УДК 537.525

КИНЕТИЧЕСКАЯ МОДЕЛЬ ФОРМИРОВАНИЯ ОБЪЕМНОГО РАЗРЯДА НА ЛЕВОЙ ВЕТВИ КРИВОЙ ПАШЕНА С КАТОДНЫМ ИНИЦИИРОВАНИЕМ ПРОБОЯ

© 2019 г. А. В. Козырев^{1, *}, Ю. Д. Королев¹, Н. С. Семенюк¹

¹Федеральное государственное бюджетное учреждение науки Институт сильноточной электроники Сибирского отделения Российской академии наук, Томск, Россия

> **E-mail: kozyrev@to.hcei.tsc.ru* Поступила в редакцию 20.05.2019 г. После доработки 20.06.2019 г. Принята к публикации 27.07.2019 г.

На базе кинетического описания электронной и ионной подсистемы плазмы демонстрируется физический механизм формирования объемной структуры разряда низкого давления в плоском диоде. Моделирование дает возможность проследить за всеми деталями этого процесса, в том числе за эволюцией функций распределения электронов и ионов по энергиям на всех этапах развития пробоя. Выявлен механизм формирования потока ионов к аноду в нестационарной фазе пробоя.

DOI: 10.1134/S0367676519110152

введение

Объемный разряд низкого давления широко используется в разных технических устройствах, например, он является основой плазменных источников заряженных частиц и сильноточных коммутирующих приборов [1, 2]. Под разрядом низкого давления мы понимаем такую ситуацию, когда длина свободного пробега заряженных частиц (обычно имеются ввиду электроны) превышает размеры разрядной системы или, по крайней мере, соизмерима с ними. Для одномерной плоской геометрии разрядного промежутка эта ситуация реализуется при произведениях давления на длину зазора *pd*, отвечающих левой ветви кривой Пашена [3], описывающей растущую зависимость статического пробивного напряжения $U_{hr}(pd)$ при уменьшении параметра pd.

Разряд низкого давления имеет специфические черты, выделяющие его на фоне других видов разряда: коронного, тлеющего, дугового, разряда высокого давления. В частности, низкое давление газа в таком разряде требует нетривиальных методов его инициирования и поддержания.

Часто в технических устройствах разряд низкого давления инициируют инжекцией плазмы в промежуток, к которому предварительно приложено напряжение источника [4]. В качестве инициирующей плазмы обычно используют вспомогательный разряд по поверхности диэлектрика на катодном узле. В работе [5] исследовали механизм развития последующего пробоя, который в кратком изложении состоит в следующем: электроны, эмитированные из плазмы вспомогательного разряда, двигаясь в приложенном поле к аноду промежутка в режиме близком к свободному пробегу, ионизуют разреженный газ, оставляя в промежутке ионы. Эти ионы, являясь по сравнению с электронами, малоподвижными, накапливаются в объеме промежутка, постепенно все больше и больше искажая исходное распределение электрического потенциала. Начиная с некоторого момента, положительный заряд ионов приводит к перераспределению электрического потенциала, формируя типичную для тлеющего разряда структуру: основное падение потенциала сосредоточено в узкой прикатодной области, а почти весь промежуток занимает эквипотенциальная область квазинейтральной плазмы. Однако одномерная аналитическая модель начальной стадии перераспределения потенциала [5] не могла адекватно описать стадию заполнения плазмой объема разрядного промежутка вплоть до формирования стационарной фазы разряда. Цель настоящей работы состоит в моделировании стадии формирования разряда низкого давления на основе полностью кинетической модели. как для электронной так и для ионной подсистемы плазмы.

КИНЕТИЧЕСКАЯ МОДЕЛЬ РАЗРЯДА

Основное преимущество последовательного кинетического описания плазмы на основе уравнения Больцмана состоит в том, что мы можем

постоянно следить за эволюцией всего спектра электронов и ионов в разряде, самосогласованно учитывая влияние на него электрического поля и элементарных процессов столкновений заряженных частиц с атомами газа. Методы описания и решения кинетического уравнения Больцмана были успешно апробированы на примере моделирования пробоя газа высокого давления [6].

Здесь мы использовали математическую модель для плоского одномерного диода с площадью электродов S, длиной d, заполненного азотом пониженного давления p, включенного последовательно в цепь с источником заданного напряжения U.

