УДК 537.523.9

ЭКСПЕРИМЕНТАЛЬНОЕ ИССЛЕДОВАНИЕ КОНВЕРСИИ МЕТАНА В БАРЬЕРНОМ РАЗРЯДЕ ПЛАЗМОХИМИЧЕСКОГО РЕАКТОРА

© 2020 г. В. Е. Маланичев^{1, *}, М. В. Малашин¹, В. Ю. Хомич¹

¹ФГБУН Институт электрофизики и электроэнергетики РАН, Санкт-Петербург, Россия *e-mail: VEMalanichev@ieeras.ru

> Поступила в редакцию 07.06.2020 г. После доработки 27.07.2020 г. Принята к публикации 30.07.2020 г.

Экспериментально исследовалась конверсия метана в барьерном разряде и изучалось влияние напряженности электрического поля и удельного энерговклада на эффективность процесса конверсии. Разработаны и созданы два плазмохимических реактора с разным радиусом кривизны внутреннего электрода. Для реактора с меньшим радиусом электрода конверсия метана составила 10.5%, для реактора с большим – 3.6%, при этом удельный энерговклад в первом случае был меньше. Предложено объяснение этого явления.

Ключевые слова: барьерный разряд, конверсия метана, плазмохимический реактор **DOI**: 10.31857/S0002331020050088

ВВЕДЕНИЕ

Метан широко используют как топливо в быту и промышленности, а также как сырье для химической промышленности, в частности, для получения синтез-газа (CO + H₂), который, в свою очередь, применяется для синтеза высших углеводородов, спиртов, альдегидов и т.п. В настоящее время синтез-газ получают из метана в процессе паровой конверсии или парциального окисления.

Большой интерес представляет технология с использованием парциального окисления метана [1], которая обладает целым рядом преимуществ по сравнению с технологией, использующей процесс паровой конверсии. Во-первых, эта технология основана на экзотермической реакции (не требуется подвод энергии для поддержания процесса) и отсутствует катализатор, подвергающийся отравлению каталитическими ядами и механическому износу. Во-вторых, не используются пары воды, вызывающие коррозию узлов промышленного устройства. Однако при нормальных условиях и теоретически необходимом соотношении исходных продуктов ($CH_4/O_2 = 2$) самоподдерживающаяся химическая реакция невозможна. Для инициации и поддержания химической реакции уменьшают соотношение топлива и окислителя, что понижает выход синтез-газа, но обеспечивает устойчивое парциальное окисление метана в реакционном объеме.

Перспективным направлением развития технологии конверсии метана является использование различных видов газовых разрядов [2–6]. С их помощью возможно увеличить выход синтез-газа в процессе парциального окисления, а также реализовать прямой синтез более сложных углеводородов из метана. Барьерный разряд (БР) является одним из наиболее перспективных для использования в этих процессах, так как

Рис. 1. (а) Схема экспериментальной установки; (б) Поперечное сечение газоразрядной ячейки ПХР1К7; (в) Поперечное сечение газоразрядной ячейки ПХР2К1; 1 – регулятор расхода газа; 2 – ПХР; 3 – хромато-граф; 4 – генератор высоковольтных импульсов; 5 – осциллограф; 6 – измеритель тока; 7 – высоковольтный пробник; 8 – внутренний заземленный электрод; 9 – разрядная область; 10 – диэлектрик; 11 – внешний электрод.

он обладает рядом преимуществ, одно из них — неравновесность создаваемой плазмы, т.е. энергия электронов намного больше энергии ионов и нейтральных частиц, что позволяет большую часть энергии, которая вкладывается в разряд, с помощью электронов направить на инициацию химических реакций. Разряд реализуется в условиях атмосферного давления, таким образом отсутствует необходимость в дорогостоящем вакуумном оборудовании. В случае БР электроды покрыты диэлектриком, который при взаимодействии с плазмой корродирует медленнее, чем металл, благодаря этому увеличивается ресурс газоразрядной ячейки, и уменьшатся количество материала, которое уносится в плазмообразующий газ.

