УДК 53.087.45,539.01.03,539.1.08

ПОДАВЛЕНИЕ ОБРАТНОЙ СВЯЗЬЮ БЫСТРЫХ ВЕРТИКАЛЬНЫХ ОСЦИЛЛЯЦИЙ ПУЧКА СИ НАКОПИТЕЛЯ ВЭПП-3

© 2019 г. М. Г. Федотов^{1, 2, *}, С. И. Мишнев¹, И. Д. Лянгасов^{1, 2}

¹Институт ядерной физики СО РАН, Новосибирск, Россия ²Новосибирский государственный университет, Новосибирск, Россия *E-mail: mihailru@mail.ru

Проведены эксперименты по подавлению вертикальных осцилляций пучка синхротронного излучения накопителя ВЭПП-3 введением быстрой обратной связи. Датчиком положения пучка являлся детектор на основе pin-фотодиодов с электронным трактом обработки сигнала и электромеханической системой автоматической юстировки; в качестве быстрого корректора использовалась пара безжелезных катушек. В экспериментах получено подавление осцилляций с частотой 50 Гц около 30 дБ, а мощной помехи на частоте 690 Гц – 25 дБ.

DOI: 10.1134/S0367676519020121

Существующая система стабилизации пучков синхротронного излучения (СИ) ускорителянакопителя ВЭПП-3 [1–3] эксплуатируется длительное время и неоднократно подвергалась модернизации. Она эффективно подавляет медленные (например, тепловые) дрейфы вертикального положения источника СИ по координате и по углу. Однако из-за периодического (с периодом 5–10 с) действия данная система не обеспечивает подавления быстрых осцилляций пучка, вызываемых как механическими вибрациями, так и пульсациями токов в магнитных элементах накопителя. Более того, такие осцилляции возмущают ее работу и снижают точность стабилизации.

СИСТЕМА РЕГИСТРАЦИИ

Для наблюдения осцилляций ранее была разработана система быстрой регистрации [4], включающая дифференциальный детектор (рис. 1*a*), тракт обработки сигнала и электромеханическое устройство юстировки. В качестве детектора использовалась пара кремниевых ріп-фотодиодов BPW-34 (с размерами чувствительных областей 3×3 мм) в режиме прямой регистрации рентгеновского излучения. Приходящий на них пучок СИ предварительно ослаблялся фильтром-поглотителем до приемлемого значения (примерно 10^4 рентгеновских фотонов ~10 кэВ за вспышку СИ на фотодиод).

В двух каналах тракта обработки поступающие с фотодиодов импульсы усиливались, проходили через фильтры-формирователи, схемы двойной коррелированной выборки и устройства выборки-хранения. Формируемый далее разностный сигнал каналов нес информацию о смещении пучка СИ от центра дифференциального детектора, суммарный — о вертикальном размере пучка. Кроме того, разностный сигнал управлял работой контроллера электромеханической системы, автоматически юстировавшей детектор по центру пучка.

СИСТЕМА ПОДАВЛЕНИЯ ОСЦИЛЛЯЦИЙ

Дальнейшим развитием данной работы стали эксперименты по подавлению колебаний положения пучка СИ в зоне экспериментальных станций путем воздействия выходным сигналом системы регистрации на положение электронного пучка в накопителе и формированию тем самым петли отрицательной обратной связи.

Рис. 1. a – схема дифференциального детектора: пара ріп-фотодиодов l установлена на общем основании 2и облучается пучком СИ 3; δ – Структура быстрого корректора: l – две катушки седловой формы, 2 – металлическая труба (вакуумная камера накопителя).

Рис. 2. Схематический вид участка накопителя ВЭПП-3 и бункера СИ: 1— дублеты магнитных линз, 2— вигглер (шифтер), 3— магнитная линза, 4— поворотный магнит, 5— формирователь пучков СИ, 6— радиационная защита, 7— каналы вывода СИ, 8— станция системы стабилизации СИ и дифференциальный детектор, 9— зона установки быстрого корректора.

