УДК 539.17

# ПРЕДСТАВЛЕНИЯ СПЕКТРОВ ТОРМОЗНОГО ИЗЛУЧЕНИЯ И СООТВЕТСТВУЮЩИЕ ВЫХОДЫ ФОТОЯДЕРНЫХ РЕАКЦИЙ

© 2019 г. С. С. Белышев<sup>1</sup>, Л. З. Джилавян<sup>2, \*</sup>, К. А. Стопани<sup>3</sup>

<sup>1</sup>Федеральное государственное бюджетное образовательное учреждение высшего образования Московский государственный университет имени М.В. Ломоносова, физический факультет, Москва, Россия <sup>2</sup>Федеральное государственное бюджетное учреждение науки Институт ядерных исследований Российской академии наук. Москва, Россия

<sup>3</sup>Федеральное государственное бюджетное образовательное учреждение высшего образования Московский государственный университет имени М.В. Ломоносова, Натича иссодоственной университет имени П.В. Скоболи има. Москов России

Научно-исследовательский институт ядерной физики имени Д.В. Скобельцына, Москва, Россия

\**E-mail: dzhil@cpc.inr.ac.ru* Поступила в редакцию 01.10.2018 г. После доработки 15.10.2018 г. Принята к публикации 19.11.2018 г.

Сопоставляются наиболее употреблявшиеся при изучении фотоядерных реакций представления дифференциальных по энергии фотонов сечений образования электронами в радиаторах тормозных фотонов и полных (во все углы) спектров таких фотонов. Для характерных модельных сечений реакций  $^{68}$ Zn( $\gamma$ , p) (предлагаемой для получения  $^{67}$ Cu в ядерной медицине) и  $^{14}$ N( $\gamma$ , 2n) $^{12}$ N с  $^{14}$ N( $\gamma$ , 2p) $^{12}$ B (предлагаемых для обнаружения скрытых взрывчатых веществ) сопоставляются выходы и сечения на эквивалентный квант, использующие свертки таких спектров фотонов с этими сечениями реакций.

DOI: 10.1134/S0367676519040069

### введение

Наиболее доступным интенсивным источником реальных фотонов с энергиями, интересными для исследований фотоядерных реакций в области гигантских резонансов в атомных ядрах (ГР) и выше, является немеченое тормозное излучение электронов в аморфных мишенях-радиаторах. К сожалению, спектры таких фотонов далеки от монохроматических и являются сплошными и спадающими с ростом энергии фотонов. К тому же при расчетах таких спектров имеются серьезные проблемы, в особенности при энергиях фотонов вблизи их границ. Но от немеченых тормозных фотонов от электронов в исследованиях фотоядерных реакций трудно отказаться, в особенности в случаях реакций с малыми сечениями, для которых даже приходится размещать радиаторы и фотоядерные мишени близко друг к другу с практически полным охватом потока образуемых тормозных фотонов.

В данной работе проводится сопоставление наиболее употребляемых при фотоядерных исследованиях представлений полных (во все углы) дифференциальных по энергии фотонов сечений образования падающими электронами в мишенях-радиаторах тормозных фотонов и спектров их потоков. Кроме того, для характерных модельных сечений реакций  $^{68}$ Zn( $\gamma$ , p) $^{67}$ Cu,  $^{14}$ N( $\gamma$ , 2p) $^{12}$ N и  ${}^{14}N(\gamma, 2n){}^{12}B$  сопоставляются функции, использующие свертки рассматриваемых спектров тормозных фотонов с сечениями этих реакций, а именно: выходов реакций и сечений на эквивалентный квант.

