УДК 539.17

РОЛЬ МЕХАНИЗМА СРЫВА ТЯЖЕЛОГО КЛАСТЕРА В РЕАКЦИИ 27 Al(p, α) 24 Mg

© 2019 г. Л. И. Галанина^{1, *}, Н. С. Зеленская¹, В. Ю. Огнев¹

¹Федеральное государственное бюджетное образовательное учреждение высшего образования "Московский государственный университет имени М.В. Ломоносова",

Научно-исследовательский институт ядерной физики имени Д.В. Скобельцына, Москва, Россия *E-mail: galan lidiva@mail.ru

Поступила в редакцию 01.10.2018 г. После доработки 15.10.2018 г. Принята к публикации 19.11.2018 г.

Рассчитан вклад в сечение реакции ²⁷Al(p, α)²⁴Mg(0⁺, 2⁺) при $E_p = 7.4$ МэВ в интервале углов вылета α -частиц 25°–160° (лаб.) механизма срыва тяжелого кластера ²³Na с начального ядра ²⁷Al(5/2⁺). Расчет сечения этого механизма проведен по программе FRESCO с учетом вклада основного 3/2⁺ состояния ²³Na. Спектроскопические амплитуды в вершинах распада ²⁷Al(5/2⁺) \rightarrow ²³Na(3/2⁺) + α и ²⁴Mg(0⁺, 2⁺) \rightarrow ²³Na(3/2⁺) + p определялись с использованием волновых функций модели Нильссона с учетом их зависимости от деформации. Рассчитанные сечения для уровней 0⁺ и 2⁺ ядра ²⁴Mg меньше экспериментальных на два порядка. Сечение для уровня 0⁺ имеет подъем при $\theta_{\alpha} \sim$ 180° в задней полусфере, а для уровня 2⁺ — максимум при $\theta_{\alpha} >$ 140°. Незначительный вклад механизма срыва тяжелого кластера связан с малыми спектроскопическими амплитудами в вершинах распада начального и конечного ядра вследствие слабого перекрывание волновых функций ядер ²⁷Al, ²³Na и ²⁴Mg(0⁺, 2⁺) в модели Нильссона.

DOI: 10.1134/S0367676519040112

введение

В работе [1] получены экспериментальные угловые распределения (УР) дифференциального сечения реакции ${}^{27}\text{Al}(p, \alpha){}^{24}\text{Mg}(0^+, 2^+)$ при $E_p = 7.4 \text{ M}$ эВ в интервале углов вылета α-частиц 25°-160° (лаб.) и сопоставлены с теоретическими. При расчетах в [1] волновые функции (ВФ) участвующих в реакции ядер выбирались в модели Нильссона [2], в качестве механизмов реакции рассматривались подхват тритона в рамках метода связи каналов (MCK) [3] (программный код CHUCK [4]) и в модель составного ядра (СЯ) (программный код CNDENSI [5]). Было показано, что в рамках выбранных моделей УР более или менее корректно описываются только до углов вылета α-частиц $\theta_{\alpha} < 120^{\circ}$ c образованием ²⁴Mg и в основном состоянии, и в состоянии 2⁺. При бо́льших значениях углов θ_{α} расчеты не описывают экспериментальные сечения, особенно максимум при $\theta_{\alpha} \approx 150^{\circ}$.

В настоящей работе с целью описать экспериментальные УР α -частиц при больших углах их вылета рассмотрен вклад в сечение реакции ²⁷Al(p, α)²⁴Mg(0⁺, 2⁺) механизма срыва [6] тяжелого кластера ²³Na с начального ядра ²⁷Al(5/2⁺). Расчет сечения этого механизма проведен по программе FRESCO [7] с учетом вклада основного $3/2^+$ состояния ²³Na [8]. Спектроскопические амплитуды (СА) в вершинах распада ²⁷Al($5/2^+$) $\rightarrow 2^{23}$ Na($3/2^+$) + α и ²⁴Mg(0^+ , 2^+) $\rightarrow 2^{23}$ Na($3/2^+$) + p, как и в [1], рассчитывались с использованием ВФ модели Нильссона [2] с учетом их зависимости от деформации.

