УДК 539.3

ДЕФОРМАЦИОННОЕ ПОВЕДЕНИЕ В СПЛАВАХ С МАРТЕНСИТНЫМ ПРЕВРАЩЕНИЕМ ПОД ВНЕШНИМИ ВОЗДЕЙСТВИЯМИ

© 2019 г. А. В. Фролова¹, Ю. В. Царенко², В. В. Рубаник мл.², В. В. Рубаник², В. В. Столяров^{1, *}

¹Федеральное государственное бюджетное учреждение науки Институт машиноведения имени А.А. Благонравова Российской академии наук, Москва, Россия ²Институт технической акустики Национальной академии наук Беларуси, Витебск, Беларусь *E-mail: vlstol@mail.ru

Поступила в редакцию 10.01.2019 г. После доработки 13.05.2019 г. Принята к публикации 27.06.2019 г.

Рассмотрено деформационное поведение при растяжении сплавов с памятью формы Ti_{50 - x}Ni_{50 + x} в аустенитном и мартенситном состояниях при последовательном воздействии импульсного тока и ультразвука при комнатной температуре и 200°С. Анализируются скачки напряжения от введения комбинации ультразвука и/или тока, направление и величина которых определяется фазовым состоянием материала и степенью деформации. Различное направление скачков напряжения в сплавах с памятью формы связано с положением температуры деформации относительно температуры образования мартенсита деформации.

DOI: 10.1134/S0367676519100107

введение

Современные металлические материалы в процессе получения или эксплуатации могут испытывать комплексное внешнее воздействие различной природы, например, связанное с механическими напряжениями и деформациями, электромагнитными полями и акустическими волнами, вибрациями. Поведение материалов в столь сложных условиях требует анализа влияния внешних факторов на их физико-механические свойства. Наличие в материалах структурно-фазовых превращений накладывает дополнительные требования к прогнозированию технологических и эксплуатационных откликов на внешние воздействия. Одной из актуальных задач в технологии получения изделий из данных сплавов является повышение деформируемости и снижение усилий в процессах обработки металлов давлением, например, при прокатке или волочении длинномерных изделий тонкого сечения.

В работах [1, 2] был продемонстрирован эффект от совместного применения интенсивной пластической деформации (ИПД) и ультразвука (УЗ) — структурные изменения в чистом никеле, снижение напряжений течения, процессы релаксации и упрочнения материала в зависимости от амплитуды ультразвука. Совместное применение ИПД и импульсного тока (электропластического эффекта) также зарекомендовало себя как метод улучшения технологических, функциональных свойств, а также микроструктуры различных материалов: в TiNi сплаве [3], в ТРИП и нержавеющих сталях [4], в алюминиевых [5–7] и магниевом сплаве [8].

В последние десятилетия активно исследуется возможность комбинированного воздействия различных методов на материалы с целью получения требуемых технологических и функциональных характеристик. Применительно к чистым меди [9] и никелю [10, 11] такая возможность была показана на примере последовательного применения ультразвука и импульсного тока, которое приводило к усилению эффекта снижения напряжений течения.

Особая роль в настоящее время принадлежит конструкционным сплавам с памятью формы $Ti_{50-x}Ni_{50+x}$, которые могут испытывать термоупругие мартенситные обратимые превращения, как во время получения, так и в процессе эксплуатации. Потенциальным методом повышения деформируемости сплавов $Ti_{50-x}Ni_{50+x}$ является применение электропластического (ЭПЭ) и акустопластического (АПЭ) эффектов [12–14].

Цель настоящей работы — исследовать деформационное поведение при растяжении сплавов $Ti_{50-x}Ni_{50+x}$ в аустенитном и мартенситном со-

Рис. 1. Инженерные кривые растяжения сплава $Ti_{50,0}Ni_{50,0}$ при комнатной температуре: 1 - 6e3 воздействий, 2 - c током, 3 - c УЗ, 4 - ток + УЗ. (*a*) общий вид, (*б*) увеличенная область для кривых 2 и 4. Стрелками указаны скачки напряжения от тока и УЗ.

