УДК 535.375.55

РОЛЬ РЕЗОНАНСОВ ФЕРМИ И ДАРЛИНГА-ДЕННИСОНА В ФОРМИРОВАНИИ СПЕКТРОВ КОМБИНАЦИОННОГО РАССЕЯНИЯ ВОДЫ И ВОДНО-ЭТАНОЛЬНЫХ РАСТВОРОВ

© 2019 г. И. В. Пластинин^{1, *}, С. А. Буриков^{1, 2}, С. А. Доленко², Т. А. Доленко^{1, 2}

¹Федеральное государственное бюджетное образовательное учреждение высшего образования "Московский государственный университет имени М.В. Ломоносова", Москва, Россия

²Научно-исследовательский институт ядерной физики имени Д.В. Скобельцына федерального государственного образовательного учреждения высшего образования "Московский государственный университет

имени М.В. Ломоносова", Москва, Россия

**E-mail: plastinin_ivan@mail.ru* Поступила в редакцию 03.09.2018 г. После доработки 10.09.2018 г. Принята к публикации 22.10.2018 г.

В результате экспериментального исследования спектров комбинационного рассеяния воды и водно-этанольных растворов установлен существенный вклад резонансов Ферми и Дарлинга—Деннисона в формирование этих спектров. На основании анализа спектров с помощью оптимизационных алгоритмов рассчитаны константы взаимодействия *W* и вклады резонанса Ферми в спектры воды и водно-этанольных растворов при температуре 25°C.

DOI: 10.1134/S0367676519030177

ВВЕДЕНИЕ

Спектр комбинационного рассеяния (КР) жидкой воды достаточно сложен. Он состоит из множества колебательных полос разнообразной формы и интенсивности, различающейся на порядки. До сих пор не выяснены механизмы формирования спектра КР воды [1]. Отсутствует модель, адекватно описывающая взаимодействия в системах связанных молекул, а представления о колебательных резонансах молекул воды, в первую очередь о резонансах по типу Ферми и Дарлинга-Деннисона, неоднозначны и противоречивы.

Резонанс по типу Ферми представляет собой расщепление полос внутримолекулярных колебаний и перераспределение интенсивностей между компонентами дублета в результате снятия случайного вырождения [2, 3]. Наиболее часто встречается резонанс Ферми первого типа – резонанс основного тона одного колебания и обертона другого [3]. Кроме того, возможны резонансы, в которых участвуют обертоны и комбинационные частоты, – резонансы Дарлинга–Деннисона [4, 5]. В данной работе исследовались резонанс Ферми (РФ) между симметричным валентным колебанием и обертоном деформационного колебания групп ОН и резонанс Дарлинга-Деннисона (РДД) между первыми обертонами симметричных и асимметричных валентных колебаний групп ОН.

Роль РФ в воде и водных растворах до сих пор не выяснена. Среди исследователей имеются сторонники и противники вклада РФ в формирование спектров КР воды и водных растворов. Авторы [5–10] утверждают, что в результате РФ между обертоном деформационных колебаний 2v₂ ≈ ≈ 3240 см⁻¹ и симметричными валентными колебаниями v₁ молекул воды происходит перекачка интенсивности КР от колебаний v₁ к колебаниям 2v₂. Именно этой перекачкой энергии объясняется наличие интенсивной низкочастотной области в районе 3300 см⁻¹ валентной полосы КР воды. Если авторы [11] утверждают, что РФ следует учитывать при объяснении природы валентной полосы КР воды, но его роль не слишком велика, то по расчетам с учетом асимметрии молекул воды авторов [12] вклад РФ в валентную полосу КР воды "неожиданно велик". В то же время в [13, 14] доказывается, что РФ совершенно не оказывает никакого влияния на формирование валентной полосы КР волы.

Теоретические расчеты РДД в воде свидетельствуют о его существенном вкладе в формирование полосы 5900–7450 см⁻¹ спектра КР жидкой воды [5, 8, 9]. Тем не менее экспериментально роль РДД в формировании полосы 5900–7450 см⁻¹ практически не исследована. Цель данной работы — исследование роли РФ и РДД в формировании спектров КР воды и водно-этанольных растворов и зависимости вклада резонансов в спектры от силы водородных связей в растворах.

РЕЗОНАНС ФЕРМИ

На рис. 1. приведена схема РФ. Здесь v_1 – основной тон одного колебания, v_2 – основной тон другого колебания, $2v_1$ – обертон первого колебания, Δ_0 – частотная расстройка при отсутствии резонанса, Δ – частотная расстройка при наличии резонанса.