ВОЛНОВЫЕ ФУНКЦИИ ЯДЕР ²⁷Al(5/2⁺), ²⁴Mg(0⁺, 2⁺) и ²³Na(3/2⁺, 5/2⁺) В МОДЕЛИ НИЛЬССОНА

ВФ ядра $|J \Omega\rangle$ с полным моментом *J* и проекцией Ω на ось его симметрии в модели Нильссона [2] может быть представлена в виде суперпозиции конфигураций ВФ нильссоновских орбиталей $|(N \circ n_i)\Omega_i\rangle$, каждая из которых может быть разложена по ортонормированному базису $|2l_i \mu_i \sigma_i\rangle$ одночастичных собственных функций (заполнение орбиталей нуклонами начинается с их низших собственных энергий)

$$|(\mathbb{N}_{2} n_{i})\Omega_{i}\rangle = \sum_{i} a_{l_{i}\mu_{i}\sigma_{i}} |l_{i}\mu_{i}\sigma_{i}\rangle,$$

$$\sum_{l_{i}\mu_{i}\sigma_{i}} a_{l_{i}\mu_{i}\sigma_{i}}^{2} = 1.$$
(1)

Рис. 1. Диаграмма, иллюстрирующая механизм срыва тяжелого кластера 23 Na(3/2⁺) в реакции 27 Al(p, α) 24 Mg.

В (1) $l_i(\mu_i)$ – значение орбитального момента нуклона (его проекции), σ_i – проекции его спина, $\Omega_i = \mu_i + \sigma_i$; $\sum_i \Omega_i = \Omega$. Четыре нуклона с различными проекциями спинов и изоспинов образуют замкнутую конфигурацию орбиталей $(N_0 n_i)^4$ с $\Omega = 0$.

Ядра ²⁷Al($J_A = 5/2^+$), ²⁴Mg($J_B = 0^+$, 2⁺) и ²³Na($J_C = 3/2^+$) принадлежат 1d-2s-оболочке. ВФ в модели Нильссона ²⁷Al($J_A = 5/2^+$), ²⁴Mg($J_B = 0^+$, 2⁺) с положительной квадрупольной деформацией ($\beta_2 = +0.25$ для ²⁷Al и +0.4 для ²⁴Mg) [9]) имеют вид [2]:

$$\Psi_{2^{7}\text{Al}}(J_{A} = 5/2^{+}\Omega_{A} = 5/2) =$$

$$= \left| (N_{2} 6)^{4} (N_{2} 7)^{4} (N_{2} 5)^{3}\Omega_{A} = 5/2 \right\rangle.$$
(2)

$$\Psi_{{}^{24}\text{Mg}}(J_B = 0, \Omega_B = 0) =$$

= $|(\mathbb{N}_2 6)^4 (\mathbb{N}_2 7)^4 \Omega_B = 0\rangle.$ (3)

$$\Psi_{{}^{24}\text{Mg}}(J_B = 2^+\Omega = 2) = \sqrt{\frac{6}{7}} \Big| (\mathbb{N}_2 \ 6)^4 (\mathbb{N}_2 \ 7)^3 \cdot a_{221+}^{\mathbb{N}_2 7/(2^4 Mg)} : \Omega = 3/2 \Big\rangle \otimes \Big| (\mathbb{N}_2 \ 9) \cdot a_{221-}^{\mathbb{N}_2 9/(2^4 Mg)} : \Omega = 1/2 \Big\rangle.$$
(4)

Основное состояние ²³Na($J_C = 3/2^+$) в модели Нильссона имеет протонную дырку в конфигурации (№7)⁴, так что его ВФ определяется выражением

$$\Psi_{{}^{23}\mathrm{Na}}(J_C = 3/2^+ \Omega = 3/2) = = |(\mathbb{N}_{2}^{\circ} 6)^4 (\mathbb{N}_{2}^{\circ} 7)^3 : \Omega = 3/2\rangle.$$
(5)

КАЧЕСТВЕННЫЕ ОЦЕНКИ ВЛИЯНИЯ ДЕФОРМАЦИИ ЯДЕР НА СПЕКТРОСКОПИЧЕСКИЕ АМПЛИТУДЫ МЕХАНИЗМА СРЫВА ТЯЖЕЛОГО КЛАСТЕРА В РЕАКЦИИ ²⁷Al(*p*, α)²⁴Mg(0⁺, 2⁺)

Механизм срыва тяжелого кластера ²³Na в реакции ${}^{27}\text{Al}(p, \alpha){}^{24}\text{Mg}$ иллюстрируется полюсной диаграммой рис. 1. Вероятность распада в каждой из вершин этой диаграммы характеризуется CA.