Для более эффективного использования БР для инициации химических реакций в метане необходимо детальное понимание процессов, протекающих в плазме, и их зависимостей от электрофизических параметров. При большом количестве теоретических и практических наработок в области плазмохимических преобразований метана и его радикалов, до сих пор нет полной согласующейся картины химических преобразований, инициируемых барьерным разрядом. Это связано в первую очередь с тем, что существует большое количество комбинаций взаимодействия различных углеводородов, полученных в результате обработки метана плазмой. Таким образом, исследование воздействия барьерного разряда на метан является актуальной задачей.

ЭКСПЕРИМЕНТАЛЬНАЯ УСТАНОВКА

Для проведения исследований был создан экспериментальный стенд, показанный на рис. 1а, для которого были разработаны два плазмохимических реактора (ПХР) с различным радиусом кривизны внутреннего электрода. Метан с расходом 6 л/мин подавался через регулятор расхода газа (1) в ПХР (2). После обработки в ПХР химический состав газа анализировался с помощью хроматографа (3) М3700. К внешнему электроду ПХР через токограничивающий резистор R с помощью генератора на основе твердотельных коммутаторов (4) [7, 8] подавались прямоугольные высоковольтные

Рис. 2. Осциллограммы напряжения и тока разряда (слева – для ПХР1К7, справа – для ПХР2К1).

импульсы амплитудой 15 кВ, длительностью 60 мкс и частотой 4 кГц. Напряжение и ток регистрировались осциллографом (5) с помощью датчика тока (6) и высоковольтного щупа Tektronix P6015A (7) соответственно.

В экспериментах использовались два ПХР с коаксиальной конфигурацией электродов. В первом случае (рис. 16, ПХР1К7) в семь идентичных каналов подавался газ. Диаметр внутреннего заземленного электрода (8) составлял 5 мм. Расстояние между внутренним электродом и диэлектриком (10) 1 мм. Толщина диэлектрической трубки 1.5 мм. Длина внешнего электрода (11) L = 10 мм. Электрическая емкость реактора 9.2 пФ, а одного канала 1.3 пФ. Во втором случае (рис. 1в ПХР2К1) использовался реактор с одним каналом. Диаметр внутреннего заземленного электрода составлял 18 мм. Расстояние от внутреннего электрода до диэлектрика 1.5 мм. Толщина диэлектрика – 2 мм, длина внешнего электрода L = 115 мм. Электрическая емкость 32.4 пФ. В качестве диэлектрика в обоих случаях использовалось кварцевое стекло (значение диэлектрической проницаемости – 4).

ЭКСПЕРИМЕНТАЛЬНЫЕ РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ

В результате проведения экспериментальных исследований были получены временные зависимости тока и напряжения в ПХР1К7 и ПХР2К1. Осциллограммы тока и напряжения представлены на рис. 2. Амплитуда тока разряда для ПХР1К7 составляла 11.9 А. Необходимо отметить, что при расчете электрофизических характеристик было принято, что ток в каждом из 7 каналов одинаковый и его амплитуда 1.7 А. Энергия, вкладываемая в один разрядный импульс, составляла 1 мДж, при этом удельный энерговклад — 112.8 Дж/моль. Средняя потребляемая мощность, вкладываемая в разряд, составляла 28 Вт. В случае ПХР2К1 амплитуда тока разряда 39.6 А, энергия одного разрядного импульса 19.9 мДж, а удельный энерговклад — 19 кДж/моль. Средняя потребляемая мощность 79.2 Вт.

