УДК 539.213,66.022.51

ФАЗОВЫЕ ПРЕВРАЩЕНИЯ В ОБЪЕМНОМ АМОРФНОМ СПЛАВЕ НА ОСНОВЕ ЖЕЛЕЗА ПРИ РАЗМОЛЕ В ШАРОВОЙ МЕЛЬНИЦЕ

© 2019 г. Н. П. Дьяконова¹, Е. А. Захарова^{1, *}, Т. А. Свиридова¹, Т. Р. Чуева²

¹Федеральное государственное автономное образовательное учреждение высшего образования "Национальный исследовательский технологический университет "МИСиС", Москва, Россия ²Федеральное государственное бюджетное учреждение науки Институт металлургии

и материаловедения имени А.А. Байкова Российской академии наук, Москва, Россия

**E-mail: Nemezia27@gmail.com* Поступила в редакцию 10.01.2019 г. После доработки 13.05.2019 г. Принята к публикации 27.06.2019 г.

Изучена возможность получения аморфного состояния с использованием шаровой мельницы в объемном аморфном сплаве $Fe_{61.4}Ni_{3.6}Cr_{3.2}Si_{2.4}Nb_{7.8}Mn_{3.6}B_{18}$. Наличие в исходных реагентах метастабильной фазы позволило заметно ускорить процесс аморфизации и достичь почти полного перехода в аморфное состояние, однако состав аморфной фазы, полученной механическим размолом, в сравнении с жидкозакаленной лентой отличался пониженным содержанием бора и, как следствие, более низкой температурой кристаллизации.

DOI: 10.1134/S0367676519100089

введение

Аморфные сплавы обладают уникальным сочетанием физических и химических свойств, выгодно отличающим их от кристаллических материалов. Из них наиболее востребованы сплавы на основе железа. Обладая высокой твердостью, коррозионной стойкостью и высокими магнитными характеристиками, они используются для получения новых конструкционных, магнитомягких и магнитотвердых материалов, включая различные композиционные материалы и полупроводниковые приборы. В последние полтора десятилетия особое внимание материаловедов привлекает группа многокомпонентных объемных аморфных сплавов, где аморфное состояние достигается при невысоких скоростях охлаждения ~10²-10³ К · с⁻¹ [1]. Среди них наименьшими критическими скоростями охлаждения обладают сплавы на основе таких дорогостоящих элементов, как цирконий и палладий [2]. Объемные аморфные сплавы на основе железа заметно уступают лучшим представителям этой группы материалов, но зато не содержат дефицитных элементов и потому могут найти применение в самых различных областях.

Для получения аморфного состояния могут применяться разные методы, но чаще всего используются закалка расплава и твердофазное сплавление в высокоэнергетических шаровых мельницах. Оба метода имеют свои достоинства и недостатки. Так, одной из проблем механообработки является зависимость продуктов реакции от химического взаимодействия компонентов [3], от термодинамической устойчивости используемых реагентов [4], а также от их механических свойств [5]. Все это подчас не позволяет получить однофазное аморфное состояние.

В качестве объекта исследования был выбран объемный аморфный сплав Fe_{61.4}Ni_{3.6}Cr_{3.2}Si_{2.4}Nb_{7.8}Mn_{3.6}B₁₈ [6], представляющий собой аморфный аналог нержавеющей стали. Простейшим способом обработки в высокоэнергетической шаровой мельнице является механическое сплавление чистых компонентов сплава, выполненное нами ранее. В работе [7] исследуемый сплав был получен лишь в аморфно-кристаллическом состоянии, а последующие отжиги механоактивированного порошка показали, что бор начинает участвовать в фазообразовании только при температурах нагрева около 700-800°С. Дальнейшие исследования на модельном двухкомпонентном сплаве системы Fe-B [8] обнаружили низкую реакционную способность бора при механосплавлении. что приводит к его крайне медленному растворению и затрудняет участие в процессе аморфизации. Поэтому цель данной работы — изучение возможности получения аморфного состояния в шаровой высокоэнергетической мельнице при использовании в качестве исходных реагентов многофазного слитка сплава, состоящего из ряда стабильных боридов и ФАЗОВЫЕ ПРЕВРАЩЕНИЯ В ОБЪЕМНОМ АМОРФНОМ СПЛАВЕ