Основная сложность заключается в расчете СА в вершине ²⁷Al \rightarrow ²³Na + α . Согласно (3), в основном состоянии ²⁷Al содержит три $ld_{5/2}$ нуклона (один протон и два нейтрона в орбитали (№ 5)), ВФ которых не зависит от деформации. Чтобы сформировать α -частицу, из ²⁷Al необходимо отделить еще один $ld_{3/2}$ протон из конфигурации

(№ 7)⁴ с компонентой его ВФ |222 – \rangle , при этом весовой коэффициент $a_{222-}^{Ne 7(^{27}Al)}$ зависит от деформации ²⁷Al и при $\beta_2 = +0.25$ меньше единицы [2].

Вероятность распада ²⁴Mg(0⁺, 2⁺) \rightarrow ²³Na(3/2⁺) + + *p* также определяется компонентой |222 – > в ²³Na(3/2⁺) и ²⁴Mg(0⁺, 2⁺). Из (3–5) следует, что ВФ ²⁴Mg и ²³Na во всех рассматриваемых состояниях содержат компоненту |222 –>. Ее вклад в ВФ (3)–(5) при большой деформации ²⁴Mg и ²³Na относительно мал, что уменьшает величину СА в вершине распада ²⁴Mg \rightarrow ²³Na + *p*.

Таким образом, учет деформации начального, конечного ядер и передаваемого тяжелого кластера приводит к уменьшению СА в вершинах рассматриваемой диаграммы. В следующем разделе проведены расчеты конкретных СА для механизма срыва тяжелого кластера в реакции ${}^{27}\text{Al}(p, \alpha)^{24}\text{Mg}(0^+, 2^+)$.

РАСЧЕТ СА ДЛЯ МЕХАНИЗМА СРЫВА ТЯЖЕЛОГО КЛАСТЕРА ²³Na($3/2^+$) В РЕАКЦИИ ²⁷Al(p, α)²⁴Mg($J_R = 0$)

Согласно [6] СА распада в вершине $1 - B \rightarrow C + x$ – определяется выражением

$$\Theta_{\Lambda_{1}J_{C}}^{B\to C+x} = \sum \langle L_{B}S_{B} | J_{B} \rangle \langle L_{C}S_{C} | J_{C} \rangle \langle L_{x}S_{x} | J_{x} \rangle \langle L_{C}L_{1} | L_{B} \rangle \langle S_{C}S_{x} | S_{B} \rangle \langle \Lambda_{1}L_{x} | L_{1} \rangle \tilde{\Theta}_{\Lambda_{1}L_{B}L_{C}L_{1}L_{x}S_{B}S_{C}S_{x}}^{B\to C+x},$$
(6)

где суммирование ведется по всем моментам (их проекциям), разрешенным правилами отбора. При использовании кода FRESCO в случае передачи тяжелого кластера C в CA (6) необходимо выделить связь моментов в виде $\langle \Lambda_1 J_C | I_1 \rangle \langle J_x I_1 | J_B \rangle$, где Λ_1 — орбитальный момент функции относительного движения кластеров *C* и *x*. Выполняя соответствующие алгебраические преобразования в (6), получим [6]:

$$\Theta_{\lambda J_C}^{B \to C+x} = \langle \Lambda_1 J_C | I_1 \rangle \langle J_x I_1 | J_B \rangle W(\Lambda_1 I_1),$$
⁽⁷⁾

где

$$W(\Lambda_{1}I_{1}) = \tilde{\Theta}_{\Lambda_{1}L_{B}L_{C}L_{1}L_{x}S_{B}S_{C}S_{x}}^{B \to C+x} (-1)^{S_{C}+S_{x}-S_{B}} \sqrt{\frac{LLS_{C}J_{B}J_{x}J_{C}}{L_{C}I_{1}}} \times \sum_{I_{1}M_{I_{1}}} \begin{cases} L_{x} & S_{x} & J_{x} \\ L_{1} & S_{C} & I_{1} \\ L_{B} & S_{B} & J_{B} \end{cases} + U(L_{x}\Lambda_{1}L_{B}L_{C} : L_{1}L) + U(\Lambda_{1}L_{1}J_{C}S_{C} : L_{C}I_{1}). \end{cases}$$
(8)

