УДК 534.2:534.222:534.7

КОДИРОВКА ЗОНДИРУЮЩИХ СИГНАЛОВ ПРИ ТОМОГРАФИРОВАНИИ АКУСТИЧЕСКИХ НЕЛИНЕЙНЫХ ПАРАМЕТРОВ

© 2019 г. Е. А. Котельников¹, Р. В. Крюков¹, В. А. Буров¹, К. В. Дмитриев^{1, **}, О. Д. Румянцева^{1, *}

¹Московский государственный университет имени М.В. Ломоносова, физический факультет, Москва, Россия

*E-mail: burov@phys.msu.ru **E-mail: kdmitrie@aesc.msu.ru

Сопоставляются разные способы кодировки излучаемых сигналов, зондирующих томографируемый объект типа жидкой среды с целью восстановления пространственного распределения акустических нелинейных параметров с помощью малого количества преобразователей. Обсуждаются результаты восстановления модельных нелинейных рассеивателей и анализируется область пространственных частот, доступных для восстановления.

DOI: 10.1134/S0367676519010137

введение

Возникновение и степень проявления нелинейных эффектов при распространении акустических волн зависит от нелинейных свойств среды (объекта), исследуемой в процессе томографирования. Количественными характеристиками, отвечающими за нелинейные свойства (до третьего порядка, включительно) жидкой среды, являются акустические нелинейные параметры второго порядка $\varepsilon_2(\vec{r})$ и третьего порядка $\varepsilon_3(\vec{r})$. Их можно ввести при разложении уравнения состояния $P = P(\rho)$ в ряд по малым отклонениям $\rho'(\vec{r}, t)$ плотности среды $\rho(\vec{r},t) \equiv \rho_0 + \rho'(\vec{r},t)$ от ее постоянного невозмущенного значения ро. Здесь $P(\vec{r},t) \equiv P_0 + p(\vec{r},t)$ – полное давление, P_0 – его постоянное невозмущенное значение, $p(\vec{r},t)$ – акустическое давление. С точностью до величин третьего порядка малости (включительно) этот ряд имеет вид:

$$P(\rho, \vec{r}) = P_0 + c^2(\vec{r})\rho' + \frac{\varepsilon_2(\vec{r}) - 1}{\rho_0}c^2(\vec{r})(\rho')^2 + \frac{\varepsilon_3(\vec{r})}{\rho_0^2}c^2(\vec{r})(\rho')^3 + \dots,$$

где $c^2(\vec{r}) = \left(\frac{\partial P}{\partial \rho}\right)_{\rho=\rho_0}$ – квадрат скорости звука, $A = \frac{\rho_0}{P_0}c^2(\vec{r}), \quad B = \frac{\rho_0^2}{P_0}\left(\frac{\partial^2 P}{\partial \rho^2}\right)_{\rho=\rho_0}, \quad C = \frac{\rho_0^3}{P_0}\left(\frac{\partial^3 P}{\partial \rho^3}\right)_{\rho=\rho_0},$ $\varepsilon_2(\vec{r}) = 1 + \frac{B}{2A}, \ \varepsilon_3(\vec{r}) = \frac{C}{6A}.$ Знание акустических нелинейных параметров среды представляет большой интерес для задач медицинской диагностики. Такие параметры обладают более высоким относительным контрастом в патологически измененной биоткани (по сравнению со здоровой), чем линейные параметры — скорость звука, плотность биоткани и поглощение в ней [1].

