УДК 536.7;662.7

ОПТИМИЗАЦИОННЫЕ ИССЛЕДОВАНИЯ ПАРОГАЗОВОЙ УСТАНОВКИ С ВНУТРИЦИКЛОВОЙ ГАЗИФИКАЦИЕЙ БУРЫХ УГЛЕЙ НА ОСНОВЕ РАЗЛИЧНЫХ МОДЕЛЕЙ ГАЗОГЕНЕРАТОРА

© 2022 г. А. М. Клер¹, И. Г. Донской^{1, *}, А. Ю. Маринченко¹

¹Федеральное государственное бюджетное учреждение науки Институт систем энергетики им. Л.А. Мелентьева СО РАН, Иркутск, Россия *e-mail: donskoy.chem@mail.ru

> Поступила в редакцию 27.04.2022 г. После доработки 14.06.2022 г. Принята к публикации 16.06.2022 г.

В работе приводятся результаты расчетных исследований перспективной энергетической установки с газификацией углей. Обсуждаются варианты включения физико-химических моделей, описывающих реагирование твердого топлива, в общую схему оптимизации установок. С помощью кинетико-термодинамической модели получены характеристики процесса газификации выбранных углей в широком диапазоне условий. Полученные данные используются для оптимизации узла газификации в составе парогазовой установки.

Ключевые слова: газификация, ПГУ ВЦГ, бурый уголь, оптимизация **DOI:** 10.31857/S0002331022050053

ВВЕДЕНИЕ

ПГУ с внутрицикловой газификацией угля (ВЦГУ) являются перспективными установками, обладающими высокой энергетической, экономической и экологической эффективностью [1]. Их технологические схемы состоят из большого числа разнотипных элементов, объединенных различными материальными и энергетическими потоками. Поэтому выбор параметров ПГУ с ВЦГУ является сложной задачей, качественно решить которую можно лишь с использованием методов математического моделирования и оптимизации. Для решения таких задач в Институте систем энергетики им. Л.А. Мелентьева СО РАН были разработаны методы автоматизации математического моделирования сложных теплоэнергетических установок, оптимизации их схем и параметров, построены математические модели элементов и схем теплоэнергетических установок различных типов, проводились оптимизационные исследования ряда теплоэнергетических установок различного уровня мощности [2].

Одним из наиболее важных элементов ПГУ с ВЦГУ является газогенератор, в котором происходит образование горючего генераторного газа.

При расчете газогенераторного процесса возникает проблема выбора подходящей математической модели, которая с необходимой точностью учитывала бы влияние важных факторов. Обычно в подобных исследованиях используется традиционная термодинамическая модель конечного равновесия [3, 4]. Такой подход имеет ограниченную применимость, поскольку равновесие достигается только при достаточно высоких температурах и больших временах реагирования. Вместе с тем повышение сложности математической модели газогенератора приводит к ее практической не-

применимости в условиях вычислительной оптимизации теплоэнергетических установок, когда требуется большое число обращений к этой модели. В такой ситуации требуется соблюдение баланса между детальностью модели (возможностью определить ряд важных характеристик процесса газификации) и ее вычислительной сложностью.

В настоящей работе ставится задача на основе оптимизационных исследований провести сравнение двух математических моделей одноступенчатых газогенераторов с газификацией в спутном потоке нагретой паровоздушной среды и определить их влияние на оптимальные технико-экономические показатели и основные параметры ПГУ с ВЦГУ при использовании различных типов углей.

ИСПОЛЬЗОВАНИЕ МОДЕЛИ ГАЗОГЕНЕРАТОРА В СОСТАВЕ ЭНЕРГЕТИЧЕСКОЙ УСТАНОВКИ

Реактор для термохимической конверсии всегда работает в составе энергетической или энерготехнологической установки, а значит его рабочие режимы должны удовлетворять условиям согласованной работы с другими узлами (топливоподготовкой, системой шлакоудаления и очистки газов, котлами-утилизаторами, двигателями, химическими реакторами). Для этого необходимо учитывать график нагрузки, инерционность процесса, зависимость характеристик процесса от расхода топлива, возможности регулирования температуры в реакционной зоне, требования к параметрам рабочих тел и теплоносителей и т.д. Для оптимизации режимов работы энергоустановки требуется многократное обращение к ее математической модели включая модель реактора, поэтому математическая модель реактора должна давать решение за разумное вычислительное время [5]. Особенно важно это при использовании эффективных градиентных методов оптимизации, в которых производные целевой функции и ограничений определяются конечно-разностным способом [6, 7]. Тогда термогидродинамические модели, включающие детальное описание механических, теплофизических и химических процессов в трехмерной области, оказываются совершенно неподходящими для целей оптимизации. Более широко используются эмпирико-балансные модели и равновесные термодинамические модели [3, 8, 9].

Разные математические модели процессов конверсии угля могут отличаться не просто набором коэффициентов, но и классом задач, которые они позволяют сформулировать. Эмпирико-балансные модели сводятся к решению алгебраических уравнений; равновесные термодинамические модели сводятся к задачам нелинейного программирования; кинетические модели дают системы обыкновенных дифференциальных уравнений; модели процессов переноса это, как правило, уравнения в частных производных; моделирование энергетических установок требует решения задач оптимизации структуры и состояния графа с разнородными вершинами. Аналитическое исследование этих задач применительно к реальным условиям практически невозможно. Поэтому во всех случаях требуются разные численные методы, а стыковка моделей на разных уровнях рассмотрения не всегда может быть произведена полноценно.