Основные уравнения модели — это два кинетических уравнения Больцмана для плотности распределения электронов, f(x, v, t), и однозаряд-

ных положительных ионов N_2^+ , F(x, v, t), по скоростям:

$$\frac{\partial f}{\partial t} + \upsilon \frac{\partial f}{\partial x} - \frac{e}{m} E \frac{\partial f}{\partial \upsilon} = -Q_{-} + Q_{+} + S_{scat}, \qquad (1)$$

$$\frac{\partial F}{\partial t} + \upsilon \frac{\partial F}{\partial x} + \frac{e}{M} E \frac{\partial F}{\partial \upsilon} = Q_{ion} + S_{exch}.$$
 (2)

Здесь *е* — элементарный заряд, *m*, *M* — масса электрона и иона, соответственно, E(x, t) – напряженность электрического поля. Первое слагаемое Q_ в правой части (1) описывает процесс "уничтожения" электронов в данном элементе фазового пространства за счет неупругих электрон-атомных столкновений, второе слагаемое Q_+ описывает "рождение" электронов в других элементах фазового пространства в тех же неупругих процессах, третье слагаемое S_{scat} описывает влияние рассеивающих упругих столкновений на функцию распределения электронов. Правая часть уравнения (2) включает слагаемое, Q_{ion}, описывающее генерацию ионов в результате столкновений электронов с атомами, а второе слагаемое S_{exch} учитывает резонансную перезарядку ионов на атомах.

Система уравнений (1), (2) дополняется одномерным уравнением Пуассона для электрического потенциала и выражением для вычисления напряжённости поля

$$\frac{\partial^2 \varphi}{\partial x^2} = \frac{e}{\varepsilon_0} (n_e - n_i), \quad E = -\frac{\partial \varphi}{\partial x}, \quad (3)$$

где ε_0 – диэлектрическая проницаемость вакуума, n_e и n_i – концентрации электронов и ионов определяются как моменты функции распределения:

$$n_i(x,t) = \int F(x,\upsilon,t)d\upsilon, \ n_e(x,t) = \int f(x,\upsilon,t)d\upsilon$$

Система интегро-дифференциальных уравнений (1)–(3) позволяет получить полностью самосогласованное кинетическое описание переноса электронов в разрядном промежутке. В рамках "экономичной" модели разряда мы ограничились учетом упругих и неупругих столкновений только двух типов. Неупругие столкновения электронов описывали реальными сечениями ударной ионизации атомов из основного состояния σ_{ion} , а упругие столкновения описывали транспортным сечением σ^* , также известными из литературных данных [7]. Сечение ионной перезарядки полагали постоянным $\sigma_{exch} = 10^{-15}$ см². В рамках одномерной модели абсолютно корректно учесть влияние рассеивающих столкновений невозможно, так как рассеяние представляет собой принципиально трехмерный процесс. Поэтому для учета рассеивающих электронных процессов использовалт приближение "вперед–назад".

Неупругие процессы в форме ударной ионизации описываются следующим образом. Полагаем, что "первичный" электрон с кинетической энергией є сталкиваясь с атомной частицей, порождает два "вторичных" электрона: медленный с энергией $\varepsilon_s = I \ln(\varepsilon/I)$ и быстрый – ε_f = $= \varepsilon - I (1 + \ln (\varepsilon/I))$, где *I* – пороговая энергия реакции (в модели она равна энергии ионизации атома). Это существенное упрощение реального процесса, в котором имеется вероятностный разброс в энергиях вторичных электронов. Однако мы пошли на это упрощение, так как оно позволяет принципиально верно описать сам процесс перераспределения кинетической энергии электрона во всем диапазоне ионизационных столкновений.

РЕЗУЛЬТАТЫ МОДЕЛИРОВАНИЯ ПРОБОЯ ПЛОСКОГО ПРОМЕЖУТКА

Система уравнений (1)–(3) позволяет описывать разрядные процессы с очень широким кругом начальных условий: нестационарным профилем импульса напряжения источника питания U(t), различным начальным распределением плазмы n(x), наличием потока инжектированных электронов на катоде $j_{em}(t)$ с произвольным энергетическим спектром $f_0(\varepsilon)$.

