо- и верхней батипелагиали в пределах 700—1500 м, приближенных к вершинам подводных поднятий или склонам риф-товой долины САХ.

Анализ зоогеографической принадлежности видов, относящихся к наиболее представительному в наших сборах по таксономическому разнообразию семейству Myctophidae, в рамках уже имеющихся типологий их ареалов (Hulley, 1981; Беккер, 1983) позволил сделать следующие заключения. На наиболее мелководном горизонте 250-0 м подавляюшее большинство (80%) составляли тепловодные виды светящихся анчоусов с широкотропическим, атлантическим широкотропическим и экваториально-тропическим типами ареала (табл. 7). Также на горизонте был отмечен один вид (Diaphus garmani), обычно встречающийся в надсклоновых водах Западной Атлантики и два вида с бицентральным (Hygophum reinhardtii) и атлантическим бицентральным (Lampanyctus cuprarius) типом ареалов. На горизонтах 700-0, 1500-0 и 2500-0 м доля тепловодных видов, относящихся к отмеченным выше трём типам ареалов, также оставалась преобладающей, хотя и сократилась соответственно до 68, 69 и 56%.

При этом на горизонте 700–0 м были отмечены ранее отсутствующие виды (14%) с центральнопериферическим типом ареала (*Diaphus perspicillatus*, *Hygophum hygomi* и *Lampanyctus alatus*), а также вид, присущий исключительно центральным водам Западной Атлантики (*Diaphus termophilus*). На горизонтах 1500–0 и 2500–0 м впервые появляются более холодолюбивые виды с субтро-

Рис. 6. Изменения среднего индекса видового богатства Маргалефа (—) и выравненности по Пиелоу (---) в зависимости от горизонта лова глубоководных рыб в тропической части Срединно-Атлантического хребта в феврале—марте 2018 г.; ост. обозначения см. на рис. 5.

пическими типами apeanoв (Diaphus effulgens, Taaningichthys minimus и T. paurolychnus) и придоннопелагические виды, присущие континентальному склону и подводным поднятиям (Diaphus taaningi). Таким образом, анализ типологии ареалов светящихся анчоусов, пойманных над тропической частью САХ, позволяет отметить присутствие в этом районе ряда элементов западноатлантической ихтифауны при полном отсутствии таковых из Восточной Атлантики. С увеличением нижней отметки горизонта лова относительно уменьшается число теплолюбивых видов с тропическими и экваториальными типами ареалов, при этом увеличивается число видов миктофид с бицентральными и центрально-периферическими типами ареалов, появляются более холодноводные субтропические и придонно-пелагические виды.

выводы

1. На трёх полигонах над тропической частью САХ отмечено 127 видов молоди и взрослых пелагических рыб, относящихся к 29 семействам, а также 81 вид личинок из 32 семейств. Видовой состав личинок рыб заметно отличается от такового молоди и взрослых.

2. Статистический анализ численности и биоразнообразия глубоководной пелагической ихтиофауны над тропической частью САХ не показал достоверных различий между тремя изученными полигонами ни на одном из рассматриваемых горизонтов лова.

3. В тёмное время суток в водах над тропической частью САХ с увеличением глубины лова от поверхности вплоть до горизонта 1500 м постепенно увеличивается как видовое разнообразие, так и средняя численность рыб в улове (с 25.9 до 531.6 экз/100 м²), а максимумы численности приближены к вершинам и склонам подводных поднятий САХ и располагаются в диапазоне глубин 700—1500 м. Отсутствие ночного максимума численности глубоководных рыб на горизонте 250—0 м над тропической частью САХ обусловлено приуроченностью исследованных полигонов к периферическим олиготрофным водам Северного центрального круговорота Атлантики, где набор вертикально мигрирующих пелагических видов рыб сильно ограничен и ни один из них не достигает значительных концентраций.

4. С увеличением нижней отметки глубины лова относительно уменьшается число теплолюбивых видов миктофид с тропическими и экваториальными типами ареалов, увеличивается число видов с бицентральными и центрально-периферическими типами ареалов и появляются более холодноводные субтропические и придонно-пелагические виды.

БЛАГОДАРНОСТИ

Авторы выражают искреннюю благодарность А.М. Прокофьеву (ИО РАН) за обработку коллекции и видовые определения стомиевых рыб и глубоководных удильщиков.