## 1. ПРЕДСТАВЛЕНИЯ СЕЧЕНИЙ И СПЕКТРОВ ТОРМОЗНОГО ИЗЛУЧЕНИЯ ЭЛЕКТРОНОВ

При падении неполяризованных электронов на аморфную неполяризованную мишень-радиатор основным процессом, дающим реальные фотоны высокой энергии. является некогерентное тормозное излучение падающих электронов в полях атомных ядер и электронов вещества радиатора. Тормозное излучение электронов можно рассматривать как процесс, в котором начальный электрон, имеющий полную энергию Е, сталкиваясь с неподвижным атомом радиатора, испытывает торможение в полях ядра атома и атомных электронов и излучает под неким углом  $\theta$  фотон с энергией k, которая может принимать различные значения в диапазоне  $0 \le k \le k_{\text{макс}}$ . При этом конечный электрон, имеющий полную энергию Е', может вылетать под различными углами θ'. Здесь: θ и θ' – углы по отношению к направлению движения начального электрона;  $k_{\text{макс}}$  – верхняя граница энергии испускаемых фотонов. Причем, когда тормозное излучение происходит в поле ядра атома, то, полагая это ядро бесконечно тяжелым, получаем k = E - E',  $k_{\text{макс}} = T \equiv E - \mu$  (где:  $T - \kappa u$ нетическая энергия падающего электрона;  $\mu \cong$  $\cong 0.511$  МэВ – энергия покоя электрона). Если же тормозное излучение испускается в поле атомного электрона, то из-за отдачи последнего получаем  $k_{\text{макс}} = \mu(E - \mu)/(E + \mu - \sqrt{E^2 - \mu^2}) \approx E - 1.5\mu$ [1]. Здесь рассматриваются сечения образования тормозного излучения, усредненные по направлениям спинов взаимодействующих заряженных частиц в начальных состояниях и просуммированные по всем направлениям их спинов и обоим направлениям поляризации испускаемого фотона в конечных состояниях.

Тормозное излучение электронов десятилетиями широко используется для экспериментов в области ГР (и выше). Казалось бы, сегодня при описании тормозного излучения электронов для таких задач не следовало бы ожидать нерешенных проблем, но, к сожалению, это неверно.

В подавляющем большинстве экспериментальных фотоядерных работ, выполненных к настоящему времени с помощью тормозных фотонов полных сечений и спектров от аморфных радиаторов, в обработке полученных экспериментальных данных использовались простые аналитические выражения для сечений образования тормозного излучения электронов в полях атомных ядер  $(d\sigma_{T_{\rm S}}/dk)_{\rm III}$ . Эти сечения удалось получить с некоторым учетом экранирования поля ядра Л.И. Шиффу [2] путем интегрирования сечений Х.А. Бете и В. Гайтлера (см. в [3]), выведенных в борновском приближении для неэкранированного ядра и пропорциональных  $Z^2$  (здесь Z – атомный номер радиатора):

$$\left(\frac{d\sigma_{T_{2}}g}{dk}\right)_{III} = 2\alpha Z^{2} (r_{0})^{2} \frac{1}{k} B \equiv 2\alpha Z^{2} (r_{0})^{2} \frac{1}{k} \left\{ \left[1 + \left(\frac{E}{E}\right)^{2} - \frac{2}{3} \left(\frac{E}{E}\right)\right] \left[1 + \left(\ln\left(\left(\frac{C}{\sqrt[3]{Z}}\right)^{2} \frac{b^{2}}{1 + b^{2}}\right)\right) - \frac{2}{b} \operatorname{arctg} b\right] + \left(\frac{E}{E}\right) \left[\frac{2}{9} - \frac{8}{3b^{2}} + \left(\frac{2}{b^{2}} \ln(1 + b^{2})\right) + \frac{8 - 4b^{2}}{3b^{3}} \operatorname{arctg} b\right] \right\},$$
(1)

где:  $\alpha \cong (1/137)$  – постоянная тонкой структуры;  $r_0 \cong 2.818 \cdot 10^{-13}$  см – "классический радиус" электрона;  $b = \frac{2EE\sqrt[3]{Z}}{C\mu k}$ ;  $C = \frac{183}{\sqrt{e}} \cong 111$ .

Кроме сечения образования тормозного излучения падающими на радиатор электронами в поле ядра атома, нужно учитывать сечение в полях каждого из атомных электронов, которое, согласно [3, 4], для интересующих нас энергий *E* близко к тормозному излучению электронов в полях ядер атомов, имеющих Z = 1. Имеет смысл выразить сечения образования тормозного излучения в расчете на атом  $(d\sigma_r/dk)$  через сечения  $(d\sigma_{r_s}/dk)$ путем замены множителя  $Z^2$  на  $Z(Z + \eta)$ . Приближенно  $\eta = 1$  для рассматриваемых сечений при всех значениях *E* и *k* [3, 4].