При исследовании условий оптимальности и возможностей управления реакторами для термохимической конверсии твердых топлив часто используются методы, разработанные для процессов химической технологии. В работах [10, 11] обосновывается концепция многомасштабного моделирования химико-технологических и теплотехнических процессов на основе моделей пониженной размерности (Reduced Order Models, ROM). Редукция моделей должна проводиться при соблюдении условия о сохранении "области надежности" (trust region), т.е. области параметров, в пределах которой упрощенная модель сохраняет свои аппроксимирующие свойства. Редукция может проводиться разными путями, как исходя из физического анализа задачи (пренебрежение явлениями/эффектами из соображений симметрии, анализа размерностей и масштабов), так и с помощью подходящих методов регрессии результатов детального моделирования (полиномиальная аппроксимация, факторный анализ, principal component analysis, look up-table approach и т.д.). Если неполная аппроксимация оказывается намного эффективнее в вычислительном плане, возможно применение специальных фильтров или вариаций метода штрафных функций [12]. Таким образом, можно поставить задачу о выборе оптимально упрощенной модели процесса на основе его детальной математической модели при ограничениях на погрешность аппроксимации и мощность вычислительных ресурсов. Критерием оптимизации может быть, например, число обращений к детальной модели или общее время оптимизации для модельных задач.

Разработка упрощенных моделей для этих процессов сводится к использованию регрессионных методов [13–15] или представлению реактора в виде связанного набора реакторов идеального перемешивания/идеального вытеснения [16, 17]. Для упрощения субмоделей термохимических превращений часто применяют равновесные термодинамические модели и их сочетания с моделями гетерогенной химической кинетики [18, 19]. Полученные упрощенные модели нуждаются в тщательной верификации и валидации (путем сравнения с результатами расчетов на детальных моделях и с экспериментальными данными). Верифицированная модель пониженной размерности, позволяющая надежно оценивать характеристики процесса при многократном сокращении вычислительного времени, может быть использована для полноценной оптимизации энергетических установок. Подобные подходы и модели используются при решении задач оптимизации режимов сжигания и газификации твердого топлива в составе ТЭС. В настоящей работе используется табуляция и интерполяция режимов.

ТЕРМОДИНАМИЧЕСКАЯ МОДЕЛЬ ГАЗОГЕНЕРАТОРА

При газификации твердого топлива протекает огромное число химических реакций, однако при высоких температурах и достаточно больших временах пребывания можно считать, что реакционная система достигает состояния химического равновесия. Тогда состав продуктов определяется экстремумом функции состояния. Обычно для практических расчетов достаточно хорошим приближением является идеальность газовой и конденсированных фаз. Тогда задача расчета химического состояния газовой фазы выглядит следующим образом [20]:

Найти $\mathbf{n}^{eq} = \arg \min G(\mathbf{n}, T)$, при условиях:

$$G(\mathbf{n},T) = \sum_{j=1}^{N_g} n_j^g \left(\mu_j^g(T) + RT \ln \frac{n_j^g}{\sigma^g} \right) + \sum_{k=1}^{N_c} n_j^c \mu_j^c(T),$$
$$\mathbf{A} \left(\mathbf{n} - \mathbf{n}^{in} \right) = 0,$$
$$\mathbf{n} \ge 0.$$

Здесь G – свободная энергия Гиббса системы, Дж K^{-1} ; **n** – вектор состава системы, моль (\mathbf{n}^{in} – вектор начального состава, \mathbf{n}^{eq} – равновесный состав), индексы g и c относятся к газовой фазе и конденсированным фазам соответственно; μ_j – химический потенциал j-го компонента, Дж моль⁻¹ K^{-1} ; R – универсальная газовая постоянная; σ^g – общее количество молей газовой фазы, моль; T – температура, K; **A** – матрица материального баланса (матрица элементного состава компонентов). Термохимические данные веществ взяты из таблиц [21]. Энтальпия твердых топлив определяется через теплотворную способность и энтальпии продуктов сгорания. Поскольку нас интересует, в первую очередь, режимы газификации, то исходное топливо отсутствует в состоянии равновесия, недожог моделируется чистым углеродом. В связи с этим решение нечувствительно к химическому потенциалу исходного топлива: его значения мо-

гут быть приняты с большой степенью произвола. Решение задачи равновесия в принятых приближениях существует и единственно, что следует из выпуклости энтропии для таких систем [22, 23].

Индикаторами эффективности режимов являются адиабатическая температура процесса, выход твердого остатка и химический КПД газификации, равный отношению теплот сгорания генераторного газа и топлива, из которого он был получен:

$$\eta = \frac{q_{\rm CO} n_{\rm CO} + q_{\rm H_2} n_{\rm H_2} + q_{\rm CH_4} n_{\rm CH_4}}{Q_f} \times 100\%.$$

Здесь Q_f — удельная теплотворная способность топлива; q_j — теплотворная способность *j*-го газообразного продукта; n_j — равновесный выход *j*-го газообразного продукта в расчете на 1 кг исходного топлива. Теплотворная способность газа рассчитывается по основным горючим компонентам: СО, H₂ и CH₄. Равновесный химический КПД газификации определяется стехиометрическими и температурными факторами [24]. В настоящей работе исследуется только влияние состава топлива и отношения топливо/окислитель.

