УДК 536.24

К РАСЧЕТУ НЕСТАЦИОНАРНОГО ТЕМПЕРАТУРНОГО ПОЛЯ ЦИЛИНДРИЧЕСКОГО ТЕЛА

© 2023 г. Ю. В. Видин^{1,} *, В. С. Злобин¹

¹Федеральное государственное автономное образовательное учреждение высшего образования "Сибирский федеральный университет", Красноярск, Россия

*e-mail: zlobinsfu@mail.ru

Поступила в редакцию 22.05.2022 г. После доработки 24.10.2022 г. Принята к публикации 31.10.2022 г.

Определение температурного режима тел цилиндрической формы в начальный период времени, т.е. при малых значениях числа Фурье, является достаточно трудоемкой задачей. В процессе вычисления требуется учитывать большое число членов ряда для получения результата необходимой точности. При этом требуется вычислять собственные числа характеристического уравнения для каждого слагаемого этого ряда. В статье предложен достаточно простой и эффективный аналитический метод определения собственных чисел с высокой точностью. Метод основан на использовании специальной функции, обратной отношению функций Бесселя первого рода нулевого и первого порядка. В этом случае процедура определения собственных чисел сводится к несложному быстросходящемуся итерационному процессу. Использование данной процедуры позволяет определять любое собственное число характеристического уравнения с высокой точностью, необходимой для инженерного расчета. Применение данного метода в инженерной практике существенно упрощает процесс определения температурного режима тел цилиндрической формы, а также может быть распространен на другие задачи.

Ключевые слова: температурное поле, характеристическое уравнение, собственные числа, функции Бесселя, обратные специальные функции, аналитическое решение

DOI: 10.31857/S0002331023010089, EDN: LWOGNL

Тела цилиндрической формы относятся к наиболее часто встречающимся конструктивным элементам в технике и инженерной практике [1]. При тепловой обработке таких изделий, как правило, различают две основные стадии процесса, начальную и упорядоченную (регулярную). Для анализа распределения температуры во времени и по сечению такого тела необходимо осуществить исследование следующей математической задачи, представленной в безразмерном виде, являющимся более предпочтительным, а именно [2]

$$\frac{\partial \vartheta}{\partial Fo} = \frac{\partial^2 \vartheta}{\partial \psi^2} + \frac{1}{\psi} \frac{\partial \vartheta}{\partial \psi},$$
(1)
0 < Fo < ∞, 0 ≤ ψ ≤ 1,
 $\frac{\partial \vartheta}{\partial \psi} = 0$ при ψ = 0,
(2)

$$\frac{\partial \vartheta}{\partial \psi} = -\text{Bi}\vartheta$$
 при $\psi = 1,$ (3)

$$\vartheta(\psi, 0) = 1. \tag{4}$$

Здесь Ві безразмерное число подобия Био, характеризующее интенсивность теплообмена на наружной поверхности тела. Используя классический метод математической физики разделения переменных, решение задачи (1)–(4) удается получить в форме бесконечного ряда [1–3]

$$\vartheta(\Psi, \mathrm{Fo}) = \sum_{n=1}^{\infty} A_n J_0(\mu_n \Psi) \exp\left(-\mu_n^2 \mathrm{Fo}\right), \tag{5}$$

где $J_0(\mu_n \psi)$ – подробно изученная функция Бесселя первого рода нулевого порядка [4–12].

Собственные числа µ_n данной зависимости являются корнями характеристического уравнения

$$\frac{J_0\left(\mu\right)}{J_1\left(\mu\right)} = \frac{\mu}{\mathrm{Bi}},\tag{6}$$

в котором $J_1(\mu)$ — функция Бесселя первого рода первого порядка, также всесторонне исследована и протабулирована [3–6, 10, 13]. Коэффициенты ряда (5) A_n определяются по соотношению

$$A_{n} = \frac{2J_{1}(\mu)}{\mu_{n} \left[J_{0}^{2}(\mu_{n}) + J_{1}^{2}(\mu_{n}) \right]}.$$
(7)

Значения первых шести корней μ_n уравнения (6) и коэффициентов A_n выражения (7) приведены в широко известной монографии [1] для некоторых конкретных величин чисел Ві в форме таблиц.