В (6) приведенная СА $\tilde{\Theta}_{\Lambda_1 L_B L_C L_1 L_x S_B S_C S_x}^{B \to C+x}$ определяется выражением

$$\tilde{\Theta}^{B \to C+x}_{\Lambda_1 L_B L_C L_1 L_x S_B S_C S_x} = \left(\frac{B}{C}\right)^{N_x/2} \mathfrak{I}_{1J_B} \left\langle T_x T_C \left| T_B \right\rangle,$$

где N_x — число квантов, уносимых отделяемыми нуклонами, $\left(\frac{B}{C}\right)^{N_x/2}$ — множитель отдачи, \mathfrak{I}_{IJ_B} — интеграл перекрытия ВФ ядер *B* (в состоянии J_B) и *C*:

$$\begin{split} \mathfrak{I}_{1J_B} &= \left\langle \Psi_B(J_B) \middle| \Psi_C \right\rangle = \\ &= K_x(l,\Lambda) \Gamma \mathrm{K} \left\langle \varphi_x \middle| \Psi_{N_x\Lambda}(\vec{r}_x - \vec{R}_{\mathrm{C}}), \right. \end{split}$$

для расчета которого в *LS*-связи мы использовали нильссоновскую модель, $\langle T_x T_C | T_B \rangle$ – изоспино-

вый коэффициент Клебша–Гордана, ГК – генеалогический коэффициент для ядер 1*d*-оболочки [10].

Аналогичным образом определяется CA распада в вершине $2 - A \rightarrow C + y$.

$$\mathfrak{S}_{10}$$
для вершины ${}^{24}Mg(0^+) = {}^{23}Na(3/2^+) + p$

Определим интеграл перекрытия ВФ ядер ${}^{24}Mg(0^+)$ (*B*) и ${}^{23}Na(3/2^+)$ (*C*) в модели Нильссона. Для этого преобразуем ВФ (3) основного состояния ядра ${}^{24}Mg$ с параметром квадрупольной деформации $\beta_2 = +0.4$.

$$\Psi_{{}^{24}Mg}(J_B = 0^+, \Omega = 0) = \left| (\mathbb{N}_{2} 6)^4 (\mathbb{N}_{2} 7)^4 \Omega = 0 \right\rangle = \sqrt{4} \left| (\mathbb{N}_{2} 6)^4 (\mathbb{N}_{2} 7)^3 \Omega = 3/2 \right\rangle \left\langle d^4 [4]^{11} S \left| d^3 [4]^{22} D, d \right\rangle \times \\ \times \left| (\mathbb{N}_{2} 7) \Omega = -3/2 \right\rangle = -\sqrt{4} \left| (\mathbb{N}_{2} 6)^4 (\mathbb{N}_{2} 7)^3 \Omega = 3/2 \right\rangle a_{222-}^{\mathbb{N}_{2} 7/2^4 Mg} \Psi_{22} \left(\vec{r}_{p} - \vec{R}_{23}_{\mathbb{N}_{a}} \right) \right| \phi_{p} \rangle,$$
(9)

где $\langle d^4 [4]^{11}S | d^3 [4]^{22}D, d \rangle$ — одночастичный ГК [10], равный 1. Компонента |222 – \rangle ВФ ядра ²⁴Мg имеет вес $a_{222-}^{Ne7(^{24}Mg)} = 0.174$ при $\beta_2 = +0.4$. Подставляя в (9) эти величины для \mathfrak{T}_{10} , получаем

$$\Im_{10} = 0.348.$$
 (10)

 \mathfrak{F}_{12} для вершины ${}^{24}Mg(2^+)={}^{23}Na(3/2^+)+$

Для расчета интеграла перекрытия \mathfrak{T}_{12} в модели Нильсона ВФ (4) ядра ²⁴Mg(2⁺) (*B*) с параметром квадрупольной деформации $\beta_2 = +0.4$ представим в виде:

$$\Psi_{^{24}Mg}(J_B = 2^+\Omega = 2) = \frac{3\sqrt{2}}{\sqrt{7}} |(\mathbb{N}_{2} 6)^4 (\mathbb{N}_{2} 7)^2 : \Omega = 0\rangle \langle d^3[3]^{22}D | d^3[2]^{13}S, d\rangle \times \\ \times ||221+\rangle a_{221+}^{\mathbb{N}_{2} 7(^{24}Mg)} : \Omega = 3/2\rangle \otimes ||221-\rangle a_{221-}^{\mathbb{N}_{2} 9(^{24}Mg)} : \Omega = 1/2\rangle.$$
(11)