Для равновесных расчетов не требуются сведения о геометрии аппарата, размерах частиц и временах их пребывания в реакционной зоне, поскольку равновесное состояние не зависит от пути его достижения. С этим же связаны и недостатки термодинамической модели, в первую очередь — переоценка степени конверсии топлива. Для учета кинетических ограничений на достижимость равновесного состояния мы используем гибридную модель, которая в явном виде учитывает скорости гетерогенных реакций топлива.

ГИБРИДНАЯ МОДЕЛЬ ГАЗОГЕНЕРАТОРА

В настоящей работе используется вычислительный инструмент, оценивающий эффективность режимов работы газогенератора (подробно описанный в работах [25, 26]). За счет ряда упрощений модели такие расчеты можно проводить в широком диапазоне условий за разумное вычислительное время, при этом сохранять важные детали (зависимость степени конверсии топлива от состава атмосферы, времени пребывания и среднего размера частиц). Уравнение теплового баланса частиц топлива в переменном тепловом поле записывается следующим образом:

$$Uc_{p}\frac{d\left(m_{p}T_{p}\right)}{dz}=\alpha S_{p}\left(T_{g}-T_{p}\right)+\varepsilon\sigma S_{p}\left(T_{w}^{4}-T_{p}^{4}\right)+\sum_{j}Q_{j}r_{j}.$$

Здесь *z* – пространственная координата (длина реакционной зоны), м; *U* – скорость движения частицы, м/с; m_p – масса частицы, кг; T_p – температура частицы, К; c_p – теплоемкость частицы, Дж/кг/К; α – коэффициент теплоотдачи, Вт/м²/К; S_p – внешняя поверхность частицы, м²; ε – степень черноты частицы; σ – постоянная Стефана-Больцмана, Вт/м²/К⁴; T_g – температура газа, К; T_w – температура стенки, К; r_j – скорость физико-химического процесса, связанного с частицей, кг/с (сушка, пиролиз, реакции с газами); Q_i – тепловой эффект, Дж/кг.

Скорость сушки *r*_{dr} рассчитывается по-разному в зависимости от температурных условий:

$$r_{dr} = \begin{cases} \frac{\beta S_{p} M_{\rm H_{2O}}}{R_{g} T} \left(P_{\rm H_{2O}}^{eq} - P_{\rm H_{2O}} \right), \ T_{p} \leq T_{b} \\ \frac{\alpha S_{p} \left(T_{g} - T_{p} \right) + \varepsilon \sigma S_{p} \left(T_{w}^{4} - T_{p}^{4} \right)}{|Q_{dr}|}, \ T_{p} > T_{b}. \end{cases}$$

Здесь T_b – температура кипения воды при данных условиях, К; β – коэффициент массоотдачи, м/с; $P_{\rm H_2O}$ – парциальное давление паров воды, Па; R_g – газовая постоянная, Дж/моль/К.

Скорость пиролиза *r*_{pvr} зависит от температуры по аррениусовскому закону:

$$r_{pyr} = k_{pyr} \exp\left(-\frac{E_{pyr}}{R_g T_p}\right) m_V.$$

Здесь k_{pyr} — предэкспоненциальный множитель, 1/с; E_{pyr} — энергия активации, Дж/моль; m_V — масса летучих веществ в частице, кг.

Гетерогенные реакции протекают согласно уравнениями диффузионной кинетики:

$$r_g = \frac{S_p C_g}{\frac{1}{\frac{1}{k_g e^{-\frac{E_g}{R_g T}}} + \frac{d_p}{N u_D D_g}}}.$$

Здесь C_g – концентрация газообразного окислителя (O₂, CO₂, H₂O); k_g – предэкспоненциальный множитель гетерогенной реакции, м/с; E_g – энергия активации, Дж/моль; Nu_D – диффузионное число Нуссельта; D_g – коэффициент диффузии газообразного окислителя, м²/с; d_p – средний размер частицы, м. Тепловые эффекты Q_j оцениваются из термохимических данных [21]. Коэффициенты диффузии Dg рассчитываются из данных [27]: для O_2 и H_2O — как бинарные коэффициенты диффузии в смеси с CO₂ или N₂. Скорость движения частиц считается равной скорости движения газа, которая определяется из уравнения неразрывности. Состав газа в каждом сечении считается равновесным при фиксированной степени превращения топлива (т.е. для газовой фазы решается равновесная задача, как в предыдущем разделе). Для поиска стационарного решения используется итерационная схема: скорость конверсии топлива рассчитывается с помощью системы обыкновенных дифференциальных уравнений для изменения массы частиц при заданном распределении температур; с помощью термодинамической модели вычисляется тепловыделение и состав газовой фазы в каждом расчетном элементе; затем решается стационарная задача переноса теплоты с учетом источников теплоты. Итерации завершаются, когда распределение температур перестает ощутимо изменяться.