При сравнительно больших числах Фурье Fo ≥ 0.3 ряд (5) будет быстросходящимся, и тогда все его члены, за исключением первого, становятся пренебрежимо малыми. Для такой стадии процесса, называемой регулярной, аналитическое решение (5) существенно упрощается

$$\vartheta(\Psi, \mathrm{Fo}) = A_{\mathrm{I}}J_{0}(\mu_{\mathrm{I}}\Psi)\exp\left(-\mu_{\mathrm{I}}^{2}\mathrm{Fo}\right). \tag{8}$$

Это относительно несложное математическое выражение может быть использовано в дальнейшем для изучения различных других процессов, например, для определения термических напряжений в конструкциях [8]. При этом для нахождения первого собственного числа µ₁ для любого значения Ві может быть применена простая аналитическая формула

$$\mu_{1}^{2} = \frac{12(\text{Bi}+2)}{\text{Bi}+6} \left[1 - \sqrt{1 - \frac{2\text{Bi}(\text{Bi}+6)}{3(\text{Bi}+2)^{2}}} \right],$$
(9)

полученная авторами данной работы на основе разложения функций $J_0(\mu)$ и $J_1(\mu)$ в полиномы ограниченных порядков. Выражение (9) обладает высокой точностью, если Bi < 2. Так, в частности, при Bi = 1 расчет по (9) дает результат

$$\mu_1^2 = \frac{12(1+2)}{1+6} \left[1 - \sqrt{1 - \frac{2 \times 1 \times (1+6)}{3(1+2)^2}} \right] = 1.574287,$$

Bi	μ_2	μ_3	μ_4	μ_5	μ_6
0	3.8317	7.0156	10.1735	13.3237	16.4706
∞	5.5201	8.6537	11.7916	14.9309	18.0711

Таблица 1. Предельные значения корней уравнения (6) для $2 \le n \le 6$

т.е. $\mu_1 = 1.2547$, а соответствующая табличная величина [1] $\mu_1 = 1.2558$. Следовательно невязка в данном случае составляет менее 0.1%. При этом с уменьшением Bi она становится еще ниже. Причем нужно заметить, что для тел цилиндрической формы безразмерный теплотехнический параметр Bi, являющийся весьма важным показателем, на практике сравнительно редко превышает значение 1. Кроме этого, следует также иметь ввиду, что при проведении реальных инженерных расчетов используется исходная величина Bi известная неизбежно с некоторой погрешностью. К особенностям рекомендуемой зависимости (9) относится также то, что она дает оценку μ_1 несколько заниженную на всем интервале чисел Bi. Так, для Bi = 2 согласно (9) получим $\mu_1 = 1.5925$, а табличная величина [1] $\mu_1 = 1.5994$.

Для расчета температурного поля на начальной стадии нагрева необходимо в решении (5) учитывать большое число слагаемых ряда и с уменьшением числа Fo приходится принимать во внимание все возрастающее количество членов бесконечной суммы (5). Для этого необходимо знать несколько первых корней характеристического уравнения (6). При этом важно знать предельные значения μ_n . В табл. 1 указаны эти значения для случая, когда $2 \le n \le 6$.

Данная таблица может быть легко продолжена до необходимых еще больших порядковых номеров *n*. Для определения указанных корней при $0 < Bi < \infty$ целесообразно записать характеристическое уравнение (6), по аналогии с элементарными функциями [17], через обратную функцию, т.е. принять, что

$$\operatorname{arc}\frac{J_0\left(\mu\right)}{J_1\left(\mu\right)} = \frac{\mu}{\mathrm{Bi}}.$$
(10)

В табл. 2 приведены численные величины обратной функции отношения $J_0(\mu)$ и $J_1(\mu)$, принадлежащей также к классу специальных функций, в зависимости от аргумента μ . Для сокращения объема таблицы шаг по оси arc $\frac{J_0(\mu)}{J_1(\mu)}$ принят 0.1 на интервале 0–1 и увеличен до 0.2 в дальнейшем. Использование табл. 2 позволяет оперативно вычислять искомые значения μ_n с помощью несложного быстросходящегося итерационного процесса.