стояниях при последовательном воздействии импульсного тока и ультразвука.

МАТЕРИАЛЫ И МЕТОДЫ ИССЛЕДОВАНИЯ

Объектами исследования были сплавы с памятью формы в аустенитном (Ti_{49.3}Ni_{50.7}) и мартенситном (Ti₅₀₀Ni₅₀₀) состояниях при комнатной температуре в форме проволоки диаметром Ø 1.5 мм после закалки от 800°С с размером зерен ~50 мкм. В соответствии с сертификатом качества, температурами начала мартенситного (М_н) и окончания аустенитного (Ак) превращений для сплава $Ti_{49.3}Ni_{50.7}$ являются $M_{\rm H} = 6^{\circ}C$ и $A_{\rm K} = 26^{\circ}C$, а для сплава $Ti_{50.0}Ni_{50.0}$ $M_{\rm H} = 45^{\circ}C$ и $A_{\rm K} = 75^{\circ}C$, соответственно. Растяжение выполняли при 20 и 200°С на испытательной машине ИР 5081-20. Нагрев образцов производили техническим термофеном BOSCH GHG 660, температуру измеряли контактным измерителем UT321 при помощи прикрепленной в центре образца термопары. При растяжении импульсный ток и ультразвуковые колебания в различной последовательности вводили в образец на разных стадиях деформации и фиксировали амплитуду скачка напряжений от ЭПЭ или АПЭ эффекта. Режимы импульсов тока и ультразвука были выбраны так, чтобы наблюдаемые эффекты были соизмеримы по интенсивности: для тока — частота 0.8-1 кГц, плотность тока $j = 150 \text{ А/мм}^2$, длительность импульса $\tau = 100 \text{ мкс}$; для ультразвука — частота 20 кГц, длительность 1 с, амплитуда 5 и 20 мкм.

ЭКСПЕРИМЕНТАЛЬНЫЕ РЕЗУЛЬТАТЫ

Растяжение при комнатной температуре

На рис. 1 представлены кривые растяжения "напряжение-деформация" сплава Ті_{50 0}Ni_{50 0}. После закалки при 800°С сплав характеризуется высокой пластичностью (δ > 30%) при прочности ~800 МПа; площадка переориентации мартенсита наблюдается при 190 МПа (кривая 1). Также необходимо отметить уменьшение модуля упругости в начале кривой и на двух стадиях деформационного упрочнения. Введение импульсов тока приводит к двукратному уменьшению относительного удлинения до разрушения, а также к появлению разнонаправленных скачков напряжения на стадии переориентации мартенсита и деформационного упрочнения (кривая 2). Скачки "вниз" расположены ниже кривой 1 и имеют на порядок меньшую амплитуду ($\Delta \sigma \sim 10-25$ МПа), по сравнению со скачками "вверх" (∆σ ≤ 200 МПа), пики которых лежат выше кривой 1. В отличие от воздействия тока, введение УЗ приводит только к однонаправленным скачкам напряжения "вниз" с амплитудой $\Delta \sigma \sim 10-$ 20 МПа на всей стадии растяжения вплоть до разрушения (кривая 3). Отметим, что вся кривая 3 расположена ниже кривой 1. При комбинированном воздействии импульсов тока и УЗ наблюдается преимущественное влияние тока, при котором присутствуют разнонаправленные скачки напряжения: "вниз" от УЗ и "вверх" от тока (кривая 4).

Сплав Ti_{49.3}Ni_{50.7} также характеризуется высокими пластичностью ($\delta > 30\%$) и прочностью (800 МПа) (рис. 2, кривая *I*). Однако характер кривой отличается от кривой для эквиатомного сплава: плато, соответствующее мартенситному превраще-

Рис. 2. Инженерные кривые растяжения сплава Ti_{49.3}Ni_{50.7} при комнатной температуре: *1* – без воздействий, *2* – с током, *3* – с УЗ, *4* – ток + УЗ. (*a*) общий вид, (*б*) увеличенная область для кривых *2*, *3* и *4*. Стрелками указаны скачки напряжения от тока и УЗ.