ТРУДНОСТИ ВОССТАНОВЛЕНИЯ НЕЛИНЕЙНЫХ ПАРАМЕТРОВ

Восстановление нелинейных параметров возможно с помощью малого количества преобразователей за счет эффекта рассеяния звука на звуке при неколлинеарном взаимодействии кодированных первичных волн, зондирующих томографируемый объект [2-4]. Кодировка зондирующих сигналов может использоваться при томографировании линейных характеристик среды, например, скорости звука [5]. В рассматриваемой схеме нелинейного томографирования привлечение кодировки позволяет восстановить пространственное распределение в виде комбинации $\varepsilon_2(\vec{r})$ и $\varepsilon_2(\vec{r})$, имея всего три излучателя (которые одновременно посылают первичные сигналы, нелинейно взаимодействующие в области томографирования) и один приемник [3, 4], регистрирующий нелинейно рассеянные сигналы на комбинационных частотах третьего порядка [6, 7]. Однако задача получения томограмм отдельно для $\varepsilon_2(\vec{r})$ и отдельно для $\varepsilon_3(\vec{r})$ усложняется тем, что регистрируемый комбинационный сигнал третьего порядка формируется за счет двух конкурирующих процессов, происходящих при нелинейном взаимодействии трех первичных волн. Это, во-первых, взаимодействие чисто третьего порядка и, вовторых, двукратное взаимодействие второго порядка [6, 8].

Первый процесс представляет собой локальное (т.е. происходящее в одной и той же точке среды \vec{r}) взаимодействие трех зондирующих волн с образованием результирующего нелинейно рассеянного сигнала на комбинационных частотах третьего порядка. В силу локальности процесса такой комбинационный сигнал несет информацию о нелинейных параметрах $\varepsilon_2(\vec{r})$ и $\varepsilon_3(\vec{r})$ именно в данной точке. Значения $\varepsilon_3(\vec{r})$ для биотканей в настоящее время исследованы весьма слабо и поэтому представляют наибольший интерес при нелинейном томографировании третьего порядка. Именно в той части упомянутого комбинационного сигнала, которая соответствует так называемым физическим нелинейным вторичным источникам [6], представлена информация о $\varepsilon_{2}(\vec{r})$ в виде комбинированного нелинейного параметра

$$\varepsilon'_{3}(\vec{r}) \equiv 2(\varepsilon_{2}(\vec{r})-1)^{2}-\varepsilon_{3}(\vec{r}).$$

Второй процесс – нелокальный, поскольку он состоит из двух последовательных актов нелинейного взаимодействия второго порядка, которые могут происходить в различных точках среды. Поэтому в соответствующем нелинейно рассеянном сигнале третьего порядка содержится информация о $\varepsilon_2(\vec{r})$ в различных точках \vec{r}' , что чрезвычайно усложняет возможность определения значения $\varepsilon_2(\vec{r})$ в конкретной точке \vec{r} . В то же время информация о $\varepsilon_3(\vec{r})$ в нем вообще отсутствует. Тем самым, вклад в поле на приемнике, обусловленный данным процессом, является мешающим.

Разделение вклада от упомянутых конкурирующих процессов в получаемую итоговую томограмму представляет одну из основных трудностей в задачах акустической нелинейной томографии третьего порядка [8]. Тем не менее кодирование всех трех первичных сигналов позволяет сделать второй конкурирующий процесс – двукратное взаимодействие второго порядка – квазилокальным и, как следствие, говорить о возможности получения томограмм отдельно для $\varepsilon_2(\vec{r})$ и $\varepsilon_3(\vec{r})$ [7, 8].

СПОСОБЫ КОДИРОВКИ СИГНАЛОВ И РЕЗУЛЬТАТЫ ОБРАБОТКИ

Было исследовано несколько способов кодировки зондирующих сигналов. Дело в том, что регистрируемый информативный сигнал третьего порядка имеет весьма малую амплитуду, по сравнению с первичными сигналами и даже с нелинейно рассеянными сигналами второго порядка. Это приводит к необходимости жесткого ограничения ширины частотной полосы спектра зондирующих сигналов, причем максимальная возможная ширина Δf для каждого зондирующего сигнала определяется параметрами томографической схемы [4]. Тем самым, нужно выбрать наиболее подходящий способ кодировки, как с точки зрения практической реализации зондирующего сигнала с учетом требования жесткой локализации спектра в полосе Δf , так и с точки зрения качества получаемого изображения.

