УДК 537.622.4:538.911

ФАЗОВЫЙ СОСТАВ И МАГНИТНЫЕ СВОЙСТВА ПОРОШКОВ Fe₂O₃-FeO-Gd₂O₃ ПОСЛЕ ВЫСОКОЭНЕРГЕТИЧЕСКОГО ИЗМЕЛЬЧЕНИЯ И ТЕРМООБРАБОТКИ

© 2019 г. С. В. Салихов¹, С. К. Толеуханова^{1, *}, И. Г. Бордюжин¹, А. Г. Савченко¹

¹Федеральное государственное автономное образовательное учреждение высшего образования "Национальный исследовательский технологический университет "МИСиС", Москва, Россия

**E-mail: salta_150@inbox.ru* Поступила в редакцию 10.01.2019 г. После доработки 13.05.2019 г. Принята к публикации 27.06.2019 г.

С использованием методов сканирующей электронной микроскопии, микрорентгеноспектрального, рентгеноструктурного и фазового анализов, дифференциальной сканирующей калориметрии и измерения гистерезисных свойств проведены комплексные исследования порошков номинального состава 90% [43% $Fe_2O_3-57\%$ FeO]-10% Gd_2O_3 . Установлено, что после высокоэнергетического измельчения основными фазовыми составляющими порошков являются магнетит (Fe_3O_4) и аморфная фаза, кроме того, в них присутствует около 2 об. % вюстита (FeO) и менее 1 об. % ортоферрита (GdFeO₃). Выявлены закономерности изменения фазового состава, структуры и гистерезисных свойств порошков после отжига.

DOI: 10.1134/S0367676519100247

введение

Интерес к магнитным материалам, размеры которых находятся в нанометровом диапазоне, стремительно растет в связи с уникальными свойствами, проявляющимися при переходе материала от макро- и микроскопического (массивного) к наноразмерному или наноструктурированному состоянию. В частности, оксиды системы Fe–O в наноразмерном состоянии обладают рядом качеств, нашедших применение в различных отраслях науки и техники, в том числе – в медицине. Например, наночастицы оксидов железа, получаемые различными химическими методами, применяют при адресной доставке лекарств [1], в магнитной гипертермии [2], в качестве негативных, делающих изображение более темным, Т₂контрастных агентов для магнитно-резонансной томографии (МРТ) [3, 4], а также в приборах и устройствах для магнитной записи [5]. Соединения на основе гадолиния. включая оксил гадолиния (Gd₂O₃), также являются объектом исследований на предмет их использования в МРТ, – в качестве позитивных, осветляющих изображение, T_1 -контрастных агентов [6, 7]. Однако и T_1 - и Т₂-контрастные вещества, помимо известных преимуществ, не лишены недостатков [8]. Например, T_1 -контрастные агенты на основе гадолиния позволяют получать хорошее усиление контраста [9], однако существует риск индуцирования нефрогенного системного фиброза у пациентов с нарушением функции почек, особенно у пожилых пациентов [10, 11]. Кроме того, используемые в настоящее время хелаты Gd очень быстро выводятся из сосудистой системы. Магнитные наночастицы оксидов железа обладают низкой токсичностью, однако отсутствие тканевой специфичности, а также случаи низкой фоновой интенсивности и часто возникающая путаница с сигналами от разного рода эндогенных образований (кровотечения, отложения кальция, железа, жир, сгустки крови, пузырьки воздуха и т.п.) ограничивают их применение [12].

В настоящее время проблема получения контрастных агентов, лишенных этих недостатков, является очень актуальной. Причем особенно перспективными в этом отношении представляются двойные $T_2 - T_1$ -контрастные агенты (обладающие одновременно высокими значениями продольной (r_1) и поперечной (r_2) релаксивности и небольшими значениями отношения r_2/r_1), использование которых позволило бы существенно увеличить эффективность и точность МРТ. В последние годы в литературе появились сведения о разработке и получении с использованием различных химических методов гибридных $T_2 - T_1$ контрастных агентов, например, на основе наночастиц типа "ядро-оболочка" с ядром из магнитных оксидов железа или ферритов и оболочкой на основе различных соединений редкоземельных металлов, включая гадолиний [13, 14], или на основе водорастворимых и биосовместимых монодисперсных ультрамалых ($D = 3.3 \pm 0.5$ нм) магнитных наночастиц оксида железа [8], в определенной мере удовлетворяющие указанным требованиям.