Расчеты проводятся для цилиндрической реакционной зоны диаметром 3 м и длиной 9 м, рабочее давление около 15 атм. Расход топлива составляет около 50 кг/с, средний размер частиц 0.1 мм. Газифицирующим агентом является смесь воздуха и водяного пара (температура 655 К). Варьируемыми параметрами являются удельный расход воздуха (1–6 кг/кг топлива), удельный расход пара (0–0.1 кг/кг топлива), а также расход топлива (от 80 до 120% от номинальной нагрузки). Характеристиками процесса газификации являются температура и состав выходящего газа, доля механического недожога и химический КПД. Расчетные данные преобразовывались в таблицы, которые затем использовались при оптимизации парогазовой установки. Прямые расчеты показали, что интерполяция достаточно хорошо (в пределах 1.5%) определять характеристики процесса газификации в промежуточных режимах.

ТЕПЛОВАЯ СХЕМА И МАТЕМАТИЧЕСКАЯ МОДЕЛЬ ПАРОГАЗОВОЙ УСТАНОВКИ С ВНУТРИЦИКЛОВОЙ ГАЗИФИКАЦИЕЙ УГЛЯ

Рассматриваемая установка (рис. 1) состоит из трех блоков: газификации, газотурбинного и паротурбинного. Основными элементами блока газификации являются: подсистема подготовки топлива, собственно газогенератор, состоящий из реакцион-

Рис. 1. Расчетная схема ПГУ с газификацией угля: 1 – газогенератор, 2 – дожимной компрессор, 3 – топка газогенератора, 4–8 – котел-утилизатор на продуктах газификации, 9 – камера сгорания газовой турбины, 10 – воздушный компрессор, 11 – газовая турбина, 12–19 – котел-утилизатор на продуктах сгорания, 20–22 – отсеки паровой турбины, 23 – конденсатор, 24 – циркуляционный насос системы технического водоснабжения, 25 – конденсатный насос, 26–28 – золо- и сероочистка.

ной камеры, в которой происходит процесс газификации угля и конвективной шахты, в которой продукты газификации охлаждаются, отдавая свое тепло воде или пару. Газотурбинный блок включает: воздушный компрессор, камеру сгорания и газовую турбину, находящуюся на одном валу с компрессором. Паротурбинный блок включает в качестве основных элементов: котел-утилизатор, в который поступают выхлопные газы газовой турбины (в котле-утилизаторе располагаются пароперегревательные, испарительные и экономайзерные поверхности нагрева), паровую турбину и конденсатор.

Для построения математических моделей ПГУ с ВЦГУ был использован программно-вычислительный комплекс "Система машинного построения программ СМПП-ПК", позволяющий на основе заданных математических моделей элементов и технологических связей между ними строить модель установки в целом [7]. В данной работе были использованы ранее созданные в ИСЭМ СО РАН математические модели: камер сгорания газовых турбин, основанные на энергетических и материальных балансах; газоводяных и газопаровых радиационных и конвективных теплообменников, в основе которых лежат нормативные методы теплового, аэродинамического и гидравлического расчетов котельных агрегатов, а также элементы их прочностного расчета; паровых, газовых турбин и компрессоров, основанные на их расчетах по отсекам, и др.

Результаты расчетов, проведенных с помощью гибридной модели, хранятся в виде массивов данных, которые используются в модели установки следующим образом. При расчете узла газификации вызывается подпрограмма, которая, используя значения входящих параметров (расхода и температуры дутьевого воздуха), производит интерполяцию по рассчитанным точкам и выдает информацию о выходящих потоках химических компонентов газа, степени использования топлива и температуре продуктов газификации.

С помощью СМПП была разработана математическая модель парогазовой установки с внутрицикловой газификацией угля. Модель включает 784 исходных, 19 итерационно-уточняемых и 981 вычисляемых параметров.

Для оптимизационных исследований использовался разработанный в ИСЭМ СО РАН эффективный метод ступенчатой оптимизации, основанный на том, что точное решение системы уравнений, описывающих ПГУ, достигается в оптимальной точке [26]. При этом все итерационные процессы вынесены с уровня математических моделей на уровень оптимизации. Такой подход позволяет проводить оптимизацию с большой скоростью и точностью, определяя диапазон оптимальных значений параметров установки и ее технико-экономических показателей.

Всего для ПГУ с газификацией угля оптимизировался 57 параметр. При этом учитывалось 137 ограничений-неравенств, формирующих область, в которой работа элементов установки физически и технически допустима.

Капиталовложения в ПГУ с ВЦГУ определялись по методике, представленной в [29]. Все затраты на установку разбиваются на несколько составляющих: зависящие от электрической мощности, зависящие от количества тепла, отводимого от конденсаторов паровых турбин, зависящие от стоимости основного теплоэнергетического оборудования, затраты на строительную часть и зависящие от объема потребляемого топлива. Стоимость газогенератора принималась пропорционально расходу топлива, стоимость турбомашин и насосов — их мощности, а стоимость теплообменников — пропорционально их массе или площади теплопередающей поверхности.

В расчетах приняты следующие исходные стоимостные характеристики элементов оборудования: постоянная составляющая капиталовложений – 8000 тыс. долл., удельная стоимость блока газификации – 4000 тыс. долл./(кг у.т./с), удельная стоимость металла труб теплообменников из перлитной стали – 100 долл./м², из углеродистой стали – 80 долл./м², из аустенитной стали – 120 долл./м², удельная стоимость воздушных компрессоров – 54 долл./кВт, газовой турбины – 72 долл./кВт, паровой турбины – 60 долл./кВт. Число часов использования установленной мощности ПГУ принималось равным 7000.