Первый исследованный и использованный в экспериментах [2, 4] способ кодировки – фазоманипулированный сигнал. Для его формирования монохроматический сигнал исходно кодируется псевдослучайной последовательностью, которая задается произвольным количеством элементов. Каждый элемент последовательности принимает одно из двух значений ("1" либо "–1"), и ему сопоставляется кодовый интервал с длительностью τ^{code} . При наступлении каждого нового кодового интервала, фаза исходного монохроматического сигнала либо не изменяется (в случае значения кодирующей последовательности "1"), либо изменяется на π (в случае значения "–1"). Спектр сигнала, кодированного таким способом, не име-

ет изначально хорошей локализации (рис. 1*a*), и поэтому при формировании излучаемого сигнала такой спектр необходимо предварительно профильтровать, оставив компоненты лишь в заданной частотной полосе Δf .

Поэтому встает вопрос об оптимальной длительности кодового интервала τ^{code} для исходного фазоманипулированного сигнала до фильтрации. Другими словами, требуется определить, какое количество периодов *n* на центральной частоте сигнала f_0 должно укладываться на протяжении кодового интервала при заданном максимально допустимом значении Δf , т.е. $n \equiv \tau^{code} f_0$. Так, с одной стороны, увеличение длительности кодового интервала τ^{code} приводит к сужению ширины спектра исходного фазоманипулированного сигнала, и можно добиться, чтобы существенная часть этого спектра лежала внутри заданной полосы Δf .

Например, количество периодов, при котором ширина центрального "лепестка" спектра фазоманипулированного сигнала практически совпадает с шириной Δf , определяемой параметрами схемы, составляет $n = 2f_0/\Delta f$. Однако, чем длиннее кодовый интервал τ^{code} , тем меньше при фиксированной длительности излучения сложность излучаемого зондирующего сигнала (т.е. полное количество элементов в последовательности, кодирующей излучаемый сигнал); как следствие, ухудшается разрешающая способность итоговой томограммы [4]. С другой стороны, если, наобо-

Рис. 1. Абсолютное значение спектра фазоманипулированного (a) и sinc-модулированного (δ) сигналов; толстыми вертикальными линиями показана частотная полоса, в которой фильтруется сигнал.

рот, уменьшать τ^{code} , то ширина центрального "лепестка" спектра исходного сигнала будет увеличиваться. Тогда фильтрация этого спектра прямоугольным "окном" (края "окна" сглаживаются) с заданной шириной Δf , — фильтрация выполняется для формирования излучаемого сигнала, будет приводить к потере тем большей части кодовой информации, чем меньше τ^{code} . Следовательно, нужен компромиссный вариант для значения τ^{code} , при котором обеспечивается приемлемая разрешающая способность. Численным моделированием было найдено, что наиболее подходящим является количество периодов $n \approx f_0/(1.5\Delta f)$ (*n* округляется до целого значения), как наиболее сбалансированное (рис. 1*a*). Это значение *n*, эквивалентное длительности кодового интервала $\tau^{code} \approx 1/(1.5\Delta f)$, индивидуально для каждого излучаемого сигнала как зависящее от параметров данного сигнала f_0 и Δf .

В рассмотренном выше случае исходного фазоманипулированного сигнала фильтрация приводит к отсечению периферийной части спектра этого сигнала (рис. 1а) и, следовательно, к потере определенной части кодовой информации. Кроме того, необходимо обеспечить это отсечение с высокой степенью точности; в противном случае остатки компонент спектра, которые, в идеале, должны быть отфильтрованы, могут порождать сильные мешающие сигналы в рабочей полосе принимаемого сигнала третьего порядка. Данное обстоятельство предъявляет повышенные требования к практической реализации процедуры фильтрации, особенно с помощью аналоговых устройств. Более целесообразно использовать тот способ кодировки исходного сигнала, который изначально дает хорошо локализованный спектр. Ниже рассматриваются два таких способа: формирование исходного сигнала, во-первых, в виде суммы модулированных по фазе сигналов с sincобразной огибающей и, во-вторых, в виде случайного шума, спектр которого программно фильтруется в заданной полосе Δf .