ФИНАНСИРОВАНИЕ РАБОТЫ

Работа выполнена по теме государственного задания № 0149-2019-0009, обработка собранных материалов осуществлена при частичной финансовой поддержке Российского научного фонда (грант № 19-14-

308

D	T	Горизонт лова, м						
Вид	тип ареала	250-0	700-0	1500-0	2500-0			
Benthosema suborbitale	ШТ	+	+	+	+			
Bolinichthys photothorax	ШТ	+	+	+/_	+			
B. supralateralis	ЭТ	_	+	+/_	+/_			
Centrobranchus nigroocellatus	ТБЦ	_	_	+/	_			
Ceratoscopelus warmingii	ШТ	+/_	+	+	+			
Diaphus brachycephalus	ШТ	+	+/-	+	_			
D. effulgens	CT	_	_	_	+/_			
D. holti	АЦП	_	_	_	+/_			
D. garmani	ЗТД	+/_	_	_	+			
D. lucidus	ЭТ	_	_	_	+/_			
D. mollis	ШТ	+	_	+	+/_			
D. perspicillatus	ЦП	_	+/-	_	_			
D. problematicus	ЭТ	_	_	+	_			
D. splendidus	ШТ	+	+	+	+			
D. termophilus	3Ц	_	+	_	_			
D. taaningi	БП	_	_	+/_	_			
Diogenichthys atlanticus	ЦП	_	_	+	+_			
Hygophum hygomi	ЦП	_	+/_	_	+			
H. macrochir	АШТ	_	+/	+/_	_			
H. reinhardtii	БЦ	+/_	_		_			
H. taaningi	АШТ	+	+	+	+			
Lampadena urophaos atlantica	ШТДН	_	+/_	+	+/_			
Lampanyctus alatus	ЦП	_	+	_	+			
L. cuprarius	АБЦ	+	+	+	+			
L. lineatus	ЦП	_	+/_	+/_	_			
L. nobilis	ШТ	+	+	+	+			
L. photonotus	АШТ	_	_	+	_			
L. pussilus	ПБЦ	_	_	_	+/_			
L. tenuiformis	ЭТ	+/_	_	_	_			
Lepidophanes guentheri	ШТ	+	+	+	+			
Lobianchia gemellari	ШТ	_	_	_	+			
Loweina rara	ЦП	_	_	_	+/_			
Myctophum asperum	ЭТ	_	_	+/_	_			
M. nitidulum	ШТ	_	+/-	+/	_			
M. obtusirostre	ЭТ	_	+/	+/_	+/_			
M. selenops	ЦП	_	_	_	+/_			
Notolychnus valdiviae	ШТ	+	+	+	+			
Notoscopelus resplendens	ШТ	—	+	—	+			
Symbolophorus rufinus	ШТ	+/	+	+	_			
Taaningichthys minimus	СТ	_	_	+/_	_			
T. paurolychnus	CT	—	—	+	_			

Таблица 7. Распределение видов семейства Myctophidae с разными типами ареалов по горизонтам ловов над тропической частью Срединно-Атлантического хребта в феврале—марте 2018 г.

Примечание. Типы ареалов: ШТ – широкотропический, ЦП – центрально-периферический, ЭТ – экваториально-тропический, ТБЦ – тропический бицентральный, АБЦ – атлантический бицентральный, БЦ – бицентральный, ПБЦ – периферический бицентральный, АШТ – атлантический широкотропический, ЗЦ – западно-центральный, ЗТД – западный тропический дальненеретический, СТ – субтропический, БП – батиально-пелагический; "+" – вид отмечен, "+/–" – вид отмечен в малых количествах, "–" – вид отсутствует.

00026). Написание настоящей статьи поддержано Российским фондом фундаментальных исследований (грант № 19-14-50513 "Экспансия").

СПИСОК ЛИТЕРАТУРЫ

Беккер В.Э. 1983. Миктофовые рыбы Мирового океана. М.: Наука, 247 с.

Белянина Т.Н. 1984. Замечания об ихтиопланктоне открытых вод Атлантического океана в районе подводной горы Грейт-Метеор // Вопр. ихтиологии. Т. 24. Вып. 4. С. 672–764.