Предположим, что надо найти μ_2 в случае, когда Bi = 2. На первом шаге последовательных приближений задаемся $\frac{\mu_{2 \min}}{\text{Bi}} = \frac{3.8713}{2} = 1.9159$. Из табл. 2 следует, что для $\operatorname{arc} \frac{J_0(\mu_{2 \max})}{J_1(\mu_{2 \max})} = 1.9159 \ \mu_{2 \max} = 4.34$. Таким образом, можно утверждать, что искомый корень μ_2 находится в интервале $3.8317 < \mu_2 < 4.34$. Далее, принимая за основу $\mu_{2 \max} = 4.34$ и учитывая, что $\frac{\mu_{2 \max}}{\text{Bi}} = \frac{4.34}{2} = 2.17$, снова на основе табл. 2 находим по

	σ ₁ (μ)					
$\operatorname{Arc}\frac{J_{0}\left(\mu\right)}{J_{1}\left(\mu\right)}$	μ_1	μ_2	μ_3	μ_4	μ_5	μ ₆
0	2.4048	5,5201	8.6537	11.7915	14.9309	18.0711
0.1	2.3030	5.4195	8.5535	11.6914	14.8309	17.9711
0.2	2 1984	5 3190	8 4540	11 5925	14 7322	17 8726
0.3	2 0928	5 2206	8 3573	11 4965	14 6366	17 7773
0.5	1 9877	5 1258	8 2648	11 4049	14 5456	17.6866
0.5	1 8847	5.0361	8 1777	11 3190	14 4603	17.6000
0.6	1.7850	4 9522	8 0967	11 2392	14 3812	17.5230
0.0	1.6896	4 8747	8 0222	11.1659	14 3086	17.5250
0.8	1 5992	4 8037	7 9541	11.0990	14 2424	17.1500
0.0	1.5792	4 7389	7 8922	11.0392	14 1822	17.3050
1.0	1.3142	4.6801	7.8360	10.9832	14.1022	17.3232
1.0	1 2919	4.5785	7 7392	10.9852	14.0337	17.2711
1.2	1.1692	4.3763	7.6597	10.8002	13 9566	17.1011
1.4	1.1672	4.4952	7 59/1	10.7458	13.9900	17.1011
1.0	0.0730	4 3692	7.53941	10.6921	13.8306	16 08/10
2.0	0.8961	4.3072	7.037	10.6769	13.79/18	16 9/03
2.0	0.8287	4.2805	7.4544	10.6085	13.7567	16 9024
2.2	0.7700	4.2805	7.4209	10.5755	13.7307	16 8600
2.4	0.7185	4 2156	7.4207	10.5755	13.7240	16.8417
2.0	0.7185	4.2150	7.3919	10.5470	13.6710	16 8171
2.8	0.6327	4.165	7.3007	10.5220	13.6710	16 7054
3.0	0.0327	4.1003	7.3443	10.3001	13.0492	16.7762
3.2	0.5908	4.1402	7.3246	10.4607	13.0299	16.7702
3.4	0.5045	4.1201	7.3073	10.4034	13.0127	16 7429
5.0 2.9	0.5554	4.1120	7.2910	10.44/9	13.3973	16.7438
3.8	0.3091	4.0973	7.2773	10.4340	13.3634	16 7174
4.0	0.4631	4.0844	7.2040	10.4213	13.5709	16.7060
4.2	0.4033	4.0724	7.2332	10.4098	13.5594	16,6056
4.4	0.4433	4.0010	7.2420	10.3994	13.5490	16.6950
4.0	0.4249	4.0317	7.2329	10.3697	12.5394	16.6772
4.8	0.4079	4.0423	7.2240	10.3809	13.3300	10.0773
5.0	0.3923	4.0341	7.2137	10.3728	13.3223	16.6617
5.2 5.4	0.3777	4.0203	7.2081	10.3032	13.3130	16.6547
5.4	0.3042	4.0191	7.2011	10.3382	13.3080	16.6492
5.0	0.3310	4.0124	7.1943	10.331/	13.3010	16.6400
5.0	0.3398	4.0002	7.1004	10.3430	13.4933	16.6266
0.0 6 2	0.3200	4.0004	7.1027	10.3399	13.4099	16.6313
0.2	0.3183	2.0000	7.1773	10.3340	13.4640	16.6364
0.4	0.3088	3.9898	7.1/25	10.3296	13.4/90	10.0204
0.0	0.2990	3.9830	7.1070	10.3249	13.4/49	16.6172
0.8	0.2910	3.9805	7.1031	10.3205	13.4/05	10.01/3
7.0 7.0	0.2628	3.9/02	7 1540	10.3103	13.4003	16,6002
/.Z 7 A	0.2/31	3.9/22	7 1510	10.3124	13.4024	16.0092
/.4 7.6	0.20/8	3.9084 2.0649	7.1312 7.1476	10.308/	13.438/	16,6020
7.0 7.9	0.2009	3.7048	7.14/0	10.3031	13.4332	16.0020
/.0	0.2343	3.7013	7.1443	10.3018	13.4318	16 5055
0.U 0 0	0.2481	2.9301	7.1410	10.2980	13.4400	16.5933
0.Z	0.2421	3.9330	7.1250	10.2955	13.4430	16.5924
ð. 4	0.2304	3.9320	/.1330	10.2920	13.4427	10.3893