Исходный sinc-модулированный сигнал формируется как функция времени t в виде $\sum_{m=1}^{M} Z_m \operatorname{sinc} \{ \pi \Delta f(t - \tau^{code} m) \} \exp \{ -i2\pi f_0(t - \tau^{code} m) \}$, где m – порядковый номер текущего кодового интервала, M – общее количество кодовых интервалов в последовательности, Z_m – значение ("1" либо "-1") текущего элемента псевдослучайной последовательности. Каждому новому кодированному интервалу сопоставляется центральный пик отдельной sinc-образной огибающей. Значение Z_m элемента псевдослучайной последовательности определяет фазу (0 при $Z_m = 1$; π при $Z_m = -1$), которая сопоставляется текущей sinc-образной огибающей. Спектр такого сигнала четко локализован именно в той полосе частот от $(f_0 - \Delta f/2) \operatorname{дo}(f_0 + \Delta f/2)$, в которой может присутствовать спектр зондирующего сигнала (рис. 16).

В случае использования шумового сигнала исходно генерируется случайная последовательность как функция времени. Далее ее спектр программно фильтруется прямоугольным "окном" со сглаженными краями и шириной Δf (внешний вид такого профильтрованного спектра аналогичен рис. 1δ), после чего делается обратный переход во временное представление.

При численном моделировании использовались параметры реальной томографической схемы [7, 9]. Так, спектры трех кодированных зондирующих волн были представлены частотами $f_1, f_2 \in (1.55-1.8)$ МГц, $f_3 \in (2.075-2.325)$ МГц; углы между акустической осью приемника (ее положение соответствует углу 0°) и акустическими осями трех излучателей составляли соответственно $\beta_1 = 33^\circ$, $\beta_2 = -104^\circ$, $\beta_3 = -19^\circ$. Длительность кодового интервала определялась количеством периодов n = 4, 4, 5 для соответствующих зондирующих сигналов. Приемником с центром в точке \vec{v} регистрировался сигнал $p(\vec{v},t)$ на суммарно-разностных комбинационных частотах $f_{+-} = f_1 + f_2 - f_3$, где $f_{+-} \in (0.9$ –1.4) МГц. Надо заметить, что в имеющейся экспериментальной установке используются излучатели и приемник цилиндрической формы. Однако благодаря специально разработанной системе акустических конических зеркал [4, 10] излучаемые цилиндрические волны превращаются в области томографирования в плоские волны с волновыми векторами $\vec{k_1}, \vec{k_2}, \vec{k_3}$. Фиксированные направления этих векторов описываются соответствующими углами $(180^{\circ} + \beta_1), (180^{\circ} + \beta_2), (180^{\circ} + \beta_3).$ Сигнал, идущий из области томографирования, проходит через ту же систему зеркал и попадает на цилиндрический приемник.

Для сравнения трех способов кодировки излучаемых зондирующих сигналов – фазоманипулированного, sinc-модулированного и фильтрованного шумового – были выбраны модели двумерных нелинейных рассеивателей в виде одиночного точечного рассеивателя (рис. 2, 3) и в виде различно ориентированных полос (рис. 4). Фиксировалась реализация случайной последовательности, и на ее основе формировался исходный сигнал, соответствующий каждому из рассмотренных способов кодировки. Далее численно моделировался сигнал третьего порядка на приемнике $p(\vec{y},t)$, причем учитывался только один вид нелинейных вторичных источников – физические источники чисто третьего порядка [6]. Тогда корреляционная обработка (типа согласованной фильтрации) принимаемого сигнала дает оценку $\hat{\varepsilon}_{3}(\vec{r})$ комбинированного нелинейного параметра $\varepsilon'_{3}(\vec{r})$:

$$\hat{\varepsilon}_{3}'(\vec{r}) = \frac{\int p_{+-\delta(C)}^{*}(\vec{y} \,| \vec{r} \,; t) p_{(C)}(\vec{y}, t) dt}{\int p_{+-\delta(C)}^{*}(\vec{y} \,| \vec{r} \,; t) p_{+-\delta(C)}(\vec{y} \,| \vec{r} \,; t) dt}, \qquad (1)$$