Несмотря на то, что сечения Л.И. Шиффа [2] явились важным шагом при проведении фотоядерных исследований в области ГР, к корректности этих сечений есть целый ряд весьма обоснованных претензий (см. подробнее об этом в [5], там же можно найти ссылки на соответствующие публикации других авторов). Эти претензии связаны с недостаточной точностью используемого борновского приближения, даже когда все величины  $E, E, k \ge \mu$ , но особенно для граничных по k областей, и прежде всего, вблизи  $k_{\text{макс}}$ . Кроме того, желателен более аккуратный учет экранирования поля ядра и образования тормозного излучения падающими электронами в полях атомных электронов радиатора. В работе [5] С.М. Селцер и М.Дж. Бергер предоставили для различных значений Z, E и k таблицы полученных ими значений сечений образования тормозного излучения в расчете на атом  $(d\sigma_{\tau}/dk)_{C-b}$ , которые на сегодня можно рассматривать как наиболее разработанные и признанные (см., например, [6]) и имеющие существенные отличия от  $(d\sigma_{\tau}/dk)_{\text{Ш}}$ . Ранее в [7] были рассмотрены отношения  $\xi(E, k, Z)$  этих сечений (см. рис. 1) и было предложено их приближенное описание:

$$\varepsilon(k, E, Z) \equiv (d \sigma_{T}/dk)_{C-E}/(d\sigma_{T}/dk)_{III} \approx$$

$$\approx A_{0} + A_{1} \exp[-k/\mu a_{1}] +$$

$$+ A_{2} \exp[-(E - \mu - k)/\mu a_{2}] +$$

$$+ A_{3} \exp[-(E - \mu - k)/\mu a_{3}], \qquad (2)$$

где  $A_i$  (i = 0; 1; 2; 3) и  $a_j$  (j = 1; 2; 3) – плавные функции Z и ( $E - \mu$ )/ $\mu$  и, в частности, для Z = 74 (W) и ( $E - \mu$ ) = 15 МэВ:  $A_0 \cong 0.90; A_1 \cong 0.059; A_2 \cong 0.27;$  $A_3 \cong 1.362; a_1 \cong 3.77; a_2 \cong 2.97; a_3 \cong 0.19.$ 

Спектр по энергии фотонов k полного (во все углы) потока тормозных фотонов, образуемых в элементе толщины  $dx_p$  радиатора, материал которого имеет атомный номер Z и радиационную длину  $X_{0p}$ , и на который падает  $N_e$  электронов с энергией E, есть:

$$\frac{dN_{\gamma}(k, E, Z)}{dk}dkdx_{p} = N_{e}\frac{\rho_{p}dx_{p}}{M_{p}}N_{A}\frac{d\sigma_{\tau}(k, E, Z)}{dk}dk \equiv$$

$$\equiv N_{e}\frac{\rho_{p}dx_{p}}{X_{0p}}\frac{dn_{\gamma}(k, E, Z)}{dk}dk,$$
(3)



**Рис. 1.** зависимости отношении  $\zeta = (d\sigma_{\rm T}/dk)_{\rm C-B}/(d\sigma_{\rm T}/dk)_{\rm III}$  от *k* для *Z* = 74 из [7]. Кривые *1, 2, 3* – для (*E*–µ) = 8, 15, 20 МэВ соответственно.

где:  $\rho_{\rm p}$  и  $M_{\rm p}$  – плотность и молекулярный вес материала радиатора;  $N_{\rm A}$  – число Авогадро;  $\frac{dn_{\gamma}(k, E, Z)}{dk} = \frac{N_{\rm A}X_{0\rm p}}{M_{\rm p}} \frac{d\sigma_{\rm T}(k, E, Z)}{dk}$  – число образуемых тормозных фотонов с энергиями от k до (k + + dk), приведенное к одному электрону, падаю-

щему на элемент радиатора, толщина которого измеряется в радиационных длинах для материала этого радиатора. Для случая представления  $\left(\frac{d\sigma_{T}(k, E, Z)}{dk}\right)$  согласно Шиффу [2], имеем (см. (1) и [8]):

$$\left(\frac{dN_{\gamma}(k, E, Z)}{dk}\right)_{III} dk dx_{p} =$$

$$= N_{e} \frac{\rho_{p} dx_{p}}{M_{p}} N_{A} \left(\frac{d\sigma_{r}(k, E, Z)}{dk}\right)_{III} dk =$$

$$\equiv N_{e} \frac{\rho_{p} dx_{p}}{X_{0p}} \left(\frac{dn_{\gamma}(k, E, Z)}{dk}\right)_{III} dk =$$

$$= N_{e} \frac{\rho_{p} dx_{p}}{M_{p}} N_{A} 2\alpha Z (Z + \eta) (r_{0})^{2} \frac{1}{k} B dk \approx$$

$$\approx N_{e} \frac{\rho_{p} dx_{p}}{X_{0p}} \frac{1}{k} \frac{B}{2 \ln \left(\frac{183}{3/Z}\right)} dk,$$