Таблица 2. Таблица значений корней характеристического уравнения (6) в зависимости от обратной функции Arc $\frac{J_0(\mu)}{J_1(\mu)}$

величине $arc \frac{J_0(\mu_{2\min})}{J_1(\mu_{2\min})}$ новое значение снизу для μ_2 , а именно $\mu'_{2\min} = 4.2862$, т.е. вто-

рая "вилка" оказывается существенно меньше первой, а именно 4.2862 < μ_2 < 4.34. Табличное значение μ_2 согласно [1] для Bi = 2 равно μ = 4.2910. Если за основу взять

$$\dot{\mu'_{2\,min}} = 4.2862$$
, то из условия $arc \frac{J_0(\dot{\mu'_{2\,max}})}{J_1(\dot{\mu'_{2\,max}})} = 2.1431$ следует $\ddot{\mu'_{2\,max}} = 4.2917$. Таким

образом, получим величину $\mu'_{2 max}$ практически совпадающую с действительной. Подобный подход применим и ко всем последующим числам μ_n . Так, например, требуется вычислить μ_6 при Bi = 2. Естественно, что нужно за исходное значение принять со-

гласно данным табл. 1 $\mu_{6\,min}$ = 16.4706. Тогда, исходя из условия $\frac{\mu_{6\,min}}{Bi}$ = 8.2353, т.е.

зная
$$arc \frac{J_0(\mu_{6 \max})}{J_1(\mu_{6 \max})} = 8.2353$$
, получим на основе табл. 2 $\mu_{6 \max} = 16.5920$. Отсюда следу-

ет, что имеет место "вилка" 16.4706 < µ₆ < 16.5920. Если итерацию повторить, т.е.

принять, что $arc \frac{J_0(\mu_{6\min}^{"})}{J_1(\mu_{6\min}^{"})} = 8.296$, то нижняя граница $\mu_{6\min} = 16.591$. Отсюда имеем

очень узкий интервал 16.591 < μ_6 < 16.592. Табличное значение μ_6 при Bi = 2, согласно данным [1], равно μ_6 = 16.5910.

Итак, предложенный итерационный экспресс-способ позволяет весьма быстро и сравнительно просто вычислить любой корень μ_n уравнения (6) с высокой степенью точности. Имея в распоряжении необходимое количество собственных чисел μ_n , можно провести расчет нестационарного температурного поля в цилиндрическом теле при малых величинах Fo, т.е. может быть выполнено исследование теплового процесса на начальной его стадии. В работе [16] предложено инженерное аналитическое решение аналогичных задач для тел плоской и сферической конфигураций. Следует добавить, что с помощью рекомендуемого метода может быть на основе аналитического решения (9) для первого собственного значения μ_1 несложно получить также очень близкое его верхнее значение.