Для полного описания внутримолекулярных резонансов необходим квантовомеханический подход [3]. Решая задачу о взаимодействии двух симметричных внутримолекулярных колебаний молекулы воды с близкими частотами методом теории возмущений [3, 15, 16], получаем выражение для энергий $E_{1,2}$ двух новых колебательных состояний:

$$E_{1,2} = \frac{E_a + E_b \pm \sqrt{(E_a - E_b)^2 + 4W_{ab}^2}}{2},$$
 (1)

где E_a и E_b — собственные значения невозмущенных колебательных состояний *a* и *b* молекулы, W_{ab} — оператор взаимодействия колебаний, $(E_a - E_b) = \Delta_0$ — естественное расщепление, определяющееся положением энергетических уровней при отсутствии резонанса. Уравнение (1) можно записать в виде:

$$E_{1,2} = \frac{E_a + E_b}{2} \pm (\Delta/2),$$

где $\Delta = \sqrt{\Delta_0^2 + 4W_{ab}^2}.$ (2)

Здесь Δ — полное расщепление в результате резонанса, которое зависит как от матричного элемента взаимодействия двух состояний $W_{ab} = W$ (этот параметр называют константой взаимодействия), так и от значения Δ_0 . Таким образом, резонансный эффект полностью определяется величиной W, равной:

$$W = \frac{\sqrt{\Delta^2 - \Delta_0^2}}{2}.$$
 (3)

Отношение интенсивностей компонентов ферми-дублета *R* равно [16]:

$$I_{\text{och.t}}/I_{\text{ofept}} = I_1/I_2 = (\Delta + \Delta_0)/(\Delta - \Delta_0) = R,$$
 (4)

где $I_{\text{осн.т}}$ – интенсивность компонента, соответствующего основному тону колебания, $I_{\text{оберт}}$ – интенсивность компонента, соответствующего обертону.

Для жидкой воды в настоящее время не существует точных методов вычисления частот дефор-

Рис. 1. Схема резонанса Ферми.

мационных и валентных колебаний при наличии и отсутствии резонансного взаимодействия.

РЕЗОНАНС ДАРЛИНГА-ДЕННИСОНА

РДД в воде обусловлен возможным взаимодействием обертонов симметричного $(2 \cdot 3330 \text{ см}^{-1})$ и асимметричного $(2 \cdot 3430 \text{ см}^{-1})$ валентных колебаний групп ОН. В полосу обертонов (5900— 7450 см⁻¹) могут давать вклад третий обертон деформационного колебания ($4 \cdot 1650 \text{ см}^{-1}$), а также комбинация обертона деформационного колебания и симметричного валентного колебания ($2 \cdot 1650 + 3330 \text{ см}^{-1}$) — в дальнейшем комбинационное колебание. Все они могут быть одной симметрии, поэтому могут "возмущать" друг друга.

ЭКСПЕРИМЕНТ

В качестве объектов исследования были выбраны вода и водно-этанольные растворы с содержанием этанола 20 и 70 об. %. Исследования многих авторов [17, 18] показали, что водородные связи в растворе с содержанием 20 об. % этанола гораздо сильнее, чем в воде и, тем более, чем в растворе с 70 об. % этанола.

Для приготовления образцов использована деионизованная бидистиллированная вода (электрическая проводимость 0.1 мкСм \cdot см⁻¹), 99.9% D₂O (DeuteroGmbH) и 95% этиловый спирт (OAO "Медхимпром").

Возбуждение сигнала КР осуществлялось излучением аргонового лазера (длина волны 488 нм; мощность в линии 350 мВт) для регистрации в области 200–4000 см⁻¹ и диодного лазера (401 нм, 250 мВт) для регистрации в области 5500–8000 см⁻¹. Система регистрации включала в себя монохроматор (Acton, решетка 900 штр · мм⁻¹, фокусное расстояние 500 мм) и ССD-камеру (JobinYvon,

Рис. 2. Поляризованные спектры КР воды (1) и водно-этанольных растворов с содержанием этанола 20 (2) и 70 (3) об. % при температуре 25°C; k – волновое число.

модель Synapse BIUV). Практическое спектральное разрешение составляло 2 см⁻¹ в области 2500-4000 см⁻¹ и 25 см⁻¹ в области 5500-8000 см⁻¹. Температура образцов контролировалась системой термостабилизации с погрешностью не более 0.2° С.