Определенную сложность в данных экспериментах представляло отсутствие на кольце накопителя ВЭПП-3 быстрых корректоров (вертикальных дефлекторов). Поэтому был изготовлен упрощенный самодельный корректор (рис. 16) — пара безжелезных катушек седловой формы, наложенных непосредственно на металлическую вакуумную камеру накопителя. Положение корректора относительно источника СИ (трехполюсного вигглера) показано на рис. 2.

При токе катушек корректора 1 А пучок СИ вигглера поворачивается на 30 микрорадиан при смещении точки излучения в противоположную сторону на 0.12 мкм. Из-за значительной базы (расстояние от источника до зоны экспериментальных станций около 15 м) смещение пучка на детекторе определяется почти исключительно углом отклонения и составляет (при указанном токе) 0.45 мм.

К сожалению, экранирующее действие металлической стенки камеры ограничивает сверху полосу рабочих частот корректора 1.3 кГц (по уровню 0.7).

В первых экспериментах [4] по подавлению колебаний пучка СИ на корректор через линейный усилитель мощности непосредственно подавался разностный сигнал с выхода системы регистрации. Для частоты 50 Гц было получено подавление 15 дБ; большее увеличение глубины обратной связи приводило к самовозбуждению. Поскольку величина сигнала оказывалась пропорциональна интенсивности пучка, достижение максимального подавления требовало подстройки коэффициента усиления тракта под конкретный ток накопителя.

В дальнейшем и тракт обработки сигналов, и усилитель мощности были доработаны. Блоксхема доработанной системы приведена на рис. 3.

Здесь пара регистрирующих рентгеновское излучение pin-фотодиодов 1 установлена на вертикальном шаговом приводе (актюаторе) 2 (с размером шага 0.2 мкм); импульсы тока фотодиодов по коаксиальным линиям 3 поступают на предусилители 4, к выходам которых подключены каналы обработки 5 и общая схема синхронизации 6.

В каждом канале обработки сигнал последовательно проходит через фильтр-формирователь, схему двойной коррелированной выборки (ДКВ) и устройство выборки-хранения (УВХ). Фильтрформирователь ограничивает сверху шумовую полосу и расширяет импульсы, схема ДКВ выделяет их фактическую амплитуду и подавляет как низкочастотные помехи и шумы, так и дрейфы тока утечки фотодиода (в частности, обусловленные радиационными повреждениями), а схема УВХ формирует на выходе канала огибающую амплитуд импульсов.

Схема синхронизации, управляющая схемами ДКВ и УВХ, обеспечивает работу системы как в однобанчевом (частота вспышек СИ 4 МГц), так

Рис. 3. Блок-схема системы подавления колебаний пучка СИ. Пояснения к рисунку – в тексте.

Рис. 4. Осциллограммы сигналов, соответствующих вертикальному отклонению пучка СИ (*a*, *b*), и их спектры (*b*, *c*) при разомкнутой (*a*, *b*) и замкнутой (*b*, *c*) обратной связи.

и в двухбанчевом (частота вспышек 8 МГц) режимах накопителя ВЭПП-3.

Сигналы A и B с выходов двух каналов обработки поступают на сумматор 7 и дифференциальный усилитель 8, с которых — на схему вычисления отношений 9. Поскольку разностный сигнал A-B при малых смещениях пучка пропорционален как величине смещения, так и интенсивности пучка, а суммарный A+B только интенсивности, то величина сигнала на выходе схемы отношений (A – B)/(A + B) определяется величиной смещения и почти не зависит от интенсивности излучения. Как следствие, глубина обратной связи по положению пучка оказывается практически постоянной при изменении тока накопителя.

Разностный сигнал А-В также поступает на устройство 10 управления шаговым двигателем актюатора, образуя петлю электромеханической обратной связи. Это обеспечивает автоматическую юстировку дифференциального детектора по центру пучка СИ; для предотвращения частых подстроек введен гистерезис ±1.5 мкм.

С выхода схемы вычисления отношений сигнал подается на пропорциональное, интегрирующее и дифференцирующее звенья (элементы ПИД-регулятора 11). Суммарный сигнал звеньев через усилитель мощности 12 передается на быстрый корректор 13.

Для исключения конфликтов между основной системой стабилизации пучков СИ и системой подавления осцилляций (обусловленных возможностью увода последней статического положения пучка) перед ПИД-регулятором включена разделительная *RC*-цепь (постоянная времени 5 с), а интервал интегрирования в интегрирующем звене ограничен примерно 15 с. Благодаря ограничению рабочей полосы частот снизу среднее положение пучка полностью определяется основной системой.