Температура газов на входе в газовую турбину для всех вариантов принималась одинаковой и равной 1427°С. Расчеты проводились для углей Березовского, Мугунского и Уртуйского месторождений [30]. В расчете использовались две математические модели газогенератора — модель конечного термодинамического равновесия и модель из работ [25, 26]. Соответственно, в зависимости от используемой модели газогенератора решались три вида задач:

Вариант 1. Используется модель конечного термодинамического равновесия с фиксированной долей недожога угля.

Вариант 2. Используется модель конечного термодинамического равновесия с расчетом величины недожога угля с помощью зависимостей, полученных по модели из работ [25, 26].

Вариант 3. Используется модель с учетом неравновесного состава газа на выходе (модель из работ [25, 26]).

Для каждого варианта были проведены оптимизационные расчеты по критерию максимума КПД и минимума цены электроэнергии при заданной внутренней норме возврата капиталовложений (в расчетах принималась равной 0.15) [28, 29]. Причем, задача минимизации цены электроэнергии решалась при двух значениях цены топлива — 100 и 400 долл./т у.т. Максимальная полезная мощность установки во всех расчетах принималась равной 400 МВт.

43

Рис. 2. Результаты расчетов на максимум КПД: (а) КПД, (б) удельные капиталовложения.

РЕЗУЛЬТАТЫ ОПТИМИЗАЦИИ УСТАНОВКИ

Результаты представлены в табл. 2. Основные технико-экономические параметры показаны на рис. 2–4. Как видно из представленных результатов, данные, полученные как при использовании разных моделей газогенератора, так и при использовании разных углей, значительно отличаются.

Оптимизационные расчеты по определению максимума КПД показали (рис. 2), что самые высокие значения КПД получаются в варианте 1 (равновесная модель газогенератора с фиксированной долей недожога угля). В варианте 2 (табл. 1), в котором доля недожога угля определялась по модели с учетом неравновесного состава газа как функция удельного расхода воздуха на газификацию и температуры воздуха на входе, КПД установки на 1.6-2% ниже, чем в варианте 1. На 12-18% возрастает удельный расход воздуха, на 20% возрастает температура газа на выходе. Меняется состав продуктов газификации. Возрастает расход CO₂ на 28-30%, N₂ на 18%, H₂O на 9% и уменьшается расход СО на 15–20%. Полностью уходит метан из состава газа. На 20% уменьшается низшая теплота сгорания продуктов газификации. При этом расход уноса возрастает незначительно. Это связано с тем, что используемые в варианте 2 зависимости более точно отражают связь между температурой продуктов газификации и потерями исходного топлива, связанными с недожогом. С точки зрения решения задачи максимизации КПД это приводит к повышению температуры продуктов газификации и понижению их калорийности, но позволяет избежать значительных потерь топлива с уносом. Таким образом, использование этих зависимостей позволяет уточнить полученные технико-экономические показатели установки даже при использовании модели конечного термодинамического равновесия.

В варианте 3, в котором используется модель газогенератора с учетом неравновесного состава газа на выходе (модель из работ [25, 26]), температура воздуха на 5–10% больше, чем в варианте 1. Удельный расход воздуха сопоставим со значениями варианта 2. Изменился состав продуктов газификации. Так, расход CO₂ вырос на 6–12%, N₂ на 20%, CO на 10% относительно решений, полученных для варианта 1. Значительно вырос расход воды на выходе – на 45–55%, и уменьшился расход H₂ (на 10–15%), возрос расход уноса на 5–5%.

Следует отметить влияние типа используемого угля. Так, в вариантах 1 и 2 самые большие значения КПД получаются для угля Березовского месторождения. Для угля Уртуйского месторождения, у которого более низкая влажность, но более высокая зольность, в этих вариантах КПД ниже на 1.5–2%. Самые низкие значения КПД полу-

Рис. 3. Результаты расчетов на минимум цены электроэнергии при цене топлива 100 долл./т у.т.: (а) цена электроэнергии, (б) удельные капиталовложения, в) КПД.

чились для угля Мугунского месторождения, у которого при относительно низкой влажности самый высокий показатель зольности (в 2 раза выше, чем у Уртуйского, и в 3 раза, чем у Березовского). Решение оптимизационной задачи для варианта 3 показало немного другой результат. Так, самое высокое значение КПД получилось для угля Уртуйского месторождения, а самое низкое – для Мугунского. Возможно это связано с тем, что неравновесная модель более точно описывает процессы частичного окисления горючих компонентов и потери топлива с недожогом. Поэтому более низкая влажность и более высокая калорийность угля Уртуйского месторождения позволяет получить более высокие значения КПД, чем Березовского, даже при более высокой зольности.