В (11) $a_{221+}^{Ne7(^{24}Mg)} = 0.985$, $a_{222-}^{Ne7(^{24}Mg)} = 0.174$, $\left\langle d^3 [3]^{22} D \right| d^3 [2]^{13} S, d \right\rangle = \frac{\sqrt{7}}{\sqrt{15}}$. В результате (11) $a_{221-}^{Ne9(^{24}Mg)} = -0.996$, а $|221-\rangle = -|221-\rangle *$. ГК принимает вид

$$\Psi_{^{24}Mg}(J_B = 2^+\Omega = 2) = \frac{\sqrt{6}}{\sqrt{5}} 0.98 \ln a_{222-}^{N_{\mathbb{C}}7(^{24}Mg)} \left| (N_{\mathbb{C}}6)^4 (N_{\mathbb{C}}7)^2 : \Omega = 0; \left| 222 - \right\rangle : \Omega = 3/2 \right\rangle.$$
(12)

ИЗВЕСТИЯ РАН. СЕРИЯ ФИЗИЧЕСКАЯ том 83 № 4 2019

475

Таблица	1.	Спектроскопические	амплитуды	для	механизма	срыва	тяжелого	кластера	23 Na(3/2 ⁺)	В	реакции
$^{27}\mathrm{Al}(p,\alpha)^2$	^{24}N	Лg	••••			•					

	Λ_i	I_i	$W(\Lambda_i I_i)$
$^{24}Mg(0^+) \rightarrow ^{23}Na(3/2^+) + p$	2	1/2	-0.363
	0	3/2	0.113
$^{24}Mg(2^+) \rightarrow ^{23}Na(3/2^+) + p$	2	3/2	0.201
	2	5/2	0.113
$^{27}\text{Al}(5/2^+) \rightarrow ^{23}\text{Na}(3/2^+) + \alpha$	2	5/2	0.33
	4	5/2	0.943

Аналогичным образом преобразуем ВФ 23 Na(3/2⁺):

$$\Psi_{^{23}Na}(J_C = 3/2^+\Omega = 3/2) = \sqrt{3} \left| (N_{^{\circ}} 6)^4 (N_{^{\circ}} 7)^2 : \Omega = 0; |222 - \rangle a_{^{222-}}^{N_{^{\circ}} 7/^{^{23}}Na)} : \Omega = 3/2 \right\rangle.$$
(13)

Объединяя (12, 13), для интеграла перекрытия получаем

$$\mathfrak{S}_{12} = \frac{3\sqrt{2}}{\sqrt{5}} 0.174 \cdot 0.981. \tag{14}$$

 \mathfrak{S}_2 для вершины ${}^{27}Al(5/2^+) = {}^{23}Na(3/2^+) + \alpha$

Интеграл перекрывания ВФ ядер 27 Al(5/2⁺) ($\beta_2 = +0.25$) и 23 Na(3/2⁺) ($\beta_2 = +0.4$) равен

$$\begin{aligned} \Im_{2} &= \left\langle (\mathbb{N}_{2} \, 6)^{4} (\mathbb{N}_{2} \, 7)^{4} (\mathbb{N}_{2} \, 5)^{3} \Omega = 5/2 \, \Big| (\mathbb{N}_{2} \, 6)^{4} (\mathbb{N}_{2} \, 7)^{3} \Omega = 3/2 \right\rangle \\ &= \left(\frac{11}{3} \right)^{1/2} \left\langle (\mathbb{N}_{2} \, 6)^{4} (\mathbb{N}_{2} \, 7)^{4} \Omega = 0 \, \Big| (\mathbb{N}_{2} \, 6)^{4} (\mathbb{N}_{2} \, 7)^{3} \Omega = 3/2 \right\rangle \Big| 1d^{3} [3] l_{2} = 2 \right\rangle = \\ &= \left(\frac{11}{3} \right)^{1/2} \sqrt{4} a_{222^{-}}^{\mathbb{N}_{2} 7(2^{7} \, \mathrm{Al})} \, \Big| 222^{-} \right\rangle \left\langle d^{4} [4]^{11} S \, \Big| d^{3} [3]^{22} D, d \right\rangle K_{t} (d^{3} [3] l_{2} = 2) \times \\ &\times \left\langle 6222 : \Lambda_{2} \, \Big| 3, 1 \big| 8\Lambda_{2} 00 : \Lambda_{2} \right\rangle \Psi_{8\Lambda_{2}} (\vec{r}_{\alpha} - \vec{R}_{23}_{\mathrm{Na}}) \Big| \varphi_{\alpha} \right\rangle, \end{aligned}$$