РЕЗУЛЬТАТЫ ТЕСТОВ

Участок усиленного зарегистрированного в отсутствии обратной связи сигнала (в полосе $3 \kappa \Gamma \mu$) приведен на рис. 4a и соответствует среднеквад-

165

Рис. 5. Зарегистрированные системой стабилизации зависимости положения пучков СИ вигглера (1a, 16) и поворотного магнита (2a, 2b) от числа циклов ее работы. Графики 1a, 2a соответствуют отключенной системе подавления осцилляций; 1b, 2b – включенной; σ – среднеквадратичное отклонение.

ратичному значению (СКЗ) вертикального отклонения пучка несколько более 10 мкм.

Спектр этого сигнала дан на рисунке 4*в*. Основными компонентами осцилляций являются гармоники и субгармоники частоты силовой сети 50 Гц; также наблюдаются интенсивные спектральные линии в области 690—700 Гц, связанные, предположительно, со специфическими пульсациями на выходе источника питания поворотных магнитов накопителя. Компоненты спектра с уровнем ниже —50 дБ обусловлены квантовым шумом регистрируемого пучка СИ.

При замыкании петли обратной связи СКЗ вертикальных колебаний пучка в районе станции стабилизации уменьшается до 0.7 мкм. Осциллограмма соответствующего сигнала приведена на рис. 4*6*, а его спектр — на рис. 4*г*. Подавление интенсивных линий спектра осцилляций составляет примерно 33 дБ на частоте 25 Гц, 30 дБ на 50 и 100 Гц, 26 дБ на 300 и 690 Гц.

Следует отметить, что при увеличении глубины обратной связи подавление указанных спектральных линий могло быть увеличено на 5–10 дБ. Однако это вызывало рост шума в области 3–8 кГц, а также приводило к самовозбуждению системы даже при незначительных изменениях параметров орбиты в накопителе.

При выполнении описываемой работы также было проверено влияние системы подавления колебаний пучка СИ на функционирование основной системы стабилизации его положения [3].

Особенностью системы стабилизации является контроль положения в зоне экспериментальных станций сразу двух пучков СИ – собственно вигглера и поворотного магнита. Поскольку между этими источниками находится магнитная линза, переводящая смещение точки излучения одного источника в изменение угла излучения другого источника, поддержание в зоне станций постоянства положения обоих пучков приводит к стабилизации излучения вигглера как по углу, так и по координате [2].

Как ожидалось, подавление колебаний пучка вигглера уменьшило шум измерения его координаты и повысило точность стабилизации (поскольку под воздействием этого шума система стабилизации сама возмущает пучок). На рис. 5 приведены зависимости регистрируемого положения пучка СИ от времени для 30 циклов работы системы стабилизации (30 циклов коррекции). График 1*a* (2.1 мкм СКЗ отклонения положения пучка вигглера от среднего значения) соответствует разомкнутой обратной связи, график 1*б* (0.5 мкм СКЗ отклонения) – замкнутой.

В то же время наблюдался некоторый рост ошибки стабилизации пучка поворотного магнита: с 2.3 мкм СКЗ отклонения при отключенном подавлении осцилляций (график 2*a*) до 3.2 мкм при включенном (график 2*б*). Этот рост обусловлен свойствами быстрого корректора: компенсируя отклонение пучка СИ вигглера по углу, он несколько увеличивает отклонение по координате. А из-за действия магнитной линзы это ведет к уходу пучка СИ поворотного магнита по углу, что и вызывает его смещение в зоне экспериментальных станций.

Рис. 6. Возможная структура системы подавления колебаний пучка СИ по углу и координате. Пояснения к рисунку — в тексте.

ЗАКЛЮЧЕНИЕ

В эксперименте была показана возможность эффективного подавления вертикальных осцилляций и кратковременных нестабильностей положения пучка СИ накопителя ВЭПП-3 введением быстрой обратной связи, воздействующей на траекторию электронов в этой установке.

Однако практическое применение существующей системы сталкивается с необходимостью устранения ряда ограничений.