Однако на наш взгляд, как двойные T_2-T_1 контрастные агенты, более перспективными являются магнитные оксиды железа, легированные редкоземельными металлами (P3M). До сих пор все попытки получения химическими методами легированных P3M магнитных оксидов железа так и не привели к надежно установленному факту образования устойчивых фаз со структурой шпинели [15, 16]. В этой связи, с целью ответа на вопрос о принципиальной возможности их существования, в настоящей работе исследовано влияние отжига на фазовый состав, структуру и магнитные свойства наноструктурированных порошков оксидов железа и гадолиния после их совместного высокоэнергетического измельчения.

МАТЕРИАЛЫ И МЕТОДЫ ИССЛЕДОВАНИЯ

Материалы

Для синтеза наноструктурированных порошков на основе оксидов железа, легированных гадолинием, использовали следующие исходные материалы: гематит Fe₂O₃ (СТП ТУ КОМП 1-526-12), вюстит FeO (ТУ 6-09-1404-76) и оксид гадолиния Gd₂O₃ (ТУ 48-4-524-89). Для обеспечения протекания в ходе высокоэнергетического механохимического синтеза реакции Fe₂O₃ + FeO \rightarrow Fe₃O₄, а также легирования магнетита гадолинием, использовали смеси порошков следующего номинального состава: 90% [43% Fe₂O₃-57% FeO]-10% Gd₂O₃.

Получение и термообработка порошков

Высокоэнергетическое измельчение смесей порошков проводили в водоохлаждаемой шаровой планетарной мельнице "Активатор 2S" в течении 15 часов в атмосфере очищенного Ar, при скоростях вращения барабанов и диска 800 и 400 об./мин соответственно. В качестве мелющих тел использовали шары из нержавеющей стали Ø 6–15 мм, масса шаров – 300 г, масса навески порошка – 15 г. Для предотвращения агломерации порошка в барабаны добавляли 0.1 мл олеиновой кислоты.

Отжиг механо-активированных порошков проводили в печи электросопротивления типа ВС-4-10.5 в атмосфере Ar (99.998%, ТУ 6-21-12-94) в интервале температур от 200 до 900°С, время выдержки – 30 мин.

Методы исследования

Элементный состав исходных материалов и исследуемых порошков определяли методом микрорентгеноспектрального анализа на сканирующем электронном микроскопе (СЭМ) JSM-IT500 при ускоряющем напряжении 20 кВ.

Дифференциальную сканирующую калориметрию (ДСК) и термогравиметрический анализ (ТГА) порошков после высокоэнергетического механохимического синтеза (BMXC) проводили на установке NETZSCH STA 449 F3. Нагрев и охлаждение порошков осуществляли в атмосфере аргона в диапазоне температур от комнатной до 900°C со скоростью 10°C/мин.

Рентгеноструктурный анализ (РСА) исходных материалов и исследуемых порошков проводили на дифрактометре ДРОН-4 (СоКа излучение с $\lambda = 0.179$ нм, U = 40 кВ, I = 30 мА). В процессе съемки использовали: 1 мм приемную щель на окружности гониометра: 1 мм приемную шель счетчика: графитовый монохроматор (002) на дифрагированном луче; диапазон дифракционных углов 20 – от 10° до 120° с шагом съемки 0.1°; экспозицию на точку съемки – 4 с. Для анализа использовали специальные кюветы, в которые насыпали исследуемый порошок, и уплотняли его с добавлением спирта, что позволяло исключить появление лополнительных линий (от связующего вещества) и снизить уровень фона. Качественный и количественный фазовый анализ проводили по методу Ритвельда с использованием специально разработанного программного пакета "Phan%" [17]. При этом чувствительность фазового анализа составляла 1 об. %. статистическая ошибка определения содержания фаз – не более 2%.

Гистерезисные свойства порошков измеряли на вибрационном магнитометре VSM-250 в полях напряженностью до 2 Тл при комнатной температуре. Погрешность определения удельной намагниченности не превышала 0.003 А · м².

РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ

Исследования химического состава и морфологии порошков

Как видно из результатов микрорентгеноспектрального анализа, приведенных в табл. 1, после 15 ч высокоэнергетического помола количество гадолиния в порошках, по сравнению с его содержанием в исходной смеси номинального состава 90% [43% Fe₂O₃-57% FeO]-10% Gd₂O₃, практически не меняется (8.7 мас. % в исходной смеси и 8.8 мас. % в порошках после BMXC). Количество железа немного увеличивается, однако при этом отношение массовых долей железа и гадолиния возрастает лишь на 0.1 мас. %, – с 7.7 до 7.8. Содержание кислорода в порошках после BMXC уменьшается, причем это уменьшение (на

Рис. 1. СЭМ-микрофотографии порошков после ВЭМХС смеси номинального состава 90% [43% Fe₂O₃-57% FeO]-10% Gd₂O₃ в течение 15 ч, полученные при увеличениях ×1000 (*a*) и ×2000 (*б*).

Рис. 2. ДСК-кривые при нагреве и охлаждении порошков после ВЭМХС смеси номинального состава 90% $[43\% Fe_2O_3-57\% FeO]-10\% Gd_2O_3$ в течение 15 ч.

1.7 мас. %) практически совпадает с отмеченным выше увеличением содержания железа (примерно на 1.6 мас. %). В этой связи можно предположить, что все наблюдающиеся изменения обусловлены эффектом "намола" материала шаров [18] в процессе длительного измельчения порошков в защитной атмосфере.

Таблица 1. Результаты химического анализа порошков в исходном состоянии и после высокоэнергетического механохимического синтеза (BMXC)

Элемент	Химический состав порошков, мас. %		
	До ВМХС	После 15 ч ВМХС	
Fe	67.0	68.6	
Gd	8.7	8.8	
0	24.3	22.6	

На рис. 1 приведены микрофотографии порошков после высокоэнергетического помола в течение 15 ч, полученные с помощью СЭМ при увеличениях ×1000 и ×2000. Как видно, частицы порошков имеют квазисферическую форму, характеризуются большим разбросом по размерам (размеры самых крупных и самых мелких частиц различаются примерно на три порядка) и склонны к агломерации (практически все крупные частицы имеют "шубу" из более мелких частиц).

Кривые ДСК-анализа при нагреве и охлаждении порошков после ВМХС в течение 15 ч приведены на рис. 2. На ДСК кривой нагрева в диапазоне температур 625-695°С наблюдается размытый экзотермический пик, который можно связать с процессом превращения магнетит → вюстит. Существенное отклонение температуры этого превращения (по положению максимума – почти на 100°) от температуры аналогичного равновесного превращения магнетита в массивном состоянии (560°С [19]) можно объяснить большей устойчивостью низкотемпературной фазы в нанодисперсном состоянии. Обратное превращение (с гораздо меньшим тепловым эффектом), наблюдающееся при охлаждении, происходит всего лишь на 15-20° ниже равновесной температуры, т.е. аналогично превращениям в массивном FeO.

Фазовый состав и структура

Рентгеновские дифракционные спектры порошков в исходном состоянии (смеси оксидов номинального состава 90% [43% Fe₂O₃-57% FeO]-10% Gd₂O₃), а также после отжига BMXC-порошков в интервале температур 200-900°С, 30 мин приведены на рис. 3. Как видно, дифракционные линии на спектрах BMXC-порошков, отожженных при температурах ниже 600°С, заметно уширены, что указывает на высокую дисперсность об-

Рис. 3. Рентгеновские дифракционные спектры порошков в исходном состоянии (смеси оксидов номинального состава 90% [43% Fe_2O_3 -57% FeO]-10% Gd_2O_3), после BMXC в течение 15 ч, а также после отжига BMXC-порошков в интервале температур 200-900°C, 30 мин.

ластей когерентного рассеяния (OKP) основной фазовой составляющей (соответствующие зависимости размеров OKP от температуры отжига приведены на рис. 4), которой, как оказалось, является магнетит (пр. гр. *Fd3m*; объемное содержание Fe₃O₄ в BMXC-порошках составляет около 97%, рис. 5). Из исходных оксидов (Fe₂O₃, FeO, Gd₂O₃) на спектре порошка после 15 ч. BMXC присутствуют только линии вюстита, хотя его относительное содержание не велико, — около 2 об. % (рис. 5).