Большакова Я.Ю., Евсеенко С.А. 2016а. О видовом составе ихтиопланктона из вод Срединно-Атлантического хребта (южная Атлантика) // Там же. Т. 56. № 4. С. 427–438. .

https://doi.org/10.7868/S0042875216040032

Большакова Я.Ю., Евсеенко С.А. 2016б. О видовом составе ихтиопланктона Китового хребта (южная Атлантика) // Там же. Т. 56. № 6. С. 685–697. https://doi.org/10.7868/S0042875216060035

Большакова Я.Ю., Евсеенко С.А. 2019а. Ихтиопланктон южных вод северной Атлантики. 1. Морфология малоизученных личинок прибрежных видов // Там же. Т. 59. №. 5. С. 556–563.

https://doi.org/10.1134/S0042875219050011

Большакова Я.Ю., Евсеенко С.А. 2019б. Ихтиопланктон южных районов северной Атлантики. 2. Видовой состав и особенности распределения // Там же. Т. 59. № 6. С. 657–671.

https://doi.org/10.1134/S0042875219060018

Галкин С.В., Молодцова Т.Н., Минин К.В., Кобылянский С.Г. 2019. Экологические исследования Российского разведочного района Срединно-Атлантического хребта в 39-м рейсе научно-исследовательского судна "Профессор Логачев" // Океанология. Т. 59. № 4. С. 684–686.

https://doi.org/10.31857/S0030-1574594684-686

Гордина А.Д. 1991. Ихтиопланктон океанических поднятий Атлантического и Индийского океанов. Киев: Наук. думка, 113 с.

Гущин А.В., Кукуев Е.И. 1981. К составу ихтиофауны северной части Срединно-Атлантического хребта // Рыбы открытого океана. М.: Изд-во ИО АН СССР. С. 36–40.

Кукуев Е.И. 1982. Ихтиофауна Углового подводного поднятия и Новоанглийского подводного хребта в северо-западной части Атлантического океана // Мало-изученные рыбы открытого океана. М.: Изд-во ИО АН СССР. С. 92–109.

Кукуев Е.И. 1991. Ихтиофауна подводных поднятий бореальной и субтропической зон Северной Атлантики // Биологические ресурсы талассобатиальной зоны Мирового океана. М.: Изд-во ВНИРО. С. 15–39.

Кукуев Е.И., Трунов И.А. 2009. Характеристика ихтиофауны подводных поднятий Атлантического океана // Промысловые рыбы подводных гор Атлантического океана. Калининград: Изд-во АтлантНИРО. С. 43–66.

Кукуев Е.И., Карасева Е.М., Фельдман В.Н. 2000. О мезопелагической ихтиофауне бореальной зоны северовосточной Атлантики // Вопр. ихтиологии. Т. 40. № 3. С. 391–396. Черкашёв Г.А., Иванов В.Н., Бельтенёв В.И. и др. 2013. Сульфидные руды северной приэкваториальной части Срединно-Атлантического хребта // Океанология. Т. 53. № 5. С. 680.

https://doi.org/10.7868/S0030157413050031

Angel M.V. 1993. Biodiversity of the Pelagic Ocean // Conserv. Biol. V. 7. № 4. P. 760–772.

https://doi.org/10.1046/j.1523-1739.1993.740760.x

Angel M.V., Pugh P.R. 2000. Quantification of diel vertical migration by micronektonic taxa in the northeast Atlantic // Hydrobiologia. V. 440. P. 161–179. https://doi.org/10.1007/978-94-017-1982-7

Arkhipov A.G., Sirota A.A, Kozlov D.A., Shnar V.N. 2004. Observation on hydrographic structures, ichthyoplankton and fish populations around seamounts of the central-eastern Atlantic // Arch, Fish, Mar, Res. V. 51, P. 201–214.