где  $X_{0p}$  — радиационная длина материала радиатора, причем в согласии с [8] имеем:

$$\frac{1}{X_{0p}} \approx 4\alpha \frac{N_{\rm A}}{M_{\rm p}} Z(Z+1) (r_0)^2 \ln\left(\frac{183}{\sqrt[3]{Z}}\right).$$
(5)

Для радиаторов с больши́ми *Z*, обычно используемыми при получения тормозных фотонов в экспериментальных исследованиях фотоядерных реакций, величины [*B*/2ln(183*Z*<sup>-1/3</sup>)] в середине каждого из интервалов доступных значений *k* близки к 1. Так, для *Z* = 74 (вольфрам) для *E* = = 40µ и (*k*/*E*) = 0.5 имеем *B*/2ln(183*Z*<sup>-1/3</sup>)  $\approx$  0.8 (см. также рис. 2, на котором представлены величины *k*(*dn*<sub>γ</sub>(*k*,*E*,*Z*)/*dk*), для различных представлений сечений образования тормозных фотонов и соот-



**Рис. 2.** Величины  $k(dn_{\gamma}(k,E,Z)/dk)$  в зависимости от k для Z = 74 (вольфрам). Пары кривых: 1, 2, 3, 4, 5 – для  $(E-\mu) = 8, 15, 20, 30, 60$  МэВ соответственно. Использованы представления  $(dn_{\gamma}(k,E,Z)/dk)$  согласно: Шиффу [2] (штриховые кривые); Селцеру и Бергеру [5] (сплошные кривые); приближению  $k^{-1}$  (штрихпунктир).

ИЗВЕСТИЯ РАН. СЕРИЯ ФИЗИЧЕСКАЯ том 83 № 4 2019

ветствующих спектров потоков этих фотонов). Это позволяет для величины  $(dn_{\gamma}(k,E,Z)/dk)$  использовать следующее грубое приближение (см., например, [8, 9]):

$$\frac{dn_{\gamma}(k, E, Z)}{dk} \approx \frac{1}{k}.$$
 (6)

# 2. СООТВЕТСТВУЮЩИЕ ВЫШЕУКАЗАННЫМ ПРЕДСТАВЛЕНИЯМ СПЕКТРОВ ВЫХОДЫ ЯДЕРНЫХ РЕАКЦИЙ ПОД ДЕЙСТВИЕМ ТОРМОЗНЫХ ФОТОНОВ

При работе с тормозными фотонами количество актов фотоядерной реакции определяется не прямо сечениями этой реакции, а интегральными зависимостями выхода реакции  $Y(E-\mu)$  либо сечения на эквивалентный квант  $\sigma_q(E-\mu)$ , получаемых при свертке зависимости распределения сечений реакции  $\sigma(k)$  с зависимостью, описывающей распределение тормозных фотонов по их энергиям *k* при различных энергиях падающих на радиатор электронов *E*.

Так, для мишени, практически полностью охватывающей поток тормозных фотонов, образуемых в элементе толщины радиатора  $(\rho_p dx_p)/X_{0p}$ , измеряемой в единицах радиационной длины материала радиатора, имеем для выхода реакции  $Y(E-\mu)$ :

$$Y(E-\mu)\frac{\rho_{\rm p}dx_{\rm p}}{X_{\rm 0p}} = \frac{\rho_{\rm p}dx_{\rm p}}{X_{\rm 0p}} \int_0^{E-\mu} \frac{dn_{\rm Y}(k,E,Z)}{dk} \sigma(k)dk.$$
(7)

Причем в рамках приближения (6) имеем:

$$Y(E-\mu)\frac{\rho_{\rm p}dx_{\rm p}}{X_{0\rm p}} \approx$$

$$\approx \frac{\rho_{\rm p}dx_{\rm p}}{X_{0\rm p}} \int_{0}^{E-\mu} \frac{1}{k} \sigma(k)dk \equiv \frac{\rho_{\rm p}dx_{\rm p}}{X_{0\rm p}} \sigma_{-1}(E-\mu).$$
(8)