Кроме Fe₃O₄ и FeO на дифракционном спектре обнаружены следы (не более 1 об. %) новой фазы — ортоферрита GdFeO3 со структурой типа искаженной структуры перовскита (пр. гр. Рстп). В этой связи следует отметить, что, если весь оксил гадолиния. содержашийся в исходной смеси. израсходовать на его образование, фазы GdFeO₃ должно быть не менее 14 об. %. Наблюдающееся небольшое количество GdFeO₃, а также отсутствие линий от оксида гадолиния на спектре ВМХС-порошков позволяет предположить, что Gd, во-первых, частично растворяется в решетке шпинели, подтверждением чего является увеличение периода решетки магнетита после ВМХС (рис. 6), а, во-вторых, учитывая нелинейность фона на углах $2\theta < 50^{\circ}$, участвует в образовании еще одной, рентгеновски аморфной фазы.

Как видно на рис. 5, после отжига ВМХС-порошков при температурах ниже 600°С "кажущее-

ИЗВЕСТИЯ РАН. СЕРИЯ ФИЗИЧЕСКАЯ том 83 № 10 2019

ся" (т.к. мы не учитываем возможное присутствие в порошках после ВМХС рентгеновски-аморфной фазы и уменьшение ее содержания в процессе отжига) объемное содержание магнетита $v_{\text{Fe}_3O_4}$ практически не меняется, хотя параметр решетки Fe₃O₄ (рис. 6) именно при этих температурах отжига постепенно возвращается к табличному зна-

Рис. 4. Изменение размеров ОКР основной фазовой составляющей в зависимости от температуры отжига ВМХС-порошков. На этом и последующих рисунках линии тренда проведены для удобства зрительного восприятия.

Рис. 5. Изменение фазового состава ВМХС-порошков после отжига в интервале температур 200–900°С, 30 мин.

чению (a = 0.8397 нм [20], на рисунке показан пунктирной линией). Одновременно наблюдается увеличение объемного содержания фазы ортоферрита GdFeO₃, количество которой после отжига при 900°С достигает 14 об. % (рис. 5). Последнее, а также изменения параметра решетки Fe₃O₄ (рис. 6), являются убедительными подтверждением предположений о растворении гадолиния в процессе BMXC в решетке магнетита и в аморфной фазе, и его выделении в процессе отжига при температурах выше 600°С.

Еще одной особенностью отжига ВМХС-порошков при высоких температурах, выявленных в процессе рентгеновского фазового анализа (рис. 5), является то, что превращение магнетит → вюстит, в подтверждение предположений, высказанных при обсуждении результатов ДСК/ТГ

Таблица 2. Гистерезисные свойства ВМХС-порошков в исходном состоянии и после отжига в течение 30 мин в диапазоне температур 200–900°С

$T_{\text{отж}}, ^{\circ}\text{C}$	<i>H_{ci}</i> , кА/м	σ_r , А · м ² /кг	$\sigma_{2T}, A \cdot m^2/кг$
20	9.8	2.11	44.33
200	8.3	2.07	52.12
250	8.9	2.38	49.90
300	8.9	2.38	50.45
400	8.4	2.59	53.24
500	8.2	2.99	59.48
600	12.2	5.72	63.29
700	15.1	10.94	70.30
800	13.9	11.10	63.23
900	11.1	5.56	40.54

Рис. 6. Зависимость параметра решетки фазы магнетита от температуры отжига ВМХС-порошков. Пунктиром показано табличное значение параметра решетки Fe_3O_4 (a = 0.8397 нм [20]).

анализа (рис. 3), происходит при температурах выше 600°С, тогда как согласно диаграмме Fe–O [19] равновесная температура этого превращения равна 560°С. В дополнение к вышесказанному, можно предположить, что это обусловлено также, во-первых, атмосферными условиями, в которых проводился отжиг ВМХС-порошков (Ar), которые могут отличаться от тех, что были при построении равновесной диаграммы состояния, а, во-вторых, возрастанием температур устойчивости фазы магнетита вследствие присутствия в решетке ионов гадолиния.