Beamish R., Leask K., Ivanov O. et al. 1999. The ecology, distribution, and abundance of midwater fishes of the Subarctic Pacific gyres // Prog. Oceanog. V. 43. P. 399–442. https://doi.org/10.1016/s0079-6611(99)00017-8

Bergstad O.A., Godø O.R. 2003. The pilot project "Patterns and processes of the ecosystems of the northern Mid-Atlantic": aims, strategy and status // Oceanol. Acta V. 25. № 5. P. 219–226.

https://doi.org/10.1016/s0399-1784(02)01203-3

Bergstad O.A., Falkenhaug T., Astthorsson O.S. et al. 2008. Towards improved understanding of the diversity and abundance patterns of the mid-ocean ridge macro- and megafauna // Deep Sea Res. Pt. II. Topical Studies in Oceanography. V. 55. P. 1-5.

https://doi.org/10.1016/j.dsr2.2007.10.001

Clarke K.R., Warwick R.M. 2005. Primer-6 computer program // Natural Environment Research Council. Plymouth. (http://refhub.elsevier.com/S0079-6611(16)30145-8/h0110 01/07/2020)

Cook A.B., Sutton T.T., Galbraith J.K., Vecchione M. 2013. Deep-pelagic (0–3000 m) fish assemblage structure over the Mid-Atlantic Ridge in the area of the Charlie-Gibbs Fracture Zone // Deep Sea Res. Pt. II. Topical Studies in Oceanography. V. 98. P. 279–291. https://doi.org/10.1016/j.dsr2.2012.09.003

Craddock J.E., Hartel K.E., Flescher D. 2002. Lanternfishes: order Myctophiformes // Fishes of the Gulf of Maine / Eds. Collette B.B., Klein-MacPhee G. Washington: Smithsonian Inst. Press. P. 198–204.

Davison P.C., Checkley D.M., Koslow J.A., Barlow J. 2013. Carbon export mediated by mesopelagic fishes in the northeast Pacific Ocean // Prog. Oceanogr. V. 116. P. 14–30. https://doi.org/10.1016/j.pocean.2013.05.013

Fricke R., Eschmeyer W.N., Van der Laan R. (eds.). 2020. Eschmeyer's catalog of fishes: genera, species, references. (http://researcharchive.calacademy.org/ research/ichthyology/catalog/ fishcatmain.asp. Version 07/2020)

Fock H., John H.-C. 2006. Fish larval patterns across the Reykjanes Ridge // Mar. Biol. Res. V. 2. P. 191–199. https://doi.org/10.1080/17451000600784159

Fock H. O., Pusch C., Ehrich S. 2004. Structure of deep-sea pelagic fish assemblages in relation to the Mid-Atlantic Ridge $(45^{\circ}-50^{\circ}N)$ // Deep Sea Res. Pt. I: Oceanographic Research Papers. V. 51. P. 953–978. https://doi.org/10.1016/j.dsr.2004.03.004

ВОПРОСЫ ИХТИОЛОГИИ том 61 № 3 2021

Gianni M. 2004. High seas bottom trawl fisheries and their impacts on the biodiversity of vulnerable deep-sea ecosystems: options for international action. Gland, Switzerland: IUCN, 90 p.

Gjøsaeter J., Kawaguchi K. 1980. A review of the world resources of mesopelagic fish // FAO Fish. Tech. Pap. \mathbb{N} 193. 151 p.

Grassle J.F., Maciolek N.J. 1992. Deep-sea species richness: regional and local diversity estimates from quantitative bottom samples // Amer. Naturalist. V. 139. № 2. P. 313–341.

Günther A. 1878a. Preliminary notices of deep-sea fishes collected during the voyage of H.M.S. "Challenger" // Ann. Mag. Natur. Hist. Ser. 5. V. 2. № 8. P. 179–187.

Günther A. 1878b. Preliminary notices of deep-sea fishes collected during the voyage of H.M.S. "Challenger" // Ibid. V. 2. \mathbb{N}_{9} 9. P. 248–251.

Günther A. 1887. Report on the deep-sea fishes collected by H.M.S. Challenger during the years 1873–76 // Rept. Sci. Res. Voyage H.M.S. Challenger. V. 22. Pt. 57. P. 1–268.

Hanel R., John H.-C., Meyer-Klaeden O., Piatkowski U. 2010. Larval fish abundance, composition and distribution at Senghor Seamount (Cape Verde Islands) // J. Plankton Res. V. 32. № 11. P. 1541–1556.

https://doi.org/10.1093/plankt/fbq076

Heino M., Porteiro F.M., Sutton T.T., et al. 2011. Catchability of pelagic trawls for sampling deep-living nekton in the mid-North Atlantic // ICES J. Mar. Sci. V. 68. \mathbb{N}_{2} 2. P. 377–389.

https://doi.org/10.1093/icesjms/fsq089

Herring P.J. 2002. The Biology of the deep ocean. Oxford: Oxford Univ. Press, 314 p.