В ряде фотоядерных исследований с тормозными фотонами полного спектра (см., например, [10]) вместо выходов  $Y(E-\mu)$  брались сечения на эквивалентный квант  $\sigma_q(E-\mu)$ :

$$\sigma_q(E-\mu) = \frac{\int_0^{E-\mu} \frac{dn_\gamma(k, E, Z)}{dk} \sigma(k)dk}{\frac{1}{E-\mu} \int_0^{E-\mu} \frac{dn_\gamma(k, E, Z)}{dk} kdk}.$$
(9)

Как неоднократно отмечалось (см., например, [9]), для многих парциальных фотоядерных реакций величины  $\sigma_{-1}(E-\mu)$  монотонно нарастают с ростом *E* вплоть до некоторой области насыщения, где  $\sigma_{-1}(E-\mu) \approx \text{const} \equiv (\sigma_{-1})_{\text{насыщ}}$  (см., например, [11]).

Представляет интерес (особенно для прикладных работ) рассмотреть насколько поведение зависимостей от *E* величин  $Y(E-\mu)$  и  $\sigma_q(E-\mu)$  для представлений сечений образования тормозного излучения согласно как Шиффу, так и Селцеру с Бергером отличаются от зависимости  $\sigma_{-1}(E-\mu)$ . Такое рассмотрение мы провели в двух характерных случаях (по форме сечений выбранных реакций  $\sigma(k)$ , связанных с существенными как фундаментальными, так и прикладными задачами). Причем из-за недостаточности экспериментальной информации рассмотрение проведено с использованием модельных сечений реакций, рассчитанных в обоих случаях на базе, прежде всего, программы TALYS [12].

В первом случае рассматривалась реакция  $^{68}$ Zn( $\gamma$ , *p*), предлагаемая для получения  $^{67}$ Cu для ядерной медицины и имеющая сравнительно компактное энергетическое распределение своего сечения  $\sigma(k)$ . Кроме указанного прикладного применения, изучение этой реакции интересно для проверки корректности представлений об изотопическом расшеплении электрического дипольного (Е1) ГР. Результаты наших модельных расчетов сечения  $\sigma(k)$  реакции <sup>68</sup>Zn( $\gamma$ , p)<sup>67</sup>Cu по-казаны на рис. За (штрихи). Поскольку программа TALYS не учитывает изотопическое расшепление Е1 ГР, для лучшего согласия с экспериментальными данными [13] о сечении этой реакции (сплошная кривая и точки с ошибками на рис. 3а) и о соответствующем его полном интегральном значении вместо модельного сечения, полученного в [14] по программе TALYS (штрихпунктир на рис. 3а), в настоящей работе (аналогично тому, как это было сделано в работе [15] для моделирования сечений фотоядерных реакций на изотопах титана) в добавление к программе TALYS была использована разработанная в НИИЯФ МГУ комбинированная модель фотонуклонных реакций (КМФР) [16]. На рис. Зб и Зв показаны соответственно выход Y(T) и сечение на эквивалентный квант  $\sigma_a(T)$  для различных представлений  $(dn_{\gamma}(k, E, Z)/dk)$  согласно: Шиффу [2]  $(dn_{\gamma}/dk)_{\text{Ш}}$ (штрихи); Селцеру и Бергеру [5] (*dn*<sub>v</sub>/*dk*)<sub>С-Б</sub> (сплошная кривая); приближению  $k^{-1}$  (штрихпунктир). Укажем важные особенности поведения интегральных функций Y(T) и  $\sigma_a(T)$  в случае компактных распределений сечений σ(k). Для приближения  $(dn_{\gamma}(k, E, Z)/dk) = k^{-1}$  имеем  $Y(T) = \sigma_{q}(T)$ , которые круто растут в области, где сосредоточено сечение реакции, а затем выходят на плато, соответствующее значению интегральной характеристики сечения рассматриваемой реакции ( $\sigma_{-1}$ )<sub>насыщ</sub>. Для представлений  $(dn_{\gamma}(k, E, Z)/dk)_{III}$  и  $(dn_{\gamma}(k, E, Z)/dk)_{C-E}$ зависимости величин Y(T) и  $\sigma_a(T)$  (то есть изохроматы) тоже идут с ростом Т к своим значениям при насыщениях, но ход этих зависимостей значительно более затянут, а значения отношений  $Y(T)_{C-b}/Y(T)_{III}$  в области насыщений определяется величиной  $A_0 \approx 0.9$  в приближении (2). Тогда как между значениями  $\sigma_q(T)_{C-b}$  и  $\sigma_q(T)_{III}$  различия практически не наблюдаются.