нию, короткое, практически переходящее в точку перегиба. Одиночные импульсы тока приводят к уменьшению пластичности и разнонаправленным скачкам напряжения: "вниз" (Δσ ~ 30-40 МПа) и "вверх" (Δσ ~ 50-60 МПа) (рис. 2, кривая 2). Смена направления скачков приблизительно соответствует деформации 10%, а пиковые значения напряжений осциллируют вокруг кривой 1. Применение УЗО (рис. 2, кривая 3) или комбинированного воздействия тока и УЗО (рис. 2, кривая 4) приводит к резкому охрупчиванию и разрушению практически в упругой области. Все скачки, вызванные УЗ, направлены "вниз" и имеют меньшую амплитуду напряжений ($\Delta \sigma \sim 5-15$ МПа), чем скачки от тока (Δσ ~ 35-45 МПа). Совместное воздействие УЗ и тока схоже по характеру с кривой 3, (рис. 2, кривые 3 и 4).

Растяжение при 200°С

При аналогичных испытаниях при температуре 200°С, вид кривых растяжения и направленность скачков напряжения обоих сплавов меняются. Прежде всего это проявляется в отсутствии плато, связанного с мартенситным превращением или переориентацией мартенсита, а также в однонаправленности скачков напряжения "вниз" от воздействия тока и УЗ (рис. 3 и 4). Отметим также, что все кривые растяжения при воздействии тока и УЗ лежат выше кривой 1 или практически с ней совпадают.

Сплав эквиатомного состава Ti_{50.0}Ni_{50.0}, как и при комнатной температуре, проявляет высокую

пластичность, которая в три раза снижается при введении одиночных импульсов тока и практически отсутствует при воздействии УЗ (рис. 3, кривые 2, 3). Амплитуда скачков напряжения от тока ($\Delta \sigma \sim 20$ МПа) заметно выше амплитуды скачков от УЗ ($\Delta \sigma \sim 5$ МПа). При комбинированном воздействии тока и УЗ наблюдается также хрупкое разрушение образца.

Сплав Ті_{49.3}Ni_{50.7}, по сравнению с комнатной температурой, проявляет меньшую пластичность ($\delta \sim 17\%$) при практически одинаковом уровне прочности (850 МПа) (рис. 4, кривая 1). Воздействие импульсов тока приводит к скачкам напряжения "вниз" амплитудой Δσ ~ 35–40 МПа, (рис. 4, кривая 2). В случае введения УЗ разрушение материала происходит уже в упругой области при напряжениях ниже 300 МПа (рис. 4, кривая 3). Совместное воздействие тока и УЗО (рис. 4, кривая 4) пластифицирует сплав, пластичность которого по сравнению с комнатной температурой возрастает с 2.5 до 7.5%. Амплитуда скачков напряжения от тока (Δσ ~ 35-45 МПа), как и для сплава $Ti_{49,3}Ni_{50,7}$, выше амплитуды скачков от УЗ ($\Delta \sigma \sim$ ~ 10 MПа).

ОБСУЖДЕНИЕ

Рассмотрим кривые растяжения обоих сплавов при комнатной температуре без внешних воздействий (рис. 5, кривые 1 и 2). Известно, что в мартенситном состоянии при комнатной температуре в сплаве $Ti_{50.0}Ni_{50.0}$ наблюдаемое плато на кривой растяжения обусловлено переориентацией

Рис. 3. Инженерные кривые растяжения сплава Ti_{50.0}Ni_{50.0} при температуре 200°С: *1* – без воздействий, *2* – с током, *3* – с УЗ, *4* – ток + УЗ. (*a*) общий вид, (*б*) увеличенная область для кривых *2*, *3* и *4*. Стрелками указаны скачки напряжения от тока и УЗ.

Рис. 4. Инженерные кривые растяжения сплава Ті_{49,3}Ni_{50.7} при температуре 200°С: *1* – без воздействий, *2* – с током, *3* – с УЗ, *4* – ток + УЗ. (*a*) общий вид, (*б*) увеличенная область для кривых *2* и *4*. Стрелками указаны скачки напряжения от тока и УЗ.