Фаза	Структурный тип	Символ Пирсона	Объемная доля фаз	
		Символ Пирсона	слиток	стержень
α-Fe	A2	cI2	30	18
Fe ₂ B	C16	tI12	50	6
Nb ₂ FeB ₂	D5 _a	tP10	10	_
NbFeB	C22	hP9	2	8
$Nb_5Fe_{33}B_{10}$	_	tI96	—	68
NbB ₂	C32	hP3	8	_

Таблица 1. Исходный фазовый состав слитка и быстрозакаленных стержней сплава $Fe_{61.4}Ni_{3.6}Cr_{3.2}Si_{2.4}Nb_{7.8}Mn_{3.6}B_{18}$

твердого раствора на основе α-Fe, а также быстрозакаленных стержней сплава, содержащих в качестве основной структурной составляющей метастабильную фазу.

МАТЕРИАЛЫ И МЕТОДЫ ИССЛЕДОВАНИЯ

В данной работе мы исследовали образцы сплава $Fe_{61.4}Ni_{3.6}Cr_{3.2}Si_{2.4}Nb_{7.8}Mn_{3.6}B_{18}$, полученные при разных скоростях охлаждения. Слиток сплава был изготовлен методом дуговой плавки из порошков элементов чистотой не ниже 99.8%, скорость охлаждения составляла $10^2 \text{ K} \cdot \text{c}^{-1}$. Быстрозакаленные стержни получали отбором проб из расплава ($T = 1350^{\circ}C$) в кварцевые капилляры с последующей закалкой пробы в ледяной воде. Скорость охлаждения стержней составляла $\sim 10^4 \text{ K} \cdot \text{c}^{-1}$. Аморфная быстрозакаленная лента сплава была получена методом спинингования расплава в атмосфере аргона, скорость охлаждения $\sim 10^6 \text{ K} \cdot \text{c}^{-1}$.

Слиток и быстрозакаленные стержни подвергались размолу в высокоэнергетической шаровой мельнице АГО-2У в течение 12 ч в атмосфере аргона при скорости вращения барабанов 685 об./мин. Для механообработки использовали стальные барабаны со стальными шарами (Ø6–8 мм), масса шаров – 200 г. Масса навески слитка составляла 10 г, а быстрозакаленных стержней – 20 г. Для контроля изменений фазового состава образцов проводили периодический отбор проб, для чего использовался перчаточный бокс с атмосферой аргона.

Фазовый состав образцов определяли методом рентгеноструктурного анализа (РСА) с использованием монохроматизированного Со K_{α} -излучения Для анализа полученных спектров использовали пакет программ [9], где объемные доли фазопределяются методом Ритвельда [10]. Для оценки доли аморфной фазы в аморфно-кристаллических образцах дополнительно измеряли дифракционный спектр аморфного эталона (измельченная в порошок жидкозакаленная лента сплава), сопоставление интенсивности аморфного гало и

кристаллических фаз проводили с использованием кинематического эталона.

Химический состав контролировали с помощью микрорентгено-спектрального анализа на сканирующем электронном микроскопе JEOL JSM-6610LV, оборудованном энергодисперсионным спектрометром (Oxford Instruments). Прирост содержания железа в ходе механического размола не превышал 1–2 отн. %. Термический анализ образцов проводили методом дифференциальной сканирующей калориметрии на микрокалориметре SetaramSetsysEvolution в защитной атмосфере аргона марки BЧ.

РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ

Исходный фазовый состав слитка сплава и быстрозакаленных стержней представлен в табл. 1, соответствующие спектры показаны на рис. 1 и 2. Как следует из представленных данных, слиток и быстрозакаленные стержни имели разный фазовый состав, что объясняется различием в их скоростях охлаждения. Основной фазой слитка был стабильный борид железа Fe_2B (~50%), тогда как в быстрозакаленных стержнях основной была тройная метастабильная фаза $Nb_5Fe_{33}B_{10}$, имеющая кристаллическую структуру, родственную карбиду хрома $Cr_{23}C_6$ [11]. Никель, хром, марганец и кремний, содержащиеся в изучаемом сплаве, по-видимому, частично замещают атомы железа в имеющихся фазах.