Число актов некоторой реакций  $N_{\text{реакц}}$ , приводящих к получению определенных ядер-продуктов в фотоядерной мишени, имеющей плотность  $\rho_{\text{м}}$ , химический  $\eta_{\text{x}}$  и изотопный  $\eta_{\text{и}}$  составы, толщину  $X_{\text{м}}$  и молекулярный вес  $M_{\text{м}}$  и практически полностью перекрывающей полный поток тормозных фотонов, образуемых падающими  $N_e$ электронами в радиаторе, имеющем толщину  $X_{\text{p}}$ при радиационной длине  $X_{0\text{p}}$ , под действием этих тормозных фотонов, когда можно пренебречь ослаблениями их потоков в радиаторе и мишени, составляет:

$$N_{\text{peaku}} \approx \frac{\rho_{\text{M}} \eta_{\text{x}} \eta_{\text{u}} X_{\text{M}}}{M_{\text{M}}} N_{\text{A}} N_{e} \int_{0}^{X_{p}} \frac{\rho_{\text{p}} dx_{\text{p}}}{X_{0p}} Y \left( E - \varepsilon x_{\text{p}} - \mu \right) =$$

$$= \frac{\rho_{\text{M}} \eta_{\text{x}} \eta_{\text{u}} X_{\text{M}}}{M_{\text{M}}} N_{\text{A}} N_{e} \times \qquad (10)$$

$$\times \int_{0}^{X_{p}} \frac{\rho_{\text{p}} dx_{\text{p}}}{X_{0p}} \int_{0}^{(E - \varepsilon x_{\text{p}} - \mu)} \frac{dn_{\gamma}(k, E - \varepsilon x_{\text{p}}, Z)}{dk} \sigma(k) dk.$$

В рамках приближения (6) для реакции  ${}^{68}Zn(\gamma, p){}^{67}Cu$  при 40 МэВ  $\leq (E - \varepsilon x_p - \mu) \leq 55$  МэВ для оценок и в прямой, и в обратной задачах фотоядерных экспериментов даже при одной фиксированной кинетической энергии падающих электронов  $T \cong 55$  МэВ (как на разрезном микротроне [19]) и соответствующей  $X_p$  пригодно следующее соотношение:

$$N_{\text{peaku}} \approx \frac{\rho_{\text{M}} \eta_{\text{x}} \eta_{\text{u}} X_{\text{m}}}{M_{\text{m}}} N_{\text{A}} N_{e} \frac{\rho_{\text{p}} X_{\text{p}}}{X_{0\text{p}}} (\sigma_{-1})_{\text{насыш}}.$$
(10')

Если учесть, что на сегодня для тормозного излучения электронов считается более реалистическим представление их спектра согласно Селцеру и Бергеру, то соотношение (10') можно "подправить", взяв вместо ( $\sigma_{-1}$ )<sub>насыщ</sub> меньшую величину, скажем, с использованием линейного приближения сплошной кривой на рис. *Зб* для интервала 40 МэВ  $\leq T \leq 55$  МэВ.

Во втором случае рассматривались реакции  $^{14}N(\gamma, 2p)^{12}B$  и  $^{14}N(\gamma, 2n)^{12}N$ , предлагаемые в фотоядерном способе обнаружения скрытых взрывчатых веществ, использующем регистрацию активности образуемых короткоживущих радиоизотопов  $^{12}B$  (период полураспада  $T_{1/2} \cong 20.2$  мс) и  $^{12}N$  ( $T_{1/2} \cong 11.0$  мс), и имеющие, согласно расчетам по моделям ядерных реакций (см. об этом в [17]), сравнительно широкие энергетические распределения своих сечений  $\sigma(k)$ . Кроме указанного прикладного применения, изучение этих реакций интересно для развития количественных теоретических представлений о девозбуждении атомных



**Рис. 3.** Характеристики реакции <sup>68</sup>Zn( $\gamma$ , p)<sup>67</sup>Cu: a – сечение  $\sigma(k)$ ; сплошная кривая – эксперимент [13]; штрихпунктир – модельный расчет по TALYS [14]; штрихи – модельный расчет по (TALYS [12] + KMФР [16]);  $\delta$  – выход Y(T); e – сечение на эквивалентный квант  $\sigma_q(T)$ . На рис.  $\delta$  и e величины Y(T) и  $\sigma_q(T)$  даны для представлений ( $dn_\gamma(k, E, Z)/dk$ ) согласно: Шиффу [2] (штриховые кривые); Селцеру и Бергеру [5] (сплошные кривые); приближению  $k^{-1}$  (штрихпунктир).