Hulley P.A. 1981. Results of the research cruises of FRV "Walther Herwig" to South America LVIII. Family Myctophidae (Osteichthyes, Myctophiformes) // Arch. Fischereiwiss. V. 31. № 1. 300 p.

Irigoien X., Klevjer T.A., Røstad A. et al. 2014. Large mesopelagic fishes biomass and trophic efficiency in the open ocean // Nat. Commun. V. 5. P. 1–10.

https://doi.org/10.1038/ncomms4271

Jobstvogt N., Hanley N., Hynes S. et al. 2013. Investigating public preferences for the protection of deep-sea ecosystems: a choice experiment approach // Nat. Univ. Ireland. Galway. Socio-Econ. Mar. Res. Unit. Work. Pap. 160057. 40 p.

https://doi.org/10.22004/ag.econ.160057

John M.A.S., Borja A., Chust G. et al. 2016. A dark hole in our understanding of marine ecosystems and their services: perspectives from the mesopelagic community // Front. Mar. Sci. V. 3. P. 1–6.

https://doi.org/10.3389/fmars.2016.00031

Kaartvedt S., Staby A., Aksnes D.L. 2012. Efficient trawl avoidance by mesopelagic fishes causes large underestimation of their biomass // Mar. Ecol. Prog. Ser. V. 456. P. 1–6. https://doi.org/10.3354/meps09785

Kobyliansky S.G., Orlov A.M., Gordeeva N.V. 2010. Composition of deepsea pelagic ichthyocenes of the Southern Atlantic, from waters of the range of the Mid-Atlantic and Walvis Ridges // J. Ichthyol. V. 50. No 10. P. 932–949. https://doi.org/10.1134/S0032045210100036

https://doi.org/10.1134/S0032945210100036

Kruskal J.B., Wish M. 1978. Multidimensional scaling (Quantitative Application in the Social Sciences). Beverly Hills: Sage Univ. Press, 96 p.

ВОПРОСЫ ИХТИОЛОГИИ том 61 № 3 2021

Lambshead J. 1993. Recent developments in marine benthic biodiversity research // Oceanis. V. 19. P. 5–24.

Longhurst A.R., Bedo A.W., Harrison W.G. et al. 1990. Vertical flux of respiratory carbon by oceanic diel migrant biota // Deep-Sea Res. Part A. V. 37. P. 685–694.

Macedo-Soares L.C.P., Freire A.S., Muelbert J.H. 2012. Small-scale spatial and temporal variability of larval fish assemblages at an isolated oceanic island // Mar. Ecol. Prog. Ser. V. 444. P. 207–222.

https://doi.org/10.3354/meps09436

Marshall N.B. 1951. Bathypelagic fishes as sound scatterers in the ocean // J. Mar. Res. V. 10. P. 1–17.

Molodtsova T.N., Galkin S.V., Kobyliansky S.G. et al. 2017. First data on benthic and fish communities from the Mid-Atlantic Ridge, 16°40′–17°14′ N // Deep Sea Res. Pt. II. Topical Studies in Oceanography. V. 137. P. 69–77. https://doi.org/10.1016/j.dsr2.2016.10.006

Nellen W. 1973. Untersuchungen zur Verteilung von Fischlarven und Plankton im Gebiet der Grossen Meteorbank // "Meteor" Forschungs-Ergebnisse. № 13. P. 47–69.

Nellen W. 1974. Investigations on the distribution of fish larvae and plankton near and above the Great Meteor Seamount // The early life history of fish / Ed. Blaxter J.H.S. Berlin; Heidelberg: Springer. P. 213–214.

https://doi.org/10.1007/978-3-642-65852-5_17.

Nellen W., Ruseler S. 2004. Composition, horizontal and vertical distribution of ichthyoplankton in the Great Meteor Seamount area in September 1998 // Arch. Fish. Mar. Res. N_{2} 51. P. 132–164.