где $p_{(C)}(\vec{y},t) \equiv p(\vec{y},t) - ip_{H}(\vec{y},t)$ – комплексная аналитическая версия принятого сигнала $p(\vec{y},t)$; $p_{H}(\vec{y},t)$ – функция, гильбертово сопряженная (по

ИЗВЕСТИЯ РАН. СЕРИЯ ФИЗИЧЕСКАЯ том 83 № 1 2019

Рис. 2. Случай трех кодированных первичных волн. Оценка одиночного точечного нелинейного рассеивателя (a) и пространственный спектр этой оценки (b); область локализации и плотность восстанавливаемой части пространственного спектра нелинейного рассеивателя в предположении одинаковой амплитуды всех спектральных составляющих первичных волн (b).

Рис. 3. Случай двух кодированных и одной монохроматической первичных волн. Подпись аналогична рисунку 2.

времени) к $p(\vec{y},t)$. Комплексная аналитическая версия сигнала сравнения $p_{+-\delta(C)}(\vec{y}|\vec{r};t)$ вычисляется предварительно как нелинейно рассеянный сигнал, приходящий на приемник от одиночного точечного нелинейного рассеивателя, находящегося в фиксированной точке \vec{r} [3, 4]. В сигнале сравнения присутствуют, по его построению, комбинационные частоты, соответствующие только одному задаваемому виду комбинации первичных частот, – в данном случае, $f_{+-} = f_1 + f_2 - f_3$.

Рассматривались различные реализации случайных последовательностей, на основе которых формировались кодированные зондирующие сигналы. Оказалось, что томограммы, получаемые в результате обработки (1), не имеют сколько-нибудь принципиальных различий при рассмотренных трех способах кодировки. Тем самым, на практике можно использовать тот вид кодировки, который удобнее реализовать с помощью имеюшейся аппаратуры. Ниже обсуждаются характерные особенности томограмм, и приводятся их изображения (рис. 2-4) для способа формирования кодированных первичных сигналов в виде фильтрованного шума при фиксированной длительности сигнала на приемнике 0.06 с. Шаг пространственной дискретизации при решении прямой и обратной задач составлял $\lambda_{+-}^0/5$, где λ_{+-}^0 – длина волны, соответствующая центральной частоте f_{+-}^{0} в рабочем диапазоне принимаемых ча-CTOT $f_{+-} = f_1 + f_2 - f_3$.

Одиночному точечному нелинейному рассеивателю, помещенному в начало координат, сопоставлялось значение комбинированного нелинейного параметра $\varepsilon'_3 = 12$. Откликом (1) на этот рассеиватель является томограмма в виде ограниченного "пятна" (рис. 2а), размеры которого определяют разрешающую способность томографической системы в соответствующем направлении. Надо обратить внимание, что на рис. 2а (и далее на рис. За и 4) в качестве оценки изображена, на самом деле, действительная часть $\operatorname{Re}\hat{\varepsilon}_{2}'(\vec{r})$, поскольку априори известно, что восстанавливаемые акустические нелинейные параметры являются действительными величинами. В рассматриваемом случае точечного нелинейного рассеивателя и трех кодированных зондирующих волн получилось $\max_{\vec{r}} |\operatorname{Im} \hat{\varepsilon}'_3(\vec{r})| / \max_{\vec{r}} |\operatorname{Re} \hat{\varepsilon}'_3(\vec{r})| \approx 0.22$ при упомянутой длительности обрабатываемого сигнала для всех способов кодировки и всех реализациях случайных последовательностей.