Ниже мы ограничимся иллюстрацией результатов моделирования ситуации, которая ранее уже была предметом наших исследований [5]. Речь идет о плоском промежутке с предварительно поданным постоянным напряжением на аноде. Инициирование разряда происходит за счет мгновенного появления в катодной плоскости плазменного источника с высокой эмиссионной способностью электронов.

Численные параметры задачи, для которой получены приведенные ниже иллюстрации, были такие: длина промежутка 0.5 см, концентрация молекул азота $4 \cdot 10^{14}$ см⁻³ (давление 1.5 Па), напряжение источника питания 10 кВ. При таких величинах плотность тока вакуумного диода с

Рис. 1. Распределения электрического потенциала в промежутке в различные моменты времени.

ограничением тока пространственным зарядом электронов (плотность тока Чайльда—Ленгмюра) 9.3 А/см², поэтому на катодной поверхности задавалась концентрация электронов с температурой 1.5 эВ на уровне, обеспечивающем плотность эмиссионного тока 65 А/см². Эти параметры были выбраны, чтобы можно было использовать наши расчеты для анализа характеристик коммутаторов тока, работающих на базе псевдоискровых разрядников [8].

На рис. 1 показаны рассчитанные распределения электрического потенциала в промежутке для пяти характерных моментов развития пробоя после начала инжекции электронов на катоде (на оси абсцисс координата в мм). Как видно, уже к

50-ой наносекунде в промежутке сформировалось распределение потенциала, характерное для вакуумного диода, работающего в режиме ограничения тока пространственным зарядом. К 140-ой нс вблизи катода появляется эквипотенциальная область, заряженная до потенциала в несколько сот вольт, которая постепенно к 180-ой нс распространяется примерно до середины промежутка. Это область квазинейтральной плазмы. Затем очень быстро (в этом варианте за 10 нс) происходит перераспределение потенциала, в результате которого квазинейтральная плазма заполняет весь промежуток и при этом заряжается практически до потенциала анода. Столь быстрая зарядка всего объема плазмы обусловлена тем, что электроны из нее быстро уходят на анод за счет нарастающей плотности электронного тока в прианодной области падения потенциала, а малоподвижные ионы практически не меняют своего положения.

Эти физические процессы хорошо демонстрируются на фазовых портретах электронной и ионной функций распределения по энергиям. На рис. 2 приведены мгновенные портреты электронной и ионной плотности распределения на фазовой плоскости координата — кинетическая энергия в моменты времени 140 и 180 нс. Внизу обоих рисунков показана шкала плотности распределения в логарифмическом масштабе (например, цифра "11" на шкале соответствует плотности частиц 10^{11} см⁻³ · эВ⁻¹). Положительные знаки кинетической энергии отвечают прямому движению частиц (от катода к аноду), а "отрицательные кинетические энергии" описывают частицы, движущиеся от анода к катоду.

В частности, на рисунках хорошо видны движущиеся к катоду электроны, рассеянные назад в результате упругих столкновений. За счет перераспределения энергий в неупругих столкнове-

Рис. 2. Фазовые портреты плотности электронной и ионной функций распределения в промежутке в момент времени 140 и 180 нс.

ниях в сплошном спектре присутствуют электроны всех энергий (от нуля до величины ускоряюшего потенциала в данной точке). Из-за того, что сечения электронных столкновений в азоте имеют максимальные величины в области сравнительно малых энергий (примерно до 150 эВ), вблизи катода рассеянных электронов много, а в прианодной области их на несколько порядков меньше. На фазовых портретах хорошо виден участок плотной квазинейтральной плазмы вблизи катода: там велика плотность ансамбля термализованных (низкоэнергетичных) электронов. С границы этой плотной плазмы эмитируется почти моноэнергетичный электронный пучок, который движется к аноду в режиме свободного пролета, порождая по пути редкие вторичные электроны и ионы.

Особый интерес представляет другой эффект: в промежутке в результате формирования локально немонотонного распределения потенциала появляются ионы, движущиеся к аноду с энергиями до 1 кэВ. Они видны на фазовых портретах ионной подсистемы на рис. 2 в виде ярко выраженных "языков" плотности ионов с положительной кинетической энергией на фоне основного потока ионов, движущихся к катоду.