В данной работе с помощью газового хроматографа оценивалась степень конверсии метана в плазмохимических реакторах. В случае, когда использовался ПХР1К7, она составляла 10.5%, а в случае ПХР2К1 – 3.6%. Стоит отметить, что в случае ПХР2К1 энерговклад был больше, чем при использовании ПХР1К7. Повышенная степень кон-

Рис. 3. (а) Разрядный промежуток; 1 - внутренний заземленный электрод; 2 - диэлектрик; (б) Зависимость $EN^{-1}(r)$ для ПХР1К7; (в) Зависимость $EN^{-1}(r)$ для ПХР3К1.

версии объясняется тем, что в ПХР1К7 выше значение приведенной напряженности электрического поля (EN⁻¹). Оценка этого параметра производилась по формуле:

$$EN^{-1}(r) = \frac{C_{gap}U_{gap}}{2\pi\varepsilon_0\varepsilon Lr}\frac{1}{N},$$

где C_{gap} – электрическая емкость разрядного промежутка (для ПХР1К7 – 1.65 пФ, для ПХР2К1 – 41.5 пФ), U_{gap} – напряжение на разрядном промежутке, ε – диэлектрическая проницаемость метана была принята как 1, r – координата вдоль радиального направления (рис. 3a), $N = 2.42 \times 10^{25}$ 1/м³ – концентрация частиц в разрядной области.

На рисунке 3 изображена зависимость приведенной напряженности электрического поля от координаты *r*, для ПХР1К7 (рис. 36) и для ПХР2К1 (рис. 3в). Как видно из рисунка, максимальное значение EN^{-1} для ПХР1К7 – 170.9 Тд, а для ПХР2К1 – 102.0 Тд; средние значения EN^{-1} : ПХР1К7 – 144 Тд, ПХР2К7 – 95 Тд.

Процесс развития барьерного разряда условно можно разделить на следующие четыре этапа [9, 10]: первый этап – таунсендовский разряд, (образование электронных лавин), вследствие которого происходит накопление заряда перед анодом. Длительность этой стадии обратно пропорциональна скорости нарастания напряжения на электродах разрядного промежутка и не превышает 150 нс для медленно нарастающего напряжения (гармонический сигал напряжения с частотой 6.9 кГц и амплитудой 12 кВ – максимальная скорость нарастания напряжения 0.52 кВ/мкс) в атмосферном воздухе. Второй этап начинается в тот момент, когда перед анодом возникает достаточный положительный объемный заряд, и начинает распространяться катодонаправленная ионизирующая волна, вызванная локальным искажением электрического поля. Третий этап - после того, как волна ионизации (ионизационный фронт) достигает катода, формируется устойчивый канал с высокой проводимостью. Он существует до полного заряда емкости диэлектрика. Заключительный четвертый этап – релаксация проводящего канала за счет рекомбинации и уноса носителей заряда из разрядного промежутка. Наибольшее значение приведенной напряженности электрического поля наблюдается на первых двух этапах развития разряда. Чем выше значение этой напряженности, тем более активно происходит инициация и стимулирование химических реакций электронами. Более

подробное рассмотрение и оценка времени протекания различных этапов барьерного разряда представлены в работах [11, 12].

Плазмохимические процессы наиболее активно протекают в течение первых двух этапов, когда напряженность поля максимальная. В случае двух ПХР процесс протекает быстрее в том, в котором напряженность электрического поля больше, в нашем случае это ПХР1К7. В этом реакторе значение поля выше, т.к. радиус кривизны внутреннего электрода больше. Это подтверждается при рассмотрении работ, в которых также исследовали конверсию метана с помощью БР [4–6]. Во всех работах использовалась коаксиальная конфигурация электродов. В статье К. Ли [4] конверсия метана достигала 13%, в статье Кадо [5] – 24%, а в статье Индарто, [6] – 13.8%. При этом в работе Ли максимальный энерговклад (порядка 100 эВ/молекулу). В работе Кадо использовался реактор, у которого был наибольшее значение приведенного электрического поля – 162 Тд.