Mectopowieuue	(Состав р	абоче	ей массь	а топл	ива, %	6	Низшая теплота
месторождение	W_t^r	A^r	S ^r	C ^r	H^r	N ^r	O^r	сгорания, МДж/кг
Березовское	33	4.7	0.2	44.2	3.1	0.4	14.4	15.66
Мугунское	22	15.6	0.9	46	3.6	0.9	11	17.29
Уртуйское	29.5	8.8	0.3	46.9	3	0.5	11	16.83

Таблица 1. Характеристики рассматриваемых углей

45

Рис. 4. Результаты расчетов на минимум цены электроэнергии при цене топлива 400 долл./т у.т.: (а) цена электроэнергии, (б) удельные капиталовложения, (в) КПД.

Переход от решения задачи максимизации КПД к минимизации цены электроэнергии приводит к снижению капиталовложений и КПД (рис. 3). В то же время для разных вариантов наблюдаются такие же тенденции изменения состава продуктов и параметров газификации, как и при максимизации КПД. Что касается установки в целом, то следует отметить существенное уменьшение давления на входе в газовую турбину (почти в 2 раза) и повышение температуры на выходе из нее (на 100–150°С). Следствием этого является перераспределение выработки электроэнергии между газовой и паротурбинной частями установки. При решении задачи на максимум КПД превышение в выработке электроэнергии на ГТУ составляет 15–30% по сравнению с ПТУ, а при минимизации цены электроэнергии оно не превышает 10%, а для некоторых задач и углей выработка на ПТУ больше чем на ГТУ. Это может быть связано с тем, что для минимизации капиталовложений в установку более выгодным является уменьшить капиталовложения в более дорогую газовую турбину и больше загрузить относительно дешевую паровую.

Увеличение стоимости топлива до 400 долл./т у.т. приводит (рис. 4) к увеличению КПД на 2.5–3.5% для всех рассматриваемых оптимальных решений. Также перераспределение долей ГТУ и ПГУ в выработке станций становится ближе к оптимальному решению полученному при максимизации КПД и для всех решений выше на 10–14% на ГТУ.

Использование более точной модели газогенератора оказывает существенное влияние как на оптимальные параметры установки, так и на ее технико-экономические

•																		Ī
	V roль	Bepe3	OBCKOL	о мест	тжodo	ения	V roль	, Myry	нскогс) Mecto	эttжodo	вина	V roji	S Vpryi	i ckoro	место	рожде	вин
	m	ах КП,	Д	u	ıin C _{el}		μ	ах КП,	Д	u	nin C _{el}		μ	ах КПД	Т	u	iin C _{el}	
	1	2	3	1	2	3	1	2	3	1	2	3	1	2	3	1	2	3
Расход топлива в ГГ, кг/с	44.7	46.1	49	51.7	52.6	57.9	43.3	44.5	48.8	49.7	50.3	56.4	42.8	44.4	46.2	49.4	50.2	52
Температура газа на выходе ГГ, °С	950	1180	958	950	1123	1013	950	1179	1059	950	1113	1066	950	1195	666	950	1129	1020
Удельный расход воздуха на гази- фикацию угля, кг/кг	2.1	2.4	2.4	2.2	2.4	2.5	2.2	2.6	2.7	2.4	2.7	2.7	2.2	2.7	2.7	2.4	2.7	2.7
Расход СО ₂ на выходе, кг/с	26.9	37.4	28.5	32.7	42	34.2	20.9	31.1	24	25.8	34.3	27.8	23.8	35.3	25.2	29.2	38.9	28.6
Расход CH_4 на выходе, кг/с	0.23	0	0.02	0.05	0	0	0.3	0	0	0.05	0	0	0.26	0	0	0.05	0	0
Расход N ₂ на выходе, кг/с	69.7	84.3	88.9	84.9	97.1	110.9	73.1	89.1	99.4	88.7	101.4	115.3	72.7	89.3	93.5	88.3	101.5	107.3
Расход СО на выходе, кг/с	27.9	22.4	29.2	31.7	26.3	34.7	30.5	26.1	32.6	34.4	30.4	37.6	30.1	24.3	33	34	28.4	373
Расход H_2S на выходе, кг/с	0.09	0.1	0.1	0.1	0.1	0.12	0.4	0.4	0.44	0.45	0.46	0.5	0.13	0.14	0.15	0.15	0.16	0.17
Расход H ₂ O на выходе, кг/с	8.6	9.48	15.6	10.7	11.3	19.8	5.7	6.3	13.2	7.2	7.6	15.3	6.7	7.6	13	8.3	6	15.2
Расход H_2 на выходе, кг/с	2.3	2.4	1.87	2.7	2.7	2.1	2.1	2.3	1.6	2.5	2.5	1.9	2.2	2.3	1.8	2.5	2.5	7
Расход уноса на выходе, кг/с	2.7	2.8	4	3.1	3.2	4.5	8.7	11.4	10.2	10	12.3	11.7	4.9	5.1	4.7	5.6	5.7	5.2
Низшая теплота сгорания газа, МДж/м ³	4.5	3.6	3.5	4.2	3.6	3.3	4.7	3.8	3.5	4.4	3.8	3.5	4.6	3.6	3.7	4.3	3.6	3.6
Давление газа перед ГТ, МПа	1.9	1.9	1.3	1	1	1.2	1.9	1.9	1.3	-	-	1.1	1.9	1.9	1.3	1	1	1.2
Температура газа на выходе ГТ, °С	700	672	749	838	804	782	697	699	746	835	802	783	669	672	746	836	803	778
Давление острого пара, кг/см ²	15.2	14.4	14.4	15.2	14.4	14.4	15.2	14.4	14.4	15.2	14.4	14.4	15.2	14.4	14.4	15.2	14.4	14.4
Температура острого пара, °С	500.2	500	445.1	483.4	498.8	435.2	500.1	414.5	471.5	483.7	410.8	439.3	500.1	497.5	475.2	483.1	t96.9	467
Расход острого пара, кг/с	112.6	115.5	112.7	140	129.6	134.4	112.4	121.2	120.7	140.5	138.7	136	112.4	116.4	1.911	140.2	130.7	130.3
Давление пара промперегрева, МПа	2.8	2.7	3.2	б	2.6	3.2	2.8	4.5	ε	ŝ	3.6	2.2	2.8	2.7	2.9	2.9	2.6	2.8
Температура пара промперегрева, °С	532.3	536	536.1	525.5	531.1	536.1	532.4	543.1	536.4	526.5	536.2	510.7	532.5	535.8	536.8	525.6	530.5	533.9
Давление пара контура низкого давления, МПа	0.6	0.6	0.6	0.6	0.6	0.6	0.6	0.6	0.6	0.6	0.6	0.6	0.6	0.6	0.6	0.6	0.6	0.6
Расход пара контура низкого дав- ления, кг/с	111.7	114.5	110.5	139.2	128.6	133.3	111.6	120.4	119.7	139.6	137.8	136.4	111.5	115.5	1117	139.5	129.8	128.1
Полезная мощность ГТУ, МВт	227	222	210	200	211	213	227	227	210	199	212	212	227	221	220	199	210	216
Полезная мощность ПТУ, МВт	176	181	169	203	192	190	176	176	193	204	192	192	176	182	183	205	194	188