$$\tag{15}$$

где $a_{222-}^{Ne7(^{27}Al)} = 0.252$ [2] при $\beta_2(^{27}Al) = +0.25$; $K_t(d^3[3]l_2 = 2)$ — обобщенные коэффициенты Тальми [11]. Их конкретные значения, выделяющие в ВФ трех *d*-нуклонов внутреннюю ВФ тритона и ВФ относительного движения трития и ядра ²⁴Mg, приведены в [1]. $\langle 6222 : \Lambda_2 | 3, 1 | 8\Lambda_2 00 : \Lambda_2 \rangle$ — коэффициенты Тальми с разными массами [11], выделяющие в системе четырех *d*-нуклонов внутреннюю ВФ α -частицы и ВФ относительного движения α -частицы и ядра ²³Na. Произведения $K_t(d^3[3] l_2 = 2) \cdot \langle 6222 : \Lambda_2 | 3, 1 | 8\Lambda_2 00 : \Lambda_2 \rangle$ равны $\frac{\sqrt{33}}{32\sqrt{14}} = 0.058$ для $\Lambda_2 = 2$ и $\frac{\sqrt{11 \cdot 13}}{64\sqrt{7}} = 0.071$ для $\Lambda_2 = 4$. В результате

$$\Im_2 = 0.504\sqrt{165} \begin{cases} 0.06 & \Lambda_2 = 2\\ 0.07 & \Lambda_2 = 4. \end{cases}$$
(16)

Все рассчитанные нами СА для левой и правой вершин диаграммы рис. 1 приведены в табл. 1.

ВКЛАД МЕХАНИЗМА СРЫВА ТЯЖЕЛОГО КЛАСТЕРА ²³Na(3/2⁺) В УГЛОВОЕ РАСПРЕДЕЛЕНИЕ α-ЧАСТИЦ – ПРОДУКТОВ РЕАКЦИИ ²⁷Al(*p*, α)²⁴Mg

Расчет сечения механизма передачи тяжелого кластера 23 Na($3/2^+$), иллюстрируемого диаграммой на рис. 1, проведен по программе FRESCO [7]. СА в вершинах распада ядер брались из табл. 1. Значения параметры оптических потенциалов во входном и выходном каналах реакции взяты такими же, как и в [1], и приведены в табл. 2.

Результаты расчетов вместе с экспериментальным сечением, полученным в [1], показаны на рис. 2.

Как видно из рисунка, расчетное угловое распределение α-частиц на два порядка меньше

	<i>V</i> , МэВ	<i>r_V</i> , фм	<i>а_V</i> , фм	<i>W</i> , МэВ	<i>r_{WD}</i> , фм	<i>а_{WD}</i> , фм	<i>V_{so}</i> , МэВ	<i>r_{so}</i> , фм	<i>а_{so}</i> , фм	<i>r_C</i> , фм	Ссылка
p^{+27} Al(5/2 ⁺)	55.317	1.169	0.674	7.62	1.295	0.533	5.644	0.97	0.59	1.33	[12]
$\alpha + {}^{24}Mg(0^+, 2^+)$	194.	1.4	0.65	7.25	1.4	0.65				1.4	[13]

Таблица 2. Параметры оптических потенциалов во входном и выходном каналах реакции 27 Al $(p, \alpha)^{24}$ Mg

экспериментального для обоих состояний ²⁴Mg. Такое различие экспериментальных и теоретических сечений можно объяснить малыми значениями СА в обеих вершинах распада начального и конечного ядер, обусловленных тем, что коэффициенты $a_{222-}^{Ne7(^{27}Al, ^{24}Mg)}$ разложения ВФ нильссоновской орбитали $|(Ne7) 3/2\rangle$ существенно меньше единицы.

Более того, форма рассчитанного углового распределения не характерна для механизма срыва тяжелого кластера: за счет большого переданного импульса сечение этого механизма должно иметь осцилляции в задней полусфере и подъем

Рис. 2. Рассчитанные дифференциальные сечения механизма срыва тяжелого кластера 23 Na($3/2^+$) в реакции 27 Al(p, α) 24 Mg (сплошные кривые) с образованием 24 Mg в основном (*a*) и возбужденном 2_1^+ (*б*) состояниях. Экспериментальные данные (черные точ-ки) взяты из [1].