На рис. 1 и 2 представлены дифракционные спектры слитка и быстрозакаленных стержней до и после обработки в шаровой мельнице. Как следует из рис. 1, в ходе размола слитка доля кристаллических фаз уменьшается, а количество аморфной фазы растет, достигая, по данным РСА, ~85% к 12 ч. График зависимости доли аморфной фазы от времени обработки представлен на рис. 3. Заметим, что после 12-часового размола из присутствовавших в исходном состоянии кристаллических фаз остаются только три – Fe₂B, NbB₂ и Nb₂FeB₂.

В ходе размола быстрозакаленных стержней (см. рис. 2) метастабильная фаза Nb₅Fe₃₃B₁₀ исчеза-

Рис. 1. Дифракционные спектры слитка до и после обработки в шаровой мельнице.

Рис. 2. Дифракционные спектры быстрозакаленных стержней до и после обработки в шаровой мельнице.

ет уже после 15 мин обработки, а доля аморфной фазы растет быстрее (рис. 3), чем при размоле слитка, достигая почти 100% после 12 ч. Из кристаллических фаз в аморфно-кристаллическом порошке остаются следы двух боридов — Fe₂B и NbFeB.

Необходимо отметить, что бориды металлов имеют ряд специфических особенностей, связанных с наличием/отсутствием ковалентной связи между атомами бора. Например, с ростом доли ковалентной связи В-В у соединений растет твердость и температура плавления, что должно не только повышать их термодинамическую стабильность, но и затруднять процесс механического сплавления из-за неблагоприятного сочетания механических свойств реагентов: для эффективного механо-сплавления взаимодействующие частицы должны образовывать развитые слоистые структуры с большой поверхностью раздела, что невозможно лля тверлых непластичных борилов. Наличие сильной ковалентной связи можно определять по межатомным расстояниям В-В в кристаллической решетке: чем короче это расстояние, тем сильнее связь. По этому признаку, по крайней меpe, бориды Fe₂B, NbB₂ и Nb₂FeB₂ должны обладать повышенной устойчивостью к механическому размолу. что полтверждается серией экспериментов. обобщенных в [12]. Фаза Nb₅Fe₃₃B₁₀, родственная карбиду Cr₂₃C₆, напротив, не имеет в своей решетке подобных ковалентных связей, а ее термодинамическая неустойчивость [11] облегчает переход в аморфное состояние.

Калориметрические кривые быстрозакаленных стержней и слитка после 12 часов механообработки представлены на рис. 4. Там же для сравнения приводится кривая для аморфной жидкозакаленной ленты. Термические характеристики образцов приводятся в табл. 2.

Рис 3. График зависимости доли аморфной фазы от времени обработки в шаровой мельнице.

Рис. 4. Калориметрические кривые слитка (a) и быстрозакаленных стержней (δ) после 12 ч обработки в шаровой мельнице, а также кривая для аморфной жидкозакаленной ленты (a).

Наличие на кривых экзотермических эффектов указывает на присутствие во всех образцах аморфной фазы. Ее долю можно оценить по величине теплового эффекта в сравнении с содержащей 100% аморфной фазы ЗЖС-лентой, т.е. по

Таблица 2. Термические характеристики аморфной жидкозакаленной ленты и образцов сплава после 12 часовой обработки в шаровой мельнице

Щбразец	T_{x1} , °C	T_{x2} , °C	$T_{g,}$ °C	Тепловой эффект, Дж/г
Слиток	476	650	_	21
Б/з стержни	493	708	_	34
ЗЖС лента	588	694	563	46

 $T_{\rm x}$ – температуры кристаллизации, T_g – температура расстекловывания.

Таблица 3. Фазовый состав образцов после нагрева в калориметре.

Фази	Объемная доля фаз, %			
Ψασμ	слиток	б/з стержень	ЗЖС лента	
α-Fe	60	55	40	
Fe ₂ B (C16)	25	35	35	
NbFeB (C22)	5	10	25	
Другие бориды*	10	—	—	

* — бориды, оставшиеся после размола в шаровой мельнице.

данным ДСК содержание аморфной фазы выше в случае механического размола быстрозакаленных стержней (~75% против ~50%), что совпадает с данными РСА. Заметим, что ни один из образцов после механического размола не показал наличие температуры расстекловывания T_g , что не позволяет отнести эти порошки к объемным аморфным сплавам.