Магнитные свойства

Удельная намагниченность в поле 1600 кА/м (σ_{2T}), удельная остаточная намагниченность (σ_r) и коэрцитивная сила по намагниченности (H_{ci}) ВМХС-порошков в исходном состоянии (15 ч помола) и после отжига в течение 30 мин в диапазоне температур 200 ... 900°С приведены в табл. 2.

Удельная намагниченность ВМХС-порошков, измеренная в поле 1600 кА/м (σ_{2T}), изменяется немонотонно, как в зависимости от температуры отжига (рис. 7), так и в зависимости от "кажущегося" объемного содержания фазы магнетита (рис. 8), в то время как изменение удельной намагниченности в пересчете на объемное содержание Fe₃O₄ в порошках (на рис. 7 и 8 показана пунктиром) имеет линейный характер. Можно предположить, что наблюдающиеся различия обусловлены исключением из рассмотрения аморфной фазы. Если, учитывая это предположение, привести в соответствие объемное содержание магнетита с

Рис. 7. Зависимости объемного содержания фазы магнетита ($v_{Fe_3O_4}$) и удельной намагниченности BMXC-порошков в поле 1600 кА/м (σ_{2T}) от температуры отжига.

Рис. 8. Изменение удельной намагниченности ВМХСпорошков в зависимости от объемного содержания фазы магнетита. Сплошной линией показано расчетное значение σ_{2T} .

экспериментально полученными значениями σ_{2T} (группа точек на зависимости $\sigma_{2T}(T_{\text{отж}})$ при $T_{\text{отж}} > 650$ °C, аппроксимированных прямой 2 на рис. 8), воспользовавшись аналитическим выражением для прямой 1 (рис. 8) на зависимости $v_{\text{Fe}_{3}O_{4}}(T_{\text{отж}})$ при $T_{\text{отж}} < 650$ °C, то оказывается, что в порошках после BMXC аморфной фазы около $50\%^{1}$, а скорректированные зависимости фазово-

Содержание фазы, об. $\%/\sigma_{2T}$, А · м²/кг

Рис. 9 Скорректированные зависимости объемного содержания фаз магнетита (кривая *I*), вюстита (*2*), ортоферрита (*3*) и аморфной фазы (*4*), а также изменение удельной намагниченности ВМХС-порошков (*5*) в зависимости от температуры отжига.

го состава ВМХС-порошков выглядят так, как это показано на рис. 9. На этом же рисунке приведены соответствующие изменения σ_{2T} от температуры отжига. Как видно, в этом случае, в отличие от рис. 7, зависимости $\sigma_{2T}(T_{\text{отж}})$ и $v_{\text{Fe}_{3}O_4}(T_{\text{отж}})$ очень хорошо коррелируют между собой.

Если обратиться к зависимости экспериментально полученных значений удельной намагниченности ВМХС-порошков от скорректированного объемного содержания магнетита $\sigma_{2T}(v_{Fe_3O_4})$, приведенной на рис. 10, то оказывается, что при соблюдении очевидного условия $\sigma_{2T}(0) \equiv 0$, они очень хорошо аппроксимируются квадратичной функцией ($R^2 = 0.9978$), причем полученное значение $\sigma_{2T}(100) = 96.34 \text{ A} \cdot \text{M}^2/\text{кг}$ (расчетные кривые на рис. 8, 9 и 10 проведены в предположении $\sigma_s(Fe_3O_4) = 92 \text{ A} \cdot \text{M}^2/\text{кг}$ [21]). Разница значений ($\approx 4.7\%$). Если предположить, что она обусловлена присутствием магнитных моментов ионов Gd³⁺ в решетке магнетита², то оказывается, что

¹ Исследования фазово-структурного состояния ВМХС-порошков методами высокоразрешающей просвечивающей электронной микроскопии проводятся и будут опубликованы по их завершении.

² На 4*f*-оболочке Gd³⁺ находится 7 электронов, поэтому L = 0, S = 7/2, g = 2 и $\mu_s = gS = 7$ μ_B . Сравнительно большие по размерам ионы Gd³⁺ замещают ионы Fe³⁺ преимущественно в октаэдрических позициях обратной шпинели, магнитная формула которой имеет вид [22]: Fe³⁺ [Fe³⁺ Fe²⁺]O₄²⁻. У катиона Fe³⁺ на 3*d*-оболочке находится 5 электронов, соответственно L = 0, S = 5/2, g = 2 и $\mu_s = gS = 5$ μ_B . Разность магнитных моментов на одно замещение составляет 2 μ_B . Отсюда, зная разность удельных намагниченностей легированного и нелегированного магнетита, легко рассчитать предельную концентрацию легирующего компонента.