ЗАКЛЮЧЕНИЕ

Проведен ряд экспериментов, в ходе которых исследовалось воздействие барьерного разряда на метан, рассматривалось влияние напряженности электрического поля и удельного энерговклада на степень конверсии метана. Для исследования было разработано и создано два плазмохимических реактора с разным радиусом кривизны внутреннего электрода. Для реактора с меньшим радиусом электрода конверсия метана составила 10.5%, для реактора с большим — 3.6%, при этом удельный энерговклад в первом случае был меньше. Это обусловлено тем, что при большей напряженности электрического поля электроны достигают больших энергий, тем самым увеличивая вероятность диссоциации при соударении электрона с молекулой метана.

Работа выполнена при финансовой поддержке Министерства науки и высшего образования РФ.

СПИСОК ЛИТЕРАТУРЫ

- 1. *Consuelo A.-G. et al.* Partial Oxidation of Methane to Syngas Over Nickel-Based Catalysts: Influence of Support Type, Addition of Rhodium, and Preparation Method // Frontiers in Chemistry. 2019. V. 7. P. 104.
- 2. *Fincke J.R. et al.* Plasma Thermal Conversion of Methane to Acetylene // Plasma Chemistry and Plasma Processing. 2002. V. 22. № 1. P. 105.
- 3. *Rutberg P.G. et al.* Conversion of methane by CO₂ + H₂O + CH₄ plasma // Applied Energy. 2015. V. 148. P. 159.
- 4. *Li X.-S. et al.* Methane conversion to C2 hydrocarbons and hydrogen in atmospheric non-thermal plasmas generated by different electric discharge techniques // Catalysis Today. 2004. V. 98. № 4. P. 617.
- 5. *Kado S. et al.* Application of non-thermal plasmas to natural gas utilization // Proceeding of 16th ISPC (Application of non-thermal plasmas to natural gas utilization). 2003. P. 1.
- 6. *Indarto A. et al.* Effect of additive gases on methane conversion using gliding arc discharge // Energy. 2006. V. 31. № 14. P. 2986.
- 7. *Маланичев В.Е. и др*. Плазмохимический реактор на основе диэлектрического барьерного разряда // Химия высоких энергий. 2016. Т. 50. № 4. С. 318.
- 8. *Мошкунов С.И., Хомич В.Ю*. Генераторы высоковольтных импульсов на основе составных твердотельных коммутаторов // М. 2018.
- 9. *Brandenburg R. et al.* Axial and radial development of microdischarges of barrier discharges in N₂/O₂ mixtures at atmospheric pressure // J. Physics D: Applied Physics. 2005. V. 38. № 11. P. 1649.
- 10. Brandenburg, R. Dielectric barrier discharges: progress on plasma sources and on the understanding of regimes and single filaments // Plasma Sources Science and Technology. 2017. V. 26. № 5. P. 1.
- 11. *Маланичев. В.Е. и др.* Термическая стимуляция как преобладающий механизм конверсии метана в барьерном разряде // Химическая физика. 2018. Т. 37. № 11. С. 31.
- 12. *Маланичев В.Е. и др.* Конверсия природного газа импульсным барьерным разрядом при атмосферном давлении // Теплофизика высоких температур. 2020. Т. 58. № 1. С. 25.

Experimental Study of Methane Conversion in the Barrier Discharge of a Plasma Chemical Reactor

V. E. Malanichev^a, *, M. V. Malashin^a, and V. Yu. Khomich^a

^aInstitute for Electrophysics and Electric Power RAS, Saint-Petersburg, Russia *e-mail: VEMalanichev@ieeras.ru

The conversion of methane in a barrier discharge was experimentally studied and the effect of electric field strength and specific energy input on the efficiency of the conversion process was studied. Two plasma-chemical reactors with different radius of curvature of the internal electrode were developed and created. For a reactor with a smaller electrode radius, the methane conversion was 10.5%, for a reactor with a larger one -3.6%, while the specific energy input in the first case was less. An explanation of this phenomenon is proposed.

Keywords: barrier discharge, methane conversion, plasma chemical reactor