**Рис. 4.** Характеристики реакции <sup>14</sup>N( $\gamma$ , 2*p*)<sup>12</sup>B: *a* – сечения  $\sigma(k)$ , рассчитанные в [17] по модели TALYS [12];  $\delta$  – выходы Y(T); *e* – сечения на эквивалентный квант  $\sigma_q(T)$ . Y(T) и  $\sigma_q(T)$  даны для представлений  $(dn_{\gamma}(k, E, Z)/dk)$  согласно: Шиффу [2] (штриховые кривые); Селцеру и Бергеру [5] (сплошные кривые); приближению  $k^{-1}$  (штрихпунктирные кривые).

ядер в усиленно разрабатываемых в настоящее время моделях ядерных реакций (прежде всего, TALYS [12] и EMPIRE [18]). Результаты из [17] модельных расчетов сечений  $\sigma(k)$  реакций



Рис. 5. Характеристики реакции <sup>14</sup>N( $\gamma$ , 2*n*)<sup>12</sup>B: *a* – сечения  $\sigma(k)$ , рассчитанные в [17] по модели TALYS [12];  $\delta$  – выходы Y(T); *в* – сечения на эквивалентный квант  $\sigma_q(T)$ . Y(T) и  $\sigma_q(T)$  даны для представлений  $(dn_{\gamma}(k, E, Z)/dk)$  согласно: Шиффу [2] (штриховые кривые); Селцеру и Бергеру [5] (сплошные кривые); приближению  $k^{-1}$  (штрихпунктирные кривые).

<sup>14</sup>N( $\gamma$ , 2*p*)<sup>12</sup>В и <sup>14</sup>N( $\gamma$ , 2*n*)<sup>12</sup>N с использованием программы TALYS [12] показаны соответственно на рис. 4*a* и 5*a*. На рис. 4*б* и 4*b* и на рис. 5*б* и 5*b* показаны выходы *Y*(*T*) и сечения на эквивалентный

514

ИЗВЕСТИЯ РАН. СЕРИЯ ФИЗИЧЕСКАЯ том 83 № 4 2019

ПРЕДСТАВЛЕНИЯ СПЕКТРОВ ТОРМОЗНОГО ИЗЛУЧЕНИЯ

(сплошные кривые); приближению  $k^{-1}$ [5] (штрихпунктир). Поведение функций Y(T) и  $\sigma_a(T)$  для этого случая существенно отличается от того, что имеется в предыдущем случае. Для приближения  $(dn_{y}(k, E, Z)/dk) = k^{-1}$  имеем  $Y(T) = \sigma_{a}(T)$ , которые растут менее круто к своему примерному насыщению для реакции  ${}^{14}N(\gamma, 2p){}^{12}B$ , а для реакции <sup>14</sup>N( $\gamma$ , 2*n*)<sup>12</sup>N даже почти не демонстрируют четко выход в область насыщения, что объясняется уменьшенным спадом сечения реакции после его максимума по мере роста Т. Существенное уменьшение крутизны хода к насыщениям Y(T) и  $\sigma_{a}(T)$  наблюдается для реакции <sup>14</sup>N( $\gamma$ , 2*p*)<sup>12</sup>B и, тем более, реакции  ${}^{14}N(\gamma, 2n){}^{12}N$ . Здесь также между значениями  $\sigma_a(T)_{C-E}$  и  $\sigma_a(T)_{III}$  различия не видны.

квант  $\sigma_q(T)$  для реакций <sup>14</sup>N( $\gamma$ , 2*p*)<sup>12</sup>B и <sup>14</sup>N( $\gamma$ , 2*n*)<sup>12</sup>N для различных представлений ( $dn_k(k,E,Z)/dk$ ) со-

гласно: Шиффу [2] (штрихи); Селцеру и Бергеру

Как следует из результатов, представленных на рис. 46 и 56, в рассмотренном втором случае связь величины N<sub>реаки</sub> с интегральными характеристиками реакций менее определенная, однако в предположении, что рассчитываемое модельное сечение реакции примерно правильно передает форму реального сечения и требуется только согласование абсолютных значений модельного и реального сечений, измерения N<sub>реакц</sub> только при одной фиксированной энергии Т для падающих электронов имеют более общий смысл.