Таблица 2. Результаты расчетов (цена топлива – 100 долл./т у.т.)

показатели. Это свидетельствует о целесообразности применения разработанной модели газогенератора для оптимизационных исследований ПГУ с внутрицикловой газификацией угля.

Работа выполнена в рамках проекта государственного задания (№ FWEU-2021-0001) программы фундаментальных исследований РФ на 2021–2030 гг.

СПИСОК ЛИТЕРАТУРЫ

- 1. Филиппов С.П., Кейко А.В. Газификация угля: на перепутье. Технологические факторы // Теплоэнергетика. 2021. № 3. С. 45. https://doi.org/10.1134/S0040363621030048
- 2. *Клер А.М. (ред.)* Эффективные методы схемно-параметрической оптимизации сложных теплоэнергетических установок: разработка и применение. Новосибирск: Академические изд-во "Гео", 2018. 145 с.
- 3. *Olivieri A., Ravelli S.* Cogasification of Coal and Biomass in an Integrated Gasification Combined Cycle Power Plant: Effects on Thermodynamic Performance and Gas Composition // Journal of Energy Engineering. 2020. V. 146. № 6. P. 04020071. https://doi.org/10.1061/(ASCE)EY.1943-7897.0000716
- Wang Y., Wang J., Luo X., Guo S., Lv J., Gao Q. Dynamic modelling and simulation of IGCC process with Texaco gasifier using different coal // System Science & Control Engineering. 2015. V. 3. N
 N
 1. P. 198. https://doi.org/10.1080/21642583.2015.1010046
- 5. Van den Berg J. Model reduction for dynamic real-time optimization of chemical processes. Proefschrift. Netherlands: Technische Universiteit Delft, 2005. 167 p.
- Kler A.M., Zharkov P.V., Epishkin N.O. Parametric optimization of supercritical power plants using gradient methods // Energy. 2019. V. 189. P. 116230. https://doi.org/10.1016/j.energy.2019.116230
- 7. Клер А.М., Деканова Н.П., Щеголева Т.П. и др. Методы оптимизации сложных энергетических установок. Новосибирск: Наука, 1993. 116 с.
- 8. Wang H., Chen Z., Zhang B., Zeng L., Li Z., Zhang X., Fang N. Thermal-calculation method for entrained-flow coal gasifiers // Energy. 2019. V. 166. P. 373. https://doi.org/10.1016/j.energy.2018.10.004
- Lu Y., Li Z., Zhang M., Huang C., Chen Z. The application of thermal-calculation methods in the design and syngas prediction of entrained-flow coal gasifiers // Energy Conversion and Management. 2021. V. 245. P. 114627. https://doi.org/10.1016/j.enconman.2021.114627
- Biegler L. T., Lang Y., Lin W. Multi-scale optimization for process systems engineering // Computers & Chemical Engineering. 2014. V. 60. P. 17. https://doi.org/10.1016/j.compchemeng.2013.07.009
- 11. *Biegler L.T.* New nonlinear programming paradigms for the future of process optimization // AIChEJ. 2017. V. 63. № 3. P. 1178. https://doi.org/10.1002/aic.15674
- 12. *Eason J.P., Biegler L.T.* Reduced model trust region methods for embedding complex simulations in optimization problems // Computer Aided Chemical Engineering. 2015. V. 37. P. 773. https://doi.org/10.1016/B978-0-444-63578-5.50124-9
- Dowling A.W., Eason J.P., Ma J., Miller D.C., Biegler L.T. Coal Oxycombustion Power Plant Optimization Using First Principles and Surrogate Boiler Models // Energy Procedia. 2014. V. 63. P. 352.
 - https://doi.org/10.1016/j.egypro.2014.11.038
- Lang Y., Zitney S.E., Biegler L.T. Optimization of IGCC processes with reduced order CFD models // Computers and Chemical Engineering. 2011. V. 35. P. 1705. https://doi.org/10.1016/j.compchemeng.2011.01.018
- 15. Донской И.Г., Маринченко А.Ю., Клер А.М., Рыжков А.Ф. Оптимизация режимов работы парогазовой мини-ТЭС с атмосферным газогенератором // Теплофизика и аэромеханика. 2015. Т. 22. № 5. С. 663.
- Li C., Dai Z., Sun Z., Wang F. Modeling of an Opposed Multiburner Gasifier with a Reduced-Order Model // Industrial and Engineering Chemistry Research. 2013. V. 52. P. 5825. https://doi.org/10.1021/ie3030505
- Monaghan R.F.D., Ghoniem A.F. A dynamic reduced order model for simulating entrained flow gasifiers. Part I: Model development and description // Fuel. 2012. V. 91. P. 61. https://doi.org/10.1016/j.fuel.2011.07.015
- Мессерле А.В., Мессерле В.Е., Устименко А.Б. Плазменная термохимическая подготовка к сжиганию пылеугольного топлива // Теплофизика высоких температур. 2017. Т. 55. № 3.