Рис. 10. Зависимость приведенных значений удельной намагниченности σ_{2T} ВМХС-порошков от объемного содержания Fe₃O₄.

его максимальная растворимость может достигать 11.8 ат. %. Очевидно, что в силу возрастания упругой энергии (которая также является квадратичной функцией концентрации), она вряд ли достижима, однако изменения параметра решетки фазы магнетита, приведенные на рис. 6, практически точно воспроизводят прямую, соединяющую точки $a(Fe_3O_4) = 0.8397$ нм и a(11.8 ат. %Gd) = 0.8428 нм (пунктирная прямая на рис. 11, которая рассчитана в предположении, что ионные радиусы Gd³⁺ и Fe³⁺ равны соответственно 0.094 и 0.067 нм), при этом максимальному экспериментально полученному значению a(x) = 0.8433 нм соответствует $x \approx 5.14$ ат. % Gd.

Влияние Gd на параметр решетки магнетита, экспериментально подтвержденный в нашей работе (рис. 11), не согласуется, тем не менее, с выводами авторов [16], которые на основании рентгеновских дифракционных исследований наночастиц магнетита, легированного Gd ($D = 4.74 \pm 0.51$ нм), полученных химическим (полиольным [2]) методом, утверждают, что "легирование Gd не оказало существенного влияния на кристаллическую структуру магнетита", - положение основных дифракционных линий Fe₃O₄ не изменяется. В этой связи можно предположить (результаты наших исследований показывают, что такое легирование возможно), что характер полученных дифракционных спектров (сильное уширение линий, малость отношения сигнал/фон), а также, предположительно, низкое содержание Gd в наночастицах (в работе [16] выполнено лишь качественное исследование химического состава легированного магнетита), не позволили авторам добиться необходимого разрешения. Однако для

Рис. 11. Расчетная зависимость параметра решетки Fe_3O_4 от концентрации Gd (пунктирная прямая) и экспериментально полученные в настоящей работе значения (согласно рис. 6).

нас принципиально важным результатом работы [16] является то, что осуществить химическими методами такое легирование можно и, следовательно, полученные нами количественные зависимости можно рассматривать как предел при экстраполяции соответствующих характеристик структуры и магнитных свойств наночастиц легированного Gd магнетита разного размера при разработке химического методов их синтеза.

ЗАКЛЮЧЕНИЕ

С использованием методов сканирующей электронной микроскопии, микрорентгеноспектрального, рентгеноструктурного и фазового анализов, дифференциальной сканирующей калориметрии и измерения гистерезисных свойств проведены комплексные исследования порошков номинального состава 90% [43% Fe_2O_3 -57% FeO]-10% Gd_2O_3 в состояниях после высокоэнергетического измельчения в течение 15 час и после термообработки в течение 30 мин в диапазоне температур 200-900°С.

Установлено, что после ВМХС основными фазовыми составляющими порошков являются магнетит (Fe₃O₄), период решетки которого на 0.4% больше табличного значения (a = 0.8397 нм [20]), и аморфная фаза, кроме того, в них присутствует около 2 об. % вюстита (FeO) и менее 1 об. % ортоферрита (GdFeO₃).

Выявлены закономерности изменения фазового состава ВМХС-порошков в процессе термообработки. Установлено, что в диапазоне температур отжига 200—400°С заметных изменений фазового состава ВМХС-порошков не наблюдается.

1401

В диапазоне температур 400–700°С происходит кристаллизация аморфной фазы с образованием фаз Fe_3O_4 и GdFeO_3, а также быстрое увеличение размеров OKP фазы магнетита. В диапазоне температур отжига 200–700°С период решетки Fe_3O_4 монотонно уменьшается, приближаясь к своему табличному значению. Отжиг выше 700°С приводит к резкому снижению содержания Fe_3O_4 , при одновременном возрастании объемного содержания FeO и GdFeO₃.