Так как в РФ и РДД участвуют колебания только одной и той же симметрии, в эксперименте регистрировались поляризованные (I_{pol}) и деполяризованные (I_{dep}) спектры КР воды и растворов. Затем рассчитывались изотропные и анизотропные спектры, в которых симметричные и асимметричные колебания разделены:

$$I_{iso} = I_{pol} - 4/3 I_{dep}, \quad I_{aniso} = 4/3 I_{dep}.$$
 (5)

На рис. 2 представлены экспериментальные поляризованные спектры КР воды и водно-этанольных растворов при температуре 25°С. В области 500–1500 см⁻¹ находятся колебательные полосы этанола, полоса с максимумом в районе 1630 см⁻¹ является деформационной полосой воды, полосы в диапазоне 2600–2900 см⁻¹ обусловлены валентными колебаниями групп СН этанола, в диапазоне 2900–3900 см⁻¹ – валентными колебаниями ОН-групп. В области 5900–7450 см⁻¹ находится полоса обертонов, обусловленная, в том числе, предположительно РДД.

ВКЛАД РФ В ФОРМИРОВАНИЕ ВАЛЕНТНЫХ ПОЛОС ГРУПП ОН

Для определения константы взаимодействия РФ, характеризующей его эффективность, необходимо найти значения частотных расстроек Δ_0 и Δ (формула (3)) между невозмущенными и возмущенными колебательными уровнями.

Частоты невозмущенных колебаний определяли методом, предложенным авторами ранее [16]. Моделировалась среда, в которой создавались "изолированные" группы ОН — растворы H_2O в D_2O с малой концентрацией H_2O ($\approx 7\%$). Изотропная и анизотропная валентные полосы ОН-групп такого раствора совпадают из-за исчезновения различий между симметричными и асимметричными валентными О—Н-колебаниями, а их частота соответствует частоте невозмущенных колебаний ОН-групп и оказалась равной 3433 ± 3 см⁻¹. Это значение хорошо согласуется с полученным ранее (3434 см⁻¹) [16].

Частота деформационных колебаний НОН равна 1650 \pm 3 см⁻¹. Однако частота обертона для ОН-групп не равна точно удвоенной частоте основного тона ввиду ангармоничности колебаний. С учетом поправки на ангармонизм колебаний ОН-осцилляторов для частоты деформационных колебаний (17.04 см⁻¹ [19]) невозмущенная частота обертона деформационного колебания равна 3283 \pm 6 см⁻¹.

Таким образом, расстройка Δ_0 между невозмущенными колебательными уровнями равна $\Delta_0 =$ = 3433 - 3283 = 150 см⁻¹.

Частоты возмущенных колебаний при наличии РФ определяли из экспериментально полученных валентных полос ОН-групп воды и водно-этанольных растворов (рис. 2). Проводилось разложение изотропных валентных полос на компоненты с помощью эволюционного поиска решения и метода обобщенного понижающего градиента, реализованных в надстройке "Поиск решения" Microsoft Excel [20]. Применение таких мощных оптимизационных методов не требует наличия априорной модели колебательных процессов, чем обеспечивает уменьшение неоднозначности решения этой некорректно поставленной обратной задачи [21]. Было получено, что валентные полосы ОН-групп всех исследуемых образцов с хорошей точностью описываются четырьмя компонентами гауссовой формы (рис. 3а, табл. 1). Исходя из существующих модельных представлений о структуре воды [1, 6, 7, 15, 16], можно предположить, что изотропная валентная полоса состоит из обертона деформационных колебаний с симметрией C_{2v} (компонента 3), симметричных валентных колебаний с симметрией C_{2v} (компонента 4) и симметричных валентных колебаний молекул с другой симметрией C_s, не участвующих в РФ (компонента 1). Кроме того, в спектре присутствуют колебания слабосвязанных молекул с симметрией $C_{2\nu}$ (компонента 2), проявляющиеся в районе 3645 см⁻¹. Они не участвуют в резонансе, так как их частоты слишком далеки от частоты обертона деформационных колебаний.

Таким образом, из физических соображений две составляющие изотропной валентной полосы ОН-групп — компоненты 3 и 4 — можно интер-

претировать как ферми-дублет. Тогда можно найти расстройку Δ между возмущенными колебательными уровнями. Так, для воды она равна: $\Delta = 3422 - 3214 = 208$ см⁻¹.

С учетом полученных расстроек Δ_0 и Δ по формулам (3) и (4) рассчитываются константа взаимодействия РФ и отношение интенсивностей ферми-дублета, затем — вклад РФ в интенсивность валентной полосы в %. Результаты расчетов для всех образцов приведены в табл. 1.

На основании полученных результатов можно утверждать.