мартенситных пластин [15]. Видно, что модуль упругости мартенсита $E_{\rm M}$ после плато ниже, чем модуль мартенсита до плато из-за увеличения объемной доли ориентированных вдоль направления растяжения пластин. Стадия пластической деформации мартенсита начинается в области $\varepsilon \sim 10\%$.

Для сплава Ti_{49.3}Ni_{50.7} в аустенитной фазе при комнатной температуре отмечается не типично короткое плато, обусловленное фазовым превращением $A \rightarrow M$, что, вероятно, связано с близостью температуры деформации и A_{κ} (26°С). Различие в

модулях упругости до и после плато объясняется существованием, соответственно, аустенита и мартенсита, для которых верно соотношение $E_A > E_M$ [15]. С этим же связано различие в наклоне кривых в области упругой деформации в сплавах Ti_{49.3}Ni_{50.7} и Ti_{50.0}Ni_{50.0} (рис. 5, кривые *1* и *2*).

Сравнение кривых растяжения при повышенной температуре для обоих сплавов свидетельствует об их близком деформационном поведении при температуре 200°С, которая по многим литературным данным выше температуры M_d и

Рис. 5. Кривые растяжения без внешних воздействий для сплава $Ti_{50.0}Ni_{50.0}$ (сплошные линии) и для сплава $Ti_{49.3}Ni_{50.7}$ (пунктирные линии): *1*, 2 – при комнатной температуре, *3*, 4 – при температуре 200°С.

соответствует стабильному аустениту, не способному испытывать мартенситные превращения. Этим и обуславливается отсутствие плато от мартенситного превращения и плато от переориентации мартенсита.

Теперь сравним деформационное поведение сплавов при введении импульсов УЗ и/или тока. Для сплава Ti_{50.0}Ni_{50.0} введение одиночных импульсов тока при комнатной температуре приводит к разнонаправленным скачкам напряжения, вызванным причинами различной физической природы. ЭПЭ вызывает скачки "вниз" на стадии переориентации мартенсита, а обратное фазовое превращение М → А приводит к скачкам "вверх" на стадии деформационного упрочнения [12]. Введение УЗ вызывает возникновение скачков напряжения "вниз", связанных с АПЭ, величина которого в данном случае заметно меньше ЭПЭ. Отметим, что, несмотря на общую тепловую природу УЗ и тока, они имеют особенности деформационного воздействия: это и упругая деформация решетки, и пластическая деформация за счет дислокаций. Возможно поэтому при токовом воздействии преобладает упрочнение за счет мартенситного превращения, а при УЗ воздействии преобладает релаксационный эффект, вызывающий разупрочнение (рис. 1, кривые 2 и 3).

В аустенитном состоянии сплава Ti_{49.3}Ni_{50.7} наблюдаемые особенности деформационных кривых при воздействии тока и УЗ аналогичны и вызваны комбинацией проявления мартенситного превращения, ЭПЭ и АПЭ.

При повышенной температуре деформации скачки напряжения в обоих сплавах имеют одинаковое направление "вниз" независимо от области деформации. Направление скачков "вниз" указывает на отсутствие мартенситного превращения, что связано с существованием стабильного мартенсита при температуре деформации $T_d > M_d$. В то же время ЭПЭ и АПЭ при этом продолжают действовать.

Введение одновременно УЗ и тока не выявило заметных различий в деформационном поведении сплавов, кроме проявления повышенной хрупкости ($\delta < 5\%$), обусловленной малоцикловой усталостью в процессе воздействия УЗ. Тем не менее, совместное использование АПЭ и ЭПЭ требует дополнительных тщательных исследований при относительно близком уровне вводимой энергии или при других видах обработки металлов давлением.

выводы

1. Повышение температуры деформации от комнатной до 200°С приводит к повышению напряжений течения в обоих сплавах, при этом в сплаве $Ti_{50.0}Ni_{50.0}$ оно проявляется в области деформации менее $\varepsilon \sim 20\%$. При этом исчезает плато вследствие стабилизации аустенита, а также уменьшается пластичность в сплаве $Ti_{49.3}Ni_{50.7}$.