#### ЗАКЛЮЧЕНИЕ

Выявлены важные как для исследований гигантских резонансов в атомных ядрах и разработки моделей ядерных реакций, так и для прикладных ядернофизических исследований (получение радиоизотопов для ядерной медицины и разработка методики обнаружения скрытых взрывчатых веществ) особенности имеющихся широко используемых представлений сечений и спектров тормозного излучения электронов, а также соответствуюших этим представлениям интегральных функций для фотоядерных реакций: выходов реакций Y(T) и сечений на эквивалентный квант  $\sigma_a(T)$ .

#### СПИСОК ЛИТЕРАТУРЫ

- 1. Берестецкий В.Б. и др. Релятивистская квантовая теория. М.: Наука, 1968. 480 с.
- 2. Schiff L.I. // Phys. Rev. 1951. V. 83. P. 252.
- 3. Гайтлер В. Квантовая теория излучения. М.: Изд-во "Иностр. лит.", 1956. 492 с.
- 4. Koch H.W., Motz J.W. // Rev. Mod. Phys. 1959. V. 31. P. 920.
- 5. Seltzer S.M., Berger M.J. // Nucl. Instr. and Meth. B. 1985. V. 12. P. 95.
- 6. GEANT 4. Version: geant4 9.5.0 (2nd December, 2011) // Phys. Reference Manual.
- 7. Джилавян Л.З. // Изв. РАН. Сер. физ. 2015. Т. 79. C. 581; Dzhilavyan L.Z. // Bull. Russ. Acad. Sci. Phys. 2015. V. 79. P. 537.
- 8. Rossi B., Greizen K. // Rev. Mod. Phys. 1941. V. 13. P. 240.
- 9. Джилавян Л.З. // Изв. РАН. Сер. физ. 2009. Т. 73. C. 846; Dzhilavyan L.Z. // Bull. Russ. Acad. Sci. Phys. 2009. V. 73. P. 799.
- 10. Fuller E.G. // Phys. Rep. 1985. V. 127. P. 185.
- 11. Dietrich S.S., Berman B.L. // Atomic Data and Nuclear Data Tables. 1988. V. 38. P. 199.
- 12. Koning A.J., Hilaire S., Duijvestijn M.C., in Proc. Int. Conf. on Nuclear Data for Sci. and Technol. - ND2007 (2007. Nice. France. ed. O. Bersillon, et al.): EDP Sciences, 2008. P. 211; TALYS 1.6. http://www.talys.eu/.
- 13. von Sioufi A. El., Erdös P., Stoll P. // Phys. Acta 1958. V. 30. P. 264.
- 14. Алиев Р.А., Белышев С.С., Джилавян Л.З. и др. Экспериментальное исследование возможностей наработки <sup>18</sup>F, <sup>67</sup>Cu, <sup>177</sup>Lu для ядерной медицины на ускорителях электронов. 1340 / 2013, М.: ИЯИ РАН, 2013. 52 c.
- 15. Белышев С.С., Джилавян Л.З., Ишханов Б.С. и др. // ЯФ 2015. Т. 78. С. 246.
- 16. Ишханов Б.С., Орлин В.Н. // ЯФ 2011. Т. 74. С. 21; Ishkhanov B. S., Orlin V. N. // Phys. Atom. Nucl. 2011. V. 74. P. 19.
- 17. Ачаковский О.И., Белышев С.С., Джилавян Л.З., Покотиловский Ю.Н. // Изв. РАН. Сер. физ. 2016. Т. 80. C. 633; Achakovskiy O.I., Belyshev S.S., Dzhilavyan L.Z., Pokotilovski Yu.N. // Bull. Russ. Acad. Sci. Phys. 2016. V. 80. P. 572.
- 18. Herman M. et al. // EMPIRE-3.1 Rivoli. User's Manual. February 8. 2012.
- Karev A.I., Lebedev A.N., Raevsky V.G. et al. // Proc. RuPAC-2010. IHEP Protvino. P. 316. http:// www.ihep.su/rupac2010/.