Во-первых, чувствительный элемент системы регистрации является открытым. Его применение требует выпуска пучка СИ в атмосферу, что исключает длительное (штатное) применение данного детектора. Таким образом, для постоянной работы подобной системы требуется разработка соответствующего вакуумного объема для чувствительного элемента и механизма его перемещения.

Во-вторых, радиационная стойкость кремниевых фотодиодов недостаточна для длительной (несколько лет) работы в режиме прямой регистрации рентгеновского излучения. Как вариант может рассматриваться детектор с быстрой сменой фотодиодов, так как стоимость примененных фотодиодов невысока, а их стойкость достаточна для работы системы в течение суток и более.

Однако предпочтительной является разработка дифференциального детектора также на основе фотодиодов, но с преобразованием рентгеновского излучения в свет быстрым сцинтиллятором [4]; возможна разработка достаточно быстрых газовых детекторов или детекторов с внешним рентгеновским фотоэффектом. Такие детекторы могли бы не только иметь необходимую радиационную стойкость, но и позволили бы поднять интенсивность регистрируемого излучения (снизив, тем самым, вклад квантового шума).

В-третьих, разработанная система обеспечивает подавление колебаний пучка СИ только по углу. Но в ряде приложений (рентгеновская томография, EXAFS-спектроскопия и т.п.) желательна также стабилизация пространственного положения источника.

Подавление колебаний пучка СИ и по углу, и по координате возможно при использовании двух разнесенных вдоль этого пучка детекторов и двух быстрых вертикальных корректоров орбиты электронов в накопителе (рис. 6).

Здесь пучок электронов *1* накопителя, проходя через вигглер 2, порождает расходящийся (в горизонтальной плоскости) "веер" синхротронного излучения. Из этого "веера" далее формируются пучки СИ *3*, поступающие в каналы экспериментальных станций.

На канале, являющемся опорным, размещены два разнесенных дифференциальных детектора 4. Их сигналы в схемах обработки и нормировки 5 преобразуются в сигналы, соответствующие положениям пучка в двух сечениях канала.

Далее в первом блоке линейного преобразования 6 формируются сигналы $\Delta \varphi$ и Δy , пропорциональные смещению источника СИ по углу и координате. Эти сигналы через элементы частотной коррекции 7 (звенья ПИД-регулятора) поступают на второй блок линейного преобразования 8, вырабатывающий сигналы управления I_1 и I_2 . Данные сигналы после усиления по мощности 9, задают токи быстрых корректоров 10, воздействуя на траекторию электронного пучка и, таким образом, корректируя положение источника СИ по углу и координате.

При этом весь тракт обработки сигналов в системе подавления осцилляций пучка по углу и координате наиболее компактно может быть выполнен как цифровое устройство, поскольку производительность современных недорогих процессоров для этого достаточна. Аргументом в пользу такого подхода является также возможность применения для регистрации сигналов с детекторов специализированных аналогово-цифровых преобразователей с встроенной аппаратной реализацией алгоритма ДКВ — т.н. сигнальных процессоров для приборов с зарядовой связью (например, AD9826 фирмы Analog Devices).

Работа выполнена с использованием оборудования ЦКП "СЦСТИ" на базе ВЭПП-3/ВЭПП-4М ИЯФ СО РАН, поддержанного Минобрнауки России (уникальный идентификатор проекта RFMEFI62117X0012) и грантом Российского научного фонда (проект № 14-50-00080).

СПИСОК ЛИТЕРАТУРЫ

- Piminov P.A., Baranov G.N., Bogomyagkov A.V. et al. // Phys. Proc. 2016. V. 84. P. 19. https://www.sciencedirect.com/science/article/pii/S1875389216303005.
- 2. *Aleshaev S.A., Fedotov M.G., Mishnev S.I. et al.* // Nucl. Instr. and Meth. 2001. V. 470. P. 94.
- 3. Алешаев А.Н., Мишнев С.И., Пищенюк С.М. и др. // Изв. РАН. Сер. физ. 2015. Т. 79. № 1. С. 6.
- Fedotov M.G. // Phys. Proc. 2016. V. 84. P. 221. https://www.sciencedirect.com/science/article/pii/ S1875389216303339.