2. Направление скачков напряжения от введения УЗ и/или тока в сплавах $Ti_{50.0}Ni_{50.0}$ и $Ti_{49.3}Ni_{50.7}$ определяется фазовым состоянием материала и степенью деформации. При температуре 200°С скачки напряжения имеют одинаковое направление (вниз) независимо от степени деформации. При комнатной температуре до начала деформационного упрочнения скачки напряжения также имеют одинаковое направление (вниз), а затем они становятся разнонаправленными ("вниз" от УЗ и "вверх" от тока).

3. Различное направление скачков напряжения в сплавах с памятью формы связано с положением температуры деформации относительно температуры образования мартенсита деформации. При температуре деформации $T_d < M_d$ направление скачков "вверх" обусловлено обратным мартенситным превращением, вызванным тепловым эффектом тока. И наоборот, если температура деформации $T_d > M_d$ направление скачков "вниз" соответствует отсутствию мартенситного превращения.

Исследование выполнено при финансовой поддержке РФФИ в рамках научного проекта № 16-58-48001-ИНД_оми и проекта БРФФИ № Т16Р-152.

СПИСОК ЛИТЕРАТУРЫ

- 1. Samigullina A.A., Mukhametgalina A.A., Sergeyev S.N. et al. // Ultrasonics. 2018. V. 82. P. 313.
- Zhilyaev A.P., Samigullina A.A., Medvedeva A.E. et al. // Mater. Sci. Engin. A. 2017. V. 698. P. 136.

- 3. *Stolyarov V.V.* // Mater. Sci. Technol. 2015. V. 31. № 13A. P. 1536.
- Beridze E., Gennari C., Michieletto F., Forzan M. // Appl. Mechan. Mater. 2015. V. 698. P. 264.
- 5. *Ghiotti A., Bruschi S., Simonetto E. et al.* // CIRP Ann. Manufact. Technol. 2018. V. 67. № 1. P. 289.
- 6. Юрьев В.А., Баранов Ю.В., Столяров В.В. и др. // Изв. РАН. Сер. физ. 2008. Т. 72. № 9. С. 1317; Yuryev V.A., Baranov Yu.V., Stolyarov V.V. et al. // Bull. Russ. Acad. Sci. Phys. 2008. V. 72. № 9. Р. 1248.
- Ширинкина И.Г., Бродова И.Г., Астафьев В.В. и др. // ФММ. 2014. Т. 115. № 12. С. 1289; Shirinkina I.G., Brodova I.G., Astaf²ev V.V. et al. // Phys. Met. Metallography. 2014. V. 115. № 12. Р. 1221.
- Xu Z., Tang G., Tian S. et al. // J. Mater. Proc. Technol. 2007. V. 182. P. 128.
- 9. Kozlov A.V., Mordyuk B.N., Chernyashevsky A.V. // Mater. Sci. Engin. A. 1995. V. 190. P. 75.

- Царенко Ю.В., Рубаник В.В., Луцко В.Ф. и др. // LX Межд. конф. "Акт. проблемы прочности". (Витебск, 2018). С. 561.
- Самигуллина А.А., Мухаметгалина А.А. и др. // Ультразвук: проблемы, разработки, перспективы. Мат. межд. науч. конф. (Уфа, 2017). С. 71.
- 12. Потапова А.А., Столяров В.В., Бондарев А.Б., Андреев В.А. // Машиностр. и инж. образование. 2012. Т. 2. С. 33.
- 13. Rubanik V.V., Rubanik V.V., Dorodeiko V.G., Miliukina S.N. // Mater. Sci. Forum. 2013. V. 738–739. P. 362.
- 14. Мисоченко А.А., Царенко Ю.В., Рубаник В.В., Столяров В.В. // Ультразвук: проблемы, разработки, перспективы. Мат. межд. науч. конф. (Уфа, 2017). С. 41.
- 15. Brailovski V., Prokoshkin S., Terriault P., Trochu F. Shape memory alloys: fundamentals, modelling and applications. Quebec: Uni. Quebec, 2003. 844 p.