1) Вклад РФ в спектр КР воды и водно-этанольных растворов достаточно велик, и его следует учитывать при объяснении механизмов формирования спектров КР.

2) РФ зависит от силы водородных связей в образце. Эффективность РФ увеличивается в ряду: раствор с 70 об. % этанола < вода < раствор с 20 об. % этанола. Это объясняется силой водородных связей в образцах. Более прочные водородные связи "смещают" частоты симметричных валентных колебаний в низкочастотную область и "сближают" их с обертоном деформационных колебаний: вклад РФ в формирование полосы увеличивается (20% раствор). В 70% растворе со слабыми водородными связями частота симметричных валентных колебаний смещается в высокочастотную область и "отдаляется" от положения обертона деформационных колебаний. W и вклад РФ в формирование спектра уменьшаются по сравнению с чистой водой и с 20% раствором.

ВКЛАД РДД В ФОРМИРОВАНИЕ СПЕКТРА КР ОН-ГРУПП

Полученные изотропные полосы КР воды и водно-этанольного раствора с содержанием этанола 20 об. % в области 5900–7450 см⁻¹ были разложены на четыре составляющие гауссовой формы (рис. 36). К сожалению, качество полосы 5900–7450 см⁻¹ раствора с 70 об. % этанола не позволило извлечь из нее полезную информацию. Положения полученных компонент *1*, *2*, *3*, *4* соответствуют третьему обертону деформационного колебания 4 $v_{деф}$, комбинации обертона деформационного колебания и симметричного валентного колебания (2 $v_{деф} + v_{сим}$), обертону сим-

Рис. 3. Разложение валентной полосы (*a*) и полосы обертонов (δ) колебаний ОН-групп водно-этанольного раствора (20 об. % этанола) на контуры гауссовой формы. *1*, *2*, *3*, *4* – компоненты, *5* – сумма компонент, *6* – исходный спектр.

метричного валентного колебания ($2v_{cим}$) и обертону асимметричного валентного колебания ($2v_{acum}$), соответственно.

Образец	Положение компонент разложения, см ⁻¹				$\Lambda_{\rm o} \ \rm cm^{-1}$	$\Lambda \mathrm{cm}^{-1}$	$W \mathrm{cm}^{-1}$	Вклал %
	1	2	3	4	<u> </u>	<u>_</u> , .w	, , ew	212102,70
Вода	3217 ± 3	3618 ± 3	3210 ± 3	3410 ± 3	150 ± 4	200 ± 6	66 ± 4	14 ± 1
20% этанола	3263 ± 3	3621 ± 3	3211 ± 3	3449 ± 3	150 ± 4	238 ± 6	92 ± 5	23 ± 2
70% этанола	3021 ± 3	3634 ± 3	3230 ± 3	3423 ± 3	150 ± 4	193 ± 6	61 ± 4	12 ± 1
		-						

Таблица 1. Параметры РФ в воде и водно-этанольных растворах

Рис. 4. Схема взаимодействия обертонов колебаний ОН-групп.

Можно предложить следующую модель РДД в результате взаимодействия полученных 4 компонент (рис. 4). Взаимодействуя между собой, уровни первых обертонов валентных ОН-колебаний смешаются в противоположные стороны, частотная расстройка межлу ними увеличивается. В результате двух резонансов по типу Ферми: между комбинационным колебанием и каждым из обертонов валентных, – уровни обертонов валентных колебаний смещаются вверх (чем выше уровень, тем на меньшую величину он смещается), а комбинационного – вниз. В результате трех резонансов по типу Ферми между каждым из верхних трех колебательных состояний и нижним (рис. 4) верхние три уровня смещаются наверх, а четвертый – вниз. Таким образом, в рамках данной модели можно сделать вывод, что только наличие РДД приводит к увеличению частотной расстройки между обертонами валентных колебаний, тогда как рассмотренные резонансы по типу Ферми приводят к ее уменьшению (рис. 4).

Частотная расстройка Δ_0 при наличии РДД определялась как разность положений центров масс обертонов невозмущенных симметричных и асимметричных валентных полос — удвоенных положений центров масс изотропной и анизотропной валентных полос. Для расчетов использовали положение центров масс, так как все симметричные валентные колебания ОН-групп дают вклад только в изотропную полосу, а асимметричные — только в анизотропную. С использованием полученных при разложении полосы 5900—7450 см⁻¹ составляющих была рассчитана частотная расстройка Δ между обертонами возмущенных симметричных и асимметричных валентных и асимметричных валентных и асимметричных валентных и асимметричных валентных колебаний.