Для сравнения на рис. За приведен отклик на тот же рассеиватель, для случая, когда среди трех первичных волн две кодированы (с прежними частотными полосами), а третья — монохроматическая (с частотой

 $f_3^0 = 2.2 \,\mathrm{MFu}$, равной центральной частоте кодированной третьей волны в предшествующем случае); $\max_{\vec{r}} \left| \mathrm{Im} \hat{\epsilon}'_3(\vec{r}) \right| / \max_{\vec{r}} \left| \mathrm{Re} \hat{\epsilon}'_3(\vec{r}) \right| \approx 0.27$. Из сравнения рис. 2a и рис. 3a видны преимущества замены третьей монохроматической волны на кодированную: "пятно" отклика становится более четко локализованным, нежелательные отрицательные флуктуации этого отклика уменьшаются, и $\max_{\vec{r}} \left| \mathrm{Im} \hat{\epsilon}'_3(\vec{r}) \right| / \max_{\vec{r}} \left| \mathrm{Re} \hat{\epsilon}'_3(\vec{r}) \right|$ также уменьшается.

"Пятно" отклика на рис. 2а и За вытянуто вдоль оси Оу, т.е. разрешающая способность в этом направлении хуже. Это взаимнооднозначно связано с той областью компонент пространственного спектра $\tilde{\varepsilon}'_{3}(\vec{K})$ рассеивателя $\varepsilon'_{3}(\vec{r})$, которая доступна для восстановления в данном томографическом эксперименте, т.е. при заданных угловых позициях приемного и излучающих преобразователей и при заданных рабочих частотных полосах излучаемых и принимаемого сигналов. Так, область локализации и плотность для векторов \vec{K} восстанавливаемой части пространственного спектра, в предположении одинаковой амплитуды всех спектральных составляющих первичных волн, получается перебором частот излучаемых волн (f_1, f_2, f_3) с учетом рабочей полосы информативных принимаемых частот $f_{+-} = f_1 + f_2 - f_3$ при фиксировании направлений волновых векторов первичных волн ($\vec{k_1}, \vec{k_2}, \vec{k_3}$) и принимаемого сигнала \vec{k}_{+-} . Здесь $\vec{K} = \vec{K}_{+-} \equiv \vec{k}_{+-} - (\vec{k}_1 + \vec{k}_2 - \vec{k}_3)$, где $egin{aligned} |ec{k_1}| &= 2\pi f_1/c_0 \,, & |ec{k_2}| &= 2\pi f_2/c_0 \,, & |ec{k_3}| &= 2\pi f_3/c_0 \,, \ |ec{k_{+-}}| &= 2\pi f_{+-}/c_0 \,; \, c_0 - ext{ckopoctb 3Byka [3]}. \end{aligned}$

Шкала на рис. 2в и Зв отражает нормированное (на свое максимальное значение) количество реализаций, формирующих фиксированный вектор пространственной частоты \vec{K}_{+-} . Пространственно-спектральная плотность векторов \vec{K} внутри такой области неоднородна в случае трех кодированных первичных волн (рис. 2в; волновое число k_{+-}^0 соответствует центральной частоте f_{+-}^0). В то же время в случае третьей монохроматической первичной волны эта плотность будет одинаковой (рис. 3в), причем при любых (не обязательно совпадающих) центральных частотах и ширинах рабочих частотных полос двух первичных кодированных волн. Пространственный спектр $\tilde{\tilde{\varepsilon}}_{3}(\vec{K})$ оценки $\hat{\varepsilon}'_{3}(\vec{r})$ точечного нелинейного рассеивателя с учетом реального спектра излучаемых сигна-

Другой нелинейный рассеиватель задавался в виде четырех полос с постоянным значением

лов представлен на рис. 26 и 36.

Рис. 4. Восстановленное нормированное пространственное распределение акустического нелинейного рассеивателя третьего порядка в виде четырех полос, расположенных на фоне с $\varepsilon'_3 \equiv 0$; контуры модельных полос изображены штриховыми линиями.