C. 366.

https://doi.org/10.7868/S0040364417030140

- Ishi H., Hayashi T., Tada H., Yokohama K., Takashima R., Hayashi J. Critical assessment of oxyfuel integrated coal gasification combined cycles // Applied Energy. 2019. V. 233–234. P. 156. https://doi.org/10.1016/j.apenergy.2018.10.021
- 20. Каганович Б.М., Филипов С.П., Кейко А.В., Шаманский В.А. Термодинамические модели экстремальных промежуточных состояний и их приложения в энергетике // Теплоэнергетика. 2011. № 2. С. 51.
- 21. *Глушко В.П. (ред.)* Термодинамические и теплофизические свойства продуктов сгорания. Т. 1. М.: ВИНИТИ АН СССР, 1971. 263 с.
- 22. Каганович Б.М., Кейко А.В., Шаманский В.А., Ширкалин И.А., Зароднюк М.С. Технология термодинамического моделирования. Редукция моделей движения к моделям покоя. Новосибирск: Наука, 2010. 236 с.
- Rossi C.C.R.S., Berezuk M.E., Cardozo-Filho L., Guirardello R. Simultaneous calculation of chemical and phase equilibria using convexity analysis // Computers & Chemical Engineering. 2011. V. 35. P. 1226.

https://doi.org/10.1016/j.compchemeng.2010.07.019

- 24. Асланян Г.С., Гиневская И.Ю., Шпильрайн Э.Э. Влияние параметров парокислородного дутья на газификацию углерода // Химия твердого топлива. 1984. № 1. С. 90.
- 25. Donskoy I.G., Shamansky V.A., Kozlov A.N., Svishchev D.A. Coal gasification process simulations using combined kinetic-thermodynamic models in one-dimensional approximation // Combustion Theory and Modelling. 2017. V. 21. № 3. P. 529. https://doi.org/10.1080/13647830.2016.1259505
- 26. Donskoy I.G. Numerical study of operating parameters of a single-stage air-steam blown gasification process of pulverized coal // Energy Systems Research. 2019. V. 2. № 3. P. 55. https://doi.org/10.25729/esr.2019.03.0007
- 27. Гирифельдер Дж., Кертисс Ч., Берд Р. Молекулярная теория газов и жидкостей. М.: Издательство иностранной литературы, 1961. 931 с.
- 28. *Клер А.М., Жарков П.В., Епишкин Н.О.* Эффективный подход к оптимизации параметров сложных теплоэнергетических установок // Теплофизика и аэромеханика. 2016. Т. 23. № 2. С. 299.
- 29. Клер А.М., Деканова Н.П., Тюрина Э.А. и др. Теплосиловые системы: оптимизационные исследования. Новосибирск: Наука, 2005. 236 с.
- 30. Вдовенко В.С., Мартынова М.И., Новицкий Н.В., Юшина Г.Д. Энергетическое топливо СССР (ископаемые угля, горючие сланцы, торф, мазут и горючий природный газ). М.: Энергоатомиздат, 1991. 184 с.

Optimization Study of a Combined Cycle Power Plant with Integrated Gasification of Brown Coals Using Different Models of Gasifier

A. M. Kler^a, I. G. Donskoy^a, *, and A. Yu. Marinchenko^a

^aMelentiev Energy Systems Institute, Siberian Branch of Russian Academy of Science, Irkutsk, Russia *e-mail: donskoy.chem@mail.ru

The paper presents the results of computational studies of a promising power plant with coal gasification. Options for including physicochemical models describing the reaction of solid fuels in the general scheme for optimizing energy plants are discussed. Using the kinetic-thermodynamic model, the characteristics of the gasification process of selected coals were obtained in a wide range of conditions. The data obtained are used to optimize the gasification unit as part of the combined cycle plant.

Keywords: gasification, IGCC, brown coal, optimization