Совместный анализ результатов фазово-структурных исследований и гистерезисных свойств ВМХС-порошков в исходном состоянии и после термообработки позволяет заключить, что ионы Gd^{3+} растворяются в решетке Fe_3O_4 , замещая Fe^{3+} в октаэдрических позициях обратной шпинели, причем максимальному экспериментально полученному значению a(x) = 0.8433 нм соответствует $x \approx 5.14$ ат. % Gd (оценки предельной растворимости Gd, полученные без учета упругой энергии, дают значение 11.8 ат. %). Таким образом, подтверждена принципиальная возможность существования и получения магнетита, легированного Gd, который в случае разработки эффективного химического метода его синтеза в наноразмерном состоянии, может стать перспективным двойным $T_2 - T_1$ -контрастным агентом МРТ.

СПИСОК ЛИТЕРАТУРЫ

- Crozals G.D., Bonnet R., Farre C., Chaix C. // Nano Today. 2016. V. 11. P. 435.
- Périgo E.A., Hemery G., Sandre O. et al. // Appl. Phys. Rev. 2015. V. 2. Art. № 041302.
- 3. Dadfar S.M., Roemhild K., Drude N.I. et al. // Adv. Drug Deliv. Rev. 2019. V. 11. P. 1.
- Nikitin A., Fedorova M., Naumenko V. et al. // J. Magn. Magn. Mater. 2017. V. 441. P. 6.

5. Губин С.П., Кокшаров Ю.А., Хомутов Г.Б. и др. // Усп. химии. 2005. Т. 74. № 6. С. 539; Gubin S.P., Yurkov G.Yu., Koksharov Yu.A., Khomutov G.B. // Russ. Chem. Rev. 2005. V. 74. № 6. Р. 489.

ФАЗОВЫЙ СОСТАВ И МАГНИТНЫЕ СВОЙСТВА ПОРОШКОВ

- 6. Na H.B., Hyeon T. // J. Mater. Chem. 2009. V. 19. P. 6267.
- 7. Fedorenko S., Stepanov A., Zairov R. et al. // Colloids Surf. A. 2018. V. 559. P. 60.
- Li Z., Yi P.W., Sun Q. // Adv. Func. Mater. 2012. V. 22. P. 2387.
- Aime S., Botta M., Terreno E. // Adv. Inorg. Chem. 2005. V. 57. P. 173.
- Marckmann P., Skov L., Rossen K. et al. // J. Am. Soc. Nephrol. 2006. V. 17. P. 2359.
- 11. *Kuo P.H., Kanal E., Abu-Alfa A.K. et al.* // Radiology. 2007. V. 242. P. 647.
- Bulte J.W.M., Kraitchman D.L. // NMR Biomed. 2004. V. 17. P. 484.
- Shin T., Choi J., Yun S. et al. // J. Am. Chem. Soc. 2014. V. 8. P. 3393.
- Keasberry N.A., Bañobre-López M., Wood C. et al. // Nanoscale. 2015. V. 7. P. 16119.
- Domingues E.M., Tsipis E.V., Yaremchenko A.A. et al. // J. Europ. Ceramic Soc. 2013. V. 33. P. 1307.
- Xiao N., Gu W., Wang H. et al. // J. Colloid Interface Sci. 2014. V. 417. P. 159.
- 17. *Shelekhov E.V., Sviridova T.A.* // Metal Sci. Heat Treat. 2000. V. 42. № 8. P. 309.
- Шах-Назарян Н. Изучение влияния механической активации при твердофазном синтезе керамики. Уч.-метод. пособие. Ростов-на-Дону: Изд-во ЮФУ, 2009. С. 10.
- 19. *Kubaschewski O*. Iron binary phase diagrams. Berlin-Heidelberg: Springer-Verlag, 1982. P. 79.
- Teja A.S., Koh P.Y. // Progr. Cryst. Growth Char. Mater. 2009. V. 55. P. 22.
- 21. Arévalo P., Isasi J., Caballero A.C. et al. // Ceram. Int. 2017. V. 43. P. 10333.
- 22. Кринчик Г.С. Физика магнитных явлений. М.: Изд-во Моск. ун-та, 1976. С. 367.