Зарождается анодо-направленный поток ионов в момент времени 140 нс в области спадающего электрического потенциала, как это видно на соответствующем графике потенциала на рис. 1 (кривая 140 нс). К моменту времени 180 нс этот поток приобретает значительную кинетическую энергию (примерно до 1 кэВ), что соответствует потенциалу плотной прикатодной плазмы в этот момент времени (кривая 180 нс на рис. 1). Как видно из рис. 2 (180 нс), поначалу этот поток наталкивается на прианодный барьер тормозящего поля (на фазовой плоскости эффект отражения потока от барьера отображается в виде закрученного вихря). Но после момента времени 190 нс энергия поля в этой области сильно уменьшается, как видно из кривой 190 нс на рис. 1, и ионы с большой положительной энергией имеют возможность достигнуть анода. Расчеты показали, что после 200-ой нс потенциал объемной плазмы практически равен анодному, поле в этой области близко к нулю, и на анод по инерции идет заметный ионный поток с широким энергетическим спектром, плавный максимум которого лежит в области энергий 1 кэВ. Импульс потока горячих ионов имеет длительность порядка 30 нс на полувысоте и амплитуду на уровне 200 мA \cdot см⁻². При этом полный ток разряда (поток электронов) выходит на квазистационарный уровень $100 \, \text{A} \cdot \text{сm}^{-2}$.

ЗАКЛЮЧЕНИЕ

Разработанная теоретическая модель одномерного разряда низкого давления, базирующаяся на последовательном кинетическом описании электронной и ионной подсистемы плазмы, позволяет в деталях описать весь процесс формирования такого разряда, исходя из первых принципов физической кинетики. Моделирование, подтвердив в целом ранее сформулированные закономерности такого процесса, позволяет корректно получить основные количественные характеристики разряда в широком диапазоне условий задачи. В частности, расчеты показали, что нестационарная фаза развития пробоя плоского межэлектродного промежутка, заполненного газом низкого давления, протекает с быстрым изменением пространственного распределения концентрации заряженных частиц и электрического поля. При этом неизбежно возникает ситуация, когда электрический потенциал в промежутке немонотонно зависит от координаты, то есть в объеме разряда появляются области с инверсией направления электрического поля. Эти знакопеременные поля являются причиной появления "аномально" направленных потоков заряженных частиц, в частности, анодо-направленных потоков положительных ионов. Из многочисленных данных известно, что такие потоки ионов со сравнительно высокой энергией направленного движения наблюдаются в вакуумных дугах [9]. В данной работе показано, что даже в одномерной постановке кинетической задачи такие потоки могут иметь место, и одной из причин их появления является именно немонотонное распределение электрического потенциала. Стоит отдельно отметить, что метод кинетического уравнения, в отличие от гидродинамического метода описания плазмы, естественным и непротиворечивым образом описывает такие ситуации.

Работа выполнена в рамках проекта Российского научного фонда № 19-19-00123.

СПИСОК ЛИТЕРАТУРЫ

- 1. *Korolev Y.D., Koval N.N.* // J. Phys. D. 2018. V. 51. Art. № 323001.
- 2. *Oks E.M.* // Plasma Sources Sci. Tech. 1992. V. 1. № 4. P. 249.
- 3. *Райзер Ю.П.* Физика газового разряда. Долгопрудный: Изд. дом Интеллект, 2009, 736 с.
- 4. *Kovalchuk B.M., Zherlitsyn A.A., Tsoy N.V.* // Las. Part. Beams. 2016. V. 34. № 4. P. 631.
- Kozyrev A.V., Korolev Yu. D. et al. // J. Appl. Phys. 1993. V. 74. P. 5366–5371.
- Кожевников В.Ю., Козырев А.В., Семенюк Н.С. // Изв. вузов. Физ. 2017. Т. 60. № 8. С. 148; Kozhevnikov V.Y., Kozyrev A.V., Semeniuk N.S. // Russ. Phys. J. 2017. V. 60. № 8. Р. 1425.
- *Itikawa Y.* // J. Phys. Chem. Ref. Data. 2006. V. 35. № 1. P. 31.
- 8. *Korolev Y.D., Geyman V.G., Frants O.B. et al.* // IEEE Trans. Plasma Sci. 2001. V. 29. № 5. P. 796.
- 9. Anders A., Oks E.M., Yushkov G.Y. et al. // IEEE Trans. Plasma Sci. 2005. V. 33. № 5. P. 1532.