В заключение следует отметить, что введение в расчетную практику некоторых обратных специальных функций позволяет существенно расширить возможности эффективного решения многих важных теплофизических задач.

СПИСОК ЛИТЕРАТУРЫ

- 1. Лыков А.В. Теория теплопроводности. М.: Высшая школа, 1967. 600 с.
- 2. Лыков А.В. Тепломассообмен. Справочник. М. Энергия, 1978. 480 с.
- 3. Лыков А.В. Тепломассообмен. Справочник. М. Энергия, 1971. 560 с.
- 4. Ватсон Г.Н. Теория бесселевых функций. Часть первая и вторая. М.: Изд-во иностранной литературы, 1949. С. 220.
- 5. *Коренев Б.Г.* Введение в теорию бесселевых функций. Главная редакция физико-математической литературы изд-ва "Наука", М., 1971.
- Кузьмин Р.О. Бесселевы функции. Л.–М.: Государственное теоретико-техническое издательство. 1933 г. 152 с.

- 7. *Чистова Э.А*. Таблицы функций Бесселя от действительного аргумента и интегралов от них. Изд-во АН СССР. 1958 г.
- Грей Э., Мэтьюз Г. Функции Бесселя и их приложение к физике и механике. М.: Изд-во ИЛ. 1949 г.
- 9. Коренев Б.Г. Некоторые задачи теории упругости и теплопроводности, решаемые в бесселевых функциях. М.: Физматгиз, 1960. 458 с.
- 10. Юшков П.П. Функции Бесселя и их приложения к задачам охлаждения цилиндра. Под ред. акад. А.В. Лыкова. Минск: Изд-во АН БССР. 1962 г. 170 с.
- 11. Люстерник Л.А., Акушский И.А., Диткин В.А. Таблицы бесселевых функций. М. Л.: Гостехиздат. 1949 г.
- 12. Янке Е., Эмде Ф., Лёш Ф. Специальные функции. М.: Наука, 1977. 342 с.
- 13. Кузнецов Д.С. Специальные функции. М.: Изд-во "Высшая школа". 247 с.
- 14. Справочник по специальным функциям / Под ред. М. Абрамовиц и И. Стиган. М.: Наука, 1979. 890 с.
- 15. Видин Ю.В., Злобин В.С., Иванов Д.И. Нестационарный теплоперенос в неоднородных конструкциях криволинейной конфигурации. Красноярск, СФУ, 2016. 167 с.
- 16. Видин Ю.В., Злобин В.С. Известия РАН Энергетика, 2022 г. № 2. С. 1–6.
- 17. Рыбасенко В.Д., Рыбасенко И.Д. Элементарные функции: Формулы, таблицы, графики. М.: Наука. Гл. ред. физ.-мат. лит., 1987. 416 с.

To the Calculation of the Unsteady Temperature Field of a Cylindrical Body

Yu. V. Vidin^{*a*}, * and V. S. Zlobin^{*a*}

^aSiberian Federal University, Krasnoyarsk, Russia *e-mail: zlobinsfu@mail.ru

Determining the temperature regime of cylindrical bodies in the initial period of time, i.e. at small values of the Fourier number, is a rather time-consuming task. In the calculation process, it is necessary to take into account a large number of members of the series to obtain the result of the required accuracy. In this case, it is required to calculate the eigenvalues of the characteristic equation for each term of this series. The article offers a fairly simple and effective analytical method for determining eigenvalues with high accuracy. The method is based on the use of a special function, the inverse of the relation of the Bessel functions of the first kind of zero and first order. In this case, the procedure for determining eigenvalues is reduced to a simple fast-converging iterative process. Using this procedure allows you to determine any eigenvalue of the characteristic equation with high accuracy required for engineering calculation. The application of this method in engineering practice significantly simplifies the process of determining the temperature regime of cylindrical bodies, and can also be extended to other tasks.

Keywords: temperature field, characteristic equation, eigenvalues, Bessel functions, inverse special functions, analytical solution