при углах θ_{α} , близких к 180°. При образовании ²⁴Mg в основном состоянии рассчитанное сечение имеет практически симметричную форму угловой зависимости и узкий максимум при $\theta_{\alpha} \sim 180^\circ$, в со-

стоянии 2_1^+ — максимум при $\theta_{\alpha} > 140^\circ$, но их величина на два порядка меньше экспериментального. Другими словами, механизм срыва тяжелого кластера не дает вклад в дифференциальное сечение реакции ²⁷Al(p, α)²⁴Mg(0^+ , 2^+).

ЗАКЛЮЧЕНИЕ

В настоящей работе рассмотрен вклад механизма срыва тяжелого кластера ²³Na в сечение реакции ${}^{27}\text{Al}(p, \alpha){}^{24}\text{Mg}(0^+, 2^+).$

Расчет сечения этого механизма проведен по программе FRESCO [7], СА в вершинах распада ${}^{24}Mg \rightarrow {}^{23}Na + p \varkappa {}^{27}Al \rightarrow {}^{23}Na + \alpha$ вычислялись в модели Нильссона с учетом деформации всех ядер.

Рассчитанные сечения для уровней 0⁺ и 2⁺ ядра ²⁴Мg меньше экспериментальных на два порядка, сечение с образованием уровня 0⁺ имеет узкий подъем к углу $\theta_{\alpha} \sim 140^{\circ}$. Для уровня 2⁺ в расчетном сечении имеется максимум при $\theta_{\alpha} > 140^{\circ}$, но его величина также меньше экспериментального на два порядка. Такое поведение вклада механизма срыва тяжелого кластера можно, по крайней мере, качественно объяснить аномально малыми СА в вершинах распада начального и конечного ядер вследствие слабого перекрывания ВФ ядер ²⁷Al, ²³Na и ²⁴Mg в модели Нильссона. Малые значения СА приводят к тому, что вклад механизма срыва тяжелого кластера ²³Na в угловое распределение протонов в реакции ${}^{27}\text{Al}(p, \alpha){}^{24}\text{Mg}$ занижен по сравнению с экспериментом на два порядка. Это означает, что рассматриваемый механизм не играет существенной роли в реакциях передачи на ядрах 1*d*-оболочки.

СПИСОК ЛИТЕРАТУРЫ

1. Галанина Л.И., Зеленская Н.С., Лебедев В.М. и др. // Изв. РАН. Сер. физ. 2016. Т. 80. С. 338; Galanina L.I., Zelenskaya N.S., Lebedev V.M. et al. // Bull. Russ. Acad. Sci. Phys. 2016. V. 80. P. 304.

- 2. *Нильссон С.Г.* Связанные состояния индивидуальных нуклонов в сильно деформированных ядрах. В книге "Деформация атомных ядер". М.: Иностр. лит-ра, 1958. С. 232.
- 3. Tamura T. // Rev. Mod. Phys. 1965. V. 37. P. 679.
- 4. Kunz P.D., Rost E. // Comp. Nucl. Phys. 1993. V. 2. P. 88.
- Belyaeva T.L., Zelenskaya N.S., Odintzov N.V. // Comp. Phys. Comm. 1992. V. 73. P. 161.
- 6. Зеленская Н.С., Теплов И.Б. Обменные процессы в ядерных реакциях. М.: Изд-во МГУ, 1985. 167 с.

- Tompson I.J. // Comput. Phys. Rep. 1988. V. 7. P. 167; http:// www.fresco.org.uk/.
- Endt P.M., Van Der Leun C. // Nucl. Phys. A 1978.
 V. 310. P. 94.
- 9. http://cdfe.sinp.msu.ru/services/radchart/radmain.html/.
- Jahn H.A., Van Wieringer H. // Pros. Roy. Sos. 1951. V. A209. P. 502.
- 11. *Неудачин В.Г., Смирнов Ю.Ф.* Нуклонные ассоциации в легких ядрах. М.: Изд-во "Наука", 1969. 414 с.
- Koning A.J., Delaroche J.P. // Nucl. Phys. A. 2003. V. 713. P. 231.
- 13. *Thompson W.J., Grawford G.E., Davis R.H.* // Nucl. Phys. A. 1967. V. 98. P. 228.