Поскольку температура кристаллизации является, прежде всего, функцией химического состава аморфной фазы, то полученные разными методами аморфные фазы должны иметь различный состав, причем состав аморфных фаз не одинаков и в случае размола разных по исходному фазовому составу быстрозакаленных стержней и слитка. Это легко объяснить: так как количество оставшихся боридов в случае размола слитка заметно больше, чем при размоле стержней, то в составе аморфной фазы должно быть понижено содержание главного аморфизатора в сплаве – бора, и, разумеется, его содержание заметно влияет на температуру кристаллизации [13]. Нагрев в калориметре образцов после 12 ч помола приводит к кристаллизации аморфной фазы с образованием стабильных фаз данной системы: твердого раствора на основе α-Fe и боридов Fe₂B и NbFeB (см. табл. 3).

При нагреве аморфной жидкозакаленной ленты образуются эти же фазы, однако объемная доля железа в этом случае заметно ниже, чем в образцах после механического размола (см. табл. 3). Низкое содержание α -Fe (или, что то же самое, более высокая доля боридов) при кристаллизации жидкозакаленной ленты указывает на более высокую концентрацию бора в аморфной фазе, которая имела и более высокую температуру кристаллизации (см., напр., [13]). Соответственно, аморфная фаза, образовавшаяся при размоле слитка и быстрозакаленных стержней, имела меньшее содержание бора, что подтверждается и более низкими температурами кристаллизации, причем наименьшее содержание бора имела аморфная фаза, полученная при размоле слитка сплава.

ЗАКЛЮЧЕНИЕ

Механический размол быстрозакаленных стержней и слитка сплава $Fe_{61.4}Ni_{3.6}Cr_{3.2}Si_{2.4}Nb_{7.8}Mn_{3.6}B_{18}$ не приводит к полной аморфизации даже после 12 часов обработки, причем полнота протекания процесса зависит от исходного состояния реагентов: большее количество аморфной фазы было получено при размоле быстрозакаленных стержней, где в исходном состоянии содержание стабильных боридов было ниже, чем в слитке сплава. Заметное ускорение аморфизации при механическом размоле было достигнуто за счет использования реагента с высоким содержанием метастабильной борсодержащей фазы $Nb_5Fe_{33}B_{10}$, что, видимо, является одним из способов введения бора при механическом сплавлении. Данные калориметрии показывают, что ни одна из полученных в работе аморфных фаз не может быть отнесена к объемным аморфным сплавам из-за отсутствия у них температуры расстекловывания. А сравнение температур кристаллизации различных аморфных фаз в сочетании с количественным анализом продуктов кристаллизации позволяет сделать вывод о пониженном содержании бора в аморфных фазах, произведенных с помощью механического размола.

СПИСОК ЛИТЕРАТУРЫ

- 1. Inoue A., Kong F.L., Zhu S.L., Al-Marzouki F. // J. Alloys Compounds. 2017. V. 707. P. 12.
- 2. Inoue A. // Acta Mater. 2000. V. 48. P. 279.
- Koch C.C. // J. Non-Cryst. Solids. 1990. V. 117–118. P. 670.

- 4. Bakker H., Zhou G.F., Yang H. // Mater. Sci. Forum. 1995. V. 179–181. P. 47.
- 5. *Courtney T.H.* // Mater. Transact. JIM. 1995. V. 36. № 2. P. 110.
- 6. Молоканов В.В., Шалыгин А.Н., Петржик М.И. и др. // Персп. матер. 2003. № 1. С. 5.
- Воргольская М.А., Дьяконова Н.П., Свиридова Т.А. и др. // Тез. докл. на конф. "Структурные основы модификации материалов методами нетрадиционных технологий" МНТ-7. (Обнинск, 2003). С. 29.
- Sviridova T.A., Shelekhov E.V., Bazilyan V.I., u dp. // J. Alloys Compounds. 2014. V. 586. P. S73.
- 9. Шелехов Е.В., Свиридова Т.А. // МиТОМ. 2000. № 8. С.16.
- 10. Rietveld H.M. // J. Appl. Cryst. 1969. V. 2. P. 65.
- Sviridova T.A., Chueva T.R., Gorshenkov M. et al. // J. Alloys Compounds. 2016. V. 658. P. 525.
- 12. Свиридова Т.А., Кривко О.А., Дьяконова Н.П., Молоканов В.В. // Материаловед. 2008. № 1. С. 45.
- Stokłosa Z., Rasek J., Kwapulinski P. et al. // Phys. Stat. Sol. A. 2010. V. 207. № 2. P. 452.