ε'₃ = 12 внутри них. Полосы располагались на фоне с $\varepsilon'_3 \equiv 0$ под углами 0°, 45°, 90° и 135° по отно-шению к направлению приема; ширина и длина каждой полосы составляли $4.2\lambda_{+-}^0$ и $20.2\lambda_{+-}^0$, соответственно (рис. 4, штриховые линии). Данная модель позволяет проиллюстрировать качество восстановления различно ориентированных деталей нелинейного рассеивателя в случае трех кодированных первичных волн (см. рис. 4, на котором приведенная оценка ĉ'₃ пронормирована на свое максимальное значение). Для обеспечения более точных значений оценки нужна пространственная фильтрация полученной функции $\hat{\epsilon}'_{3}(\vec{r})$, предполагающая нормировку компонент ее пространственного спектра $\hat{\tilde{\epsilon}}'_{3}(\vec{K})$ с помощью пространственного спектра оценки одиночного рассеивателя (рис. 2б).

ЗАКЛЮЧЕНИЕ

Итак, целесообразность выбора того или иного способа кодировки определяется, в первую очередь, имеющимися техническими возможностями излучения и приема сигналов в заданных частотных полосах с заданной точностью [4, 7, 10]. Так, к преимуществам использования фазоманипулированного сигнала относится, во-первых, возможность его генерации на основе обычного генератора гармонического сигнала и программируемой логики. Во-вторых, лля вычисления сигнала сравнения в процессе обработки (1) достаточно иметь лишь малый объем информации о кодирующей М-последовательности, а передавать в ЭВМ непосредственно весь излучаемый сигнал излишне. Недостатком же является необходимость аналоговой фильтрации спектра сигнала. В то же время преимуществом sinc-модулированного сигнала и сигнала в виде профильтрованного случайного шума является уже изначально ограниченный спектр. К недостаткам относится использование относительно дорогого генератора сигнала произвольной формы, а также необходимость формировать и запоминать излучаемый сигнал целиком в памяти компьютера. Имеющаяся в настоящее время экспериментальная установка [7, 9] позволяет, в принципе, реализовать любой из упомянутых способов кодировки, причем использование фильтрованного шумового сигнала представляется наиболее **улобным**.

Работа поддержана грантом РФФИ № 16-29-02097 офи_м.

СПИСОК ЛИТЕРАТУРЫ

- 1. *Duck F.A.* Phys. Properties of Tissue. London: Academic Press, 1990.
- 2. Береза С.А., Буров В.А., Евтухов С.Н. // Акуст. журн. 2008. Т. 54. № 4. С. 522.
- 3. Буров В.А., Шмелев А.А. // Акуст. журн. 2009. Т. 55. № 4-5. С. 466.
- 4. *Буров В.А., Шмелев А.А., Зотов Д.И. //* Акуст. журн. 2013. Т. 59. № 1. С. 31.
- 5. *Wang K., Matthews T., Anis F. et al.* // IEEE Transact. on Ultrasonics, Ferroelectrics, and Frequency Control. 2015. V. 62. № 3. P. 475.
- 6. *Буров В.А., Шмелев А.А., Крюков Р.В., Румянцева О.Д. //* Акуст. журн. 2015. Т. 61. № 6. С. 669.
- 7. Дмитриев К.В., Зотов Д.И., Румянцева О.Д. // Изв. РАН. Сер. физ. 2017. Т. 81. № 8. С. 1014.
- Буров В.А., Крюков Р.В., Румянцева О.Д. // Изв. РАН. Сер. физ. 2015. Т. 79. № 12. С. 1676.
- 9. Дмитриев К.В., Котельников Е.А., Зотов Д.И., Румянцева О.Д. // Уч. записки физ. ф-та МГУ. 2017. № 5. С. 1750713.
- 10. *Буров В.А., Шмелев А.А., Евтухов С.Н. и др.* Патент на изобретение RU 2530659 C2. Приоритет от 08.08.2012. Москва, 2014.