Оказалось, что $\Delta - \Delta_0$ при температуре 25°C для воды 45 см⁻¹, а для 20%-го раствора этанола – 80 см⁻¹, т.е. полоса уширилась. Таким образом,

РДД вносит определенный вклад в интенсивность спектральной полосы 5900—7450 см⁻¹ воды и водно-этанольных растворов. Причем, чем сильнее водородные связи в растворе (раствор с 20 об. % этанола), тем больше вклад РДД в указанную полосу.

ЗАКЛЮЧЕНИЕ

Проведено экспериментальное исследование роли РФ и РДД в формировании валентных полос и полосы 5900–7450 см⁻¹ ОН-групп спектров КР воды и водно-этанольных растворов с содержанием этанола 20 и 70 об. % при температуре 25°С.

На основании анализа валентных полос OHгрупп с помощью оптимизационных алгоритмов получены количественные оценки вклада PФ в эти полосы: 14% для воды, 23% для водно-этанольных растворов с содержанием этанола 20 об. %, 12% для водно-этанольных растворов с содержанием этанола 70 об. %. Таким образом, установлено, что вклад PФ в спектр KP воды и водно-этанольных растворов достаточно велик и его следует учитывать при объяснении механизмов формирования спектров KP. РФ зависит от силы водородных связей в образце: чем сильнее водородные связи в растворе, тем больше РФ.

Анализ спектральной полосы 5900—7450 см⁻¹ воды и водно-этанольных растворов с содержанием 20 об. % этанола показал, что РДД вносит определенный вклад в интенсивность этой полосы. Чем сильнее водородные связи в растворе, тем больше вклад РДД в указанную полосу.

Исследование выполнено за счет гранта Российского научного фонда (проект № 14-11-00579).

Nº 3

2019

СПИСОК ЛИТЕРАТУРЫ

- 1. *Chaplin M.* Water Structure and Science http://www1. lsbu.ac.uk/water/water_structure_science.html, 2016.
- 2. Fermi E. // Z. Phys. 1931. V. 71. № 2. P. 250.
- 3. *Лисица М.П., Яремко А.М.* Резонанс Ферми. Киев: Наукова Думка, 1984. 261 с.
- Darling B.T., Dennison D.M. // Phys. Rev. 1940. V. 57. P. 128.
- 5. Громова О.В. Спектроскопия высокого разрешения серосодержащих молекул типа XY₂. Дисс. ... канд. физ.-мат. наук. Томский гос. ун-т, Томск, 2010.
- Sokolowska A., Kecki Z. // J. Raman Spectrosc. 1986. V. 17. P. 29.
- 7. Sokolowska A. // J. of Raman Spectros. 1987. V. 18. P. 513.
- Krasnoshchekov S.V., Isayeva E.V., Stepanov N.F. // J. Phys. Chem. A. 2012. V. 116. P. 3691.
- Krasnoshchekov S.V., Isayeva E.V., Stepanov N.F. // J. Chem. Phys. 2014. V. 141. P. 234114.
- 10. *Bykov A.D., Kalinin K.V.* // Opt. and Spectros. 2011. V. 111. № 3. P. 367.
- 11. *Smith D.F., Overend J.* // Spectrachim. Acta. 1992. 28A. P. 471.

- 12. *Efimov Yu.Ya., Naberukhin Yu.I.* // Spectrochim. Acta. Part A. 2002. V. 58. P. 519.
- Griguere P.A. // J. Raman Spectros. 1984. V. 15. № 5. P. 354.
- Belch A., Rice S. // J. Chem. Phys. 1983. V. 78. № 8. P. 4817.
- Гериберг Г. Колебательные и вращательные спектры многоатомных молекул. М.: Изд-во иностранной литературы, 1949. 647 с.
- 16. Буриков С.А., Доленко Т.А., Карпов Д.М. // Опт. и спектрос. 2010. Т. 109. № 2. С. 306.
- 17. Onori G., Santucci A. // J. Mol. Liq. 1996. V. 69. P. 161.
- Dolenko T.A., Burikov S.A., Dolenko S.A. et al. // J. Phys. Chem. A. 2015. V. 119. № 44. P. 10806.
- Свердлов Л.М., Ковнер М.А., Крайнов Е.П. Колебательные спектры многоатомных молекул. М.: Наука, 1970. 559 с.
- Excel Solver, Optimization Software, Monte Carlo Simulation, Data Mining – Frontline Systems. http:// www.solver.com/.
- 21. Burikov S., Dolenko S., Dolenko T. et al. // Mol. Phys. 2010. V. 108. № 6. P. 739.