Olivar M.P., Hulley P.A., Arturo Castellón A. et al. 2017. Mesopelagic fishes across the tropical and equatorial Atlantic: biogeographical and vertical patterns // Prog. Oceanogr. V. 151. P. 116–137.

https://doi.org/10.1016/j.pocean.2016.12.001

Parekh P., Follows M.J., Dutkiewicz S., Ito T. 2006. Physical and biological regulation of the soft tissue carbon pump // Paleoceanography. V. 21. P. 1–11.

https://doi.org/10.1029/2005PA001258

Planetcalc. 2020. Каталог онлайн калькуляторов. (https://planetcalc.ru. Version 07/2020)

Priede I.G. 2017. Deep-sea fishes: biology, diversity, ecology and fisheries. Cambridge: Cambridge Univ. Press, 492 p.

Priede I.G., Bergstad O.A., Miller P.I. et al. 2013. Does presence of a Mid-Ocean Ridge enhance biomass and biodiversity? // PLoS ONE. V. 8. № 5. Article e61550. P. 1–10. https://doi.org/10.1371/journal.pone.0061550

Robison B.H. 2009. Conservation of deep pelagic biodiversity // Conserv. Biol. V. 23. № 4. P. 847–858.

https://doi.org/10.1111/j.1523-1739.2009.01219.x

Roe H.S.J., Badcock J. 1984. The diel migrations and distributions within a mesopelagic community in the North East Atlantic. 5. Vertical migrations and feeding of fish // Prog. Oceanog. V. 13. P. 389–424.

Romesburg H.C. 1990. Cluster analysis for researchers. Malabar, FL: Robert E. Kreiger Publ. Co., 334 p.

Springer A.M., Piatt J.F., Shuntov V.P. et al. 1999. Marine birds and mammals of the Pacific Subarctic Gyres // Prog. Oceanogr. V. 43. P. 443–487.

https://doi.org/10.1016/s0079-6611(99)00014-2

Sutton T.T., Porteiro F.M., Heino M. et al. 2008. Vertical structure, biomass and topographic association of deep-pe-

lagic fishes in relation to a mid-ocean ridge system // Deep Sea Res. Pt. II. Topical Studies in Oceanography. V. 55. P. 161–184.

https://doi.org/10.1016/j.dsr2.2007.09.013

Sutton T.T., Wiebe P.H., Madin L., Bucklin A. 2010. Diversity and community structure of pelagic fishes to 5000 m depth in the Sargasso Sea // Ibid. V. 57. P. 2220–2233. https://doi.org/10.1016/j.dsr2.2010.09.024

Sutton T.T., Letessier T.B., Bardarson B. 2013. Midwater fishes collected in the vicinity of the Sub-Polar Front, Mid-North Atlantic Ocean, during ECOMAR pelagic sampling // Ibid. V. 98. P. 292–300.

https://doi.org/10.1016/j.dsr2.2013.08.001

Thistle D. 2003. The deep-sea floor: an overview // Ecosystems of the deep oceans. V. 28. Ecosystems of the World / Ed. Tyler P.A. N.Y.: Elsevier Sci. P. 5-37.

Van Dover C.L. 2000. The ecology of deep-sea hydrothermal vents. Princeton: Princeton Univ. Press, 424 p. *Vecchione M., Bergstad O.A., Byrkjedal I. et al.* 2010. Biodiversity patterns and processes on the Mid-Atlantic Ridge // Life in the World's Oceans: diversity, distribution, and abundance / Ed. McIntyre A.D. Oxford: Blackwell Publ. Ltd. P. 103–121.

Wenneck T.de L., Falkenhaug T., Bergstad O.A. 2008. Strategies, methods, and technologies adopted on the R.V. G.O. Sars MAR-ECO expedition to the Mid-Atlantic Ridge in 2004 // Deep-Sea Res. Pt. II. Topical Studies in Oceanography. V. 55. P. 6–28.

https://doi.org/10.1016/j.dsr2.2007.09.017

Wikipedia. 2020. Grtat-circle distance (https://en.wikipedia.org/wiki/Great-circle distance. Version 07/2020).

Williams K., Horne J.K., Punt A.E. 2015. Examining influences of environmental, trawl gear, and fish population factors on midwater trawl performance using acoustic methods // Fish. Res. V. 164. P. 94–101.

https://doi.org/10.1016/